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ABSTRACT

We revisit the classical problem of a laminar plume arising from a point source of heat on a horizontal boundary of infinite extent in an
otherwise motionless neutrally stratified environment. The Boussinesq equations of motion and thermal energy for a steady axisymmetric
plume are approximated separately for the plume interior and exterior, with the two regions connected via pressure continuity and use of the
transverse (radial) equation of motion, an equation that has not been used in previous theoretical analyses of laminar plumes. An analysis of
the governing equations yields a simple relation between the azimuthal vorticity and buoyancy, two variables of prime interest in studies of
axisymmetric thermals, plumes, and jets. The relation states that when the Prandtl number is 1, the vorticity is equal to the buoyancy times
radius divided by twice the kinematic viscosity. A more complex vorticity–buoyancy relation is obtained for arbitrary Prandtl numbers. The
same vorticity–buoyancy relations are predicted for the plume interior and exterior. The relation for a Prandtl number of 1 is validated using
output from a direct numerical simulation of a laminar plume induced by a small heat source on the lower boundary. The steady-state vortic-
ity–buoyancy relation is confirmed in regions that have attained a steady state and also, remarkably, at earlier times, where the plume cap has
passed, but the flow is still evolving.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0260318

I. INTRODUCTION

Thermally induced plumes are common in a variety of geophysi-
cal and engineering contexts. Plumes of hot air heated by the ground
during the afternoon rise through the atmospheric boundary layer.1–4

Plumes of superheated mantle material rise above thermal anomalies
on the Earth’s core/mantle interface.5–8 Plumes are important to the
ventilation and heating of buildings, the cooling of electronic circuitry,
and the heat transfer in heat exchangers.9–12 Although many plumes
are turbulent, turbulent plumes can arise from laminar plumes that
have become unstable at certain distances above their sources (e.g.,
smoke from a cigarette). The laminar plume is of interest in its own
right as a canonical natural convective flow13–15 and can also be used
as a base state in studies of flow transitions and pathways to
turbulence.

In this study, we revisit the laminar plume arising from a main-
tained point source of heat in a neutrally stratified environment other-
wise at rest. Laboratory experiments6,16–29 show that laminar plumes
consist of a rising cap (also known as a front or head) of buoyant fluid
on top of a narrow stem (also known as a column, corridor, or con-
duit) of buoyant fluid that extends from the heat source up to the base
of the cap. Although the caps are often mushroom-shaped, other mor-
phologies are possible.21,26 As the cap ascent speed is less than the

vertical velocity of the fluid flowing through the stem, the cap is con-
tinually fed by its stem, and its volume increases. In contrast, flow
within the stem rapidly approaches a steady state.

Theoretical results for the structure of a steady laminar plume
over a maintained point source of heat were first obtained by
Zeldovich30 (English translation in Ostriker et al.31). Zeldovich30

showed that the simplified governing equations (essentially
Boussinesq-approximated equations with additional approximations
based on the slenderness of the plume) admitted solutions for the
buoyancy and vertical velocity fields as products of powers of z and
functions of the similarity variable n / r=z1=2 [z is the height and r is
the distance from the plume axis (radius)]. The power laws predicted
(i) a z-independent centerline ascent speed, (ii) a centerline buoyancy
that decreased as 1=z, and (iii) a plume width that increased as z1=2

(the latter result was not given explicitly, but could be inferred from
the presented results, and was clearly used in a Reynolds number cal-
culation). The explicit forms of the similarity functions were not pur-
sued. The power laws are summarized in the Appendix.

Independently, Yih32 considered the same laminar axisymmetric
problem as in Zeldovich,30 obtained the same power laws and derived
analytical solutions of the coupled ordinary differential equations
for the similarity functions for Prandtl numbers (Pr) 1 and 2
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(although Yih,14 p. 411, noted that there are some numerical errors in
Yih32).

Fujii33 and Brand and Lahey34 rediscovered the Yih32 solutions
for Pr¼ 1 and 2 and also integrated the similarity model equations
numerically for other Pr. For the Pr¼ 1 and 2 cases, the similarity
solution for the vertical velocity was proportional to 1=ð1 þ an2Þ2,
where n is the same similarity variable as in Zeldovich30 (in different
notation), and a is a constant (different for the two Pr cases). Thus, at
any height, the vertical velocity decreased monotonically with r and
approached 0 as r ! 1.

The similarity models described above were designed for the
plume interior, where it was assumed that the vertical acceleration,
buoyancy, and radial diffusion of vertical velocity were of the same
order of magnitude and that the vertical parts of the divergence of the
viscous/diffusive heat and momentum fluxes were negligible. The simi-
larity form of the temperature field was validated in laboratory experi-
ments by Shlien and Boxman18,19 and Davaille et al.27 The velocity
field was validated by Tanny and Shlien.20 Good agreements between
predictions from the similarity theory and observations were obtained
when a virtual source correction was used to take into account the
small (but non-zero) size of the heaters.

The purpose of this study is to show how a fundamental relation
exists between the azimuthal vorticity and buoyancy, two variables of
prime interest in studies of axisymmetric thermals, plumes, and jets.
As part of the derivation of this relation, separate approximations and
analyses are made for the plume interior and plume exterior, a parti-
tion analogous to the Prandtl partition of flow over a flat plate into
boundary-layer and external regions.35 The same vorticity–buoyancy
relation is found to apply to the plume interior and exterior. As part of
the derivation, the radial equation of motion—which was not used in
the development of the similarity models—is integrated with respect to
radius, and pressure continuity is imposed at the interface between the
plume interior and exterior. The vorticity-buoyancy relation is remark-
ably simple for Pr ¼ 1, but a related (more complex) relation is found
for arbitrary Pr. To motivate some of the assumptions used in our deri-
vation and provide a dataset to test our prediction, we performed a
direct numerical simulation (DNS) of a laminar axisymmetric plume
for Pr¼ 1.

A summary of the DNS, including comparisons with the similar-
ity theory and laboratory experiments, is provided in Sec. II. In Sec. III,
the governing equations are approximated for the plume interior and
exterior, and partially integrated, with the same differential relation
between buoyancy and azimuthal vorticity obtained for both regions.
Integration of this relation in Sec. IV yields a simple formula for vortic-
ity in terms of buoyancy when Pr¼ 1 and a more complex relation for
arbitrary Pr. The predicted relation for Pr ¼ 1 is found to be in excel-
lent agreement with the corresponding DNS relation in both the plume
interior and exterior after the steady state has been reached and also,
remarkably, at times after cap passage but before the flow has attained
a steady state. We attempt to make this latter result plausible in Sec. V
by retracing the derivations in Sec. III using unsteady versions of the
governing equations.

II. DIRECT NUMERICAL SIMULATION
A. Numerical model

We conducted a direct numerical simulation (DNS) of a laminar
axisymmetric plume using the open-source computational fluid

dynamics code MicroHH of van Heerwaarden et al.36 The numerical
mesh consisted of 2048� 2048� 2048 points in the Cartesian x, y,
and z directions (z is height) with a uniform grid spacing D ¼ 0:002 m,
giving a computational domain of dimensions 4.096� 4.096� 4.096m3.
The governing equations were the Boussinesq-approximated equations
of motion, thermal energy, and mass conservation (incompressibility
condition). The equations of motion and thermal energy were spatially
discretized on a staggered Arakawa C-grid and integrated with second-
order finite differencing of the advection and diffusion terms. The per-
turbation pressure was solved using a second-order Poisson solver.
The model was integrated with a third-order Runge-Kutta scheme
using adaptive time stepping. The kinematic viscosity � and thermal
diffusivity j were set to 10�5 m2 s�1 (Pr ¼ 1). The initial velocity and
buoyancy profiles were set to zero, and the environment was neutrally
stratified. The vertical velocity w was set to zero on the lower and
upper boundaries. The x-velocity component u and y-velocity compo-
nent v satisfied the no-slip condition on the lower boundary and the
free-slip (zero normal gradient) condition on the upper boundary. A
zero-normal-gradient condition was applied to the buoyancy at the
upper boundary, while on the lower boundary the buoyancy was set to
0.125m s�2 on a small block of the four central-most grid points and
zero elsewhere. The lateral boundary conditions for all prognostic
fields were periodic.

B. Plume simulation

The DNS was run until the cap and upper part of the stem became
unstable, about 30 s into the simulation. An overview of the plume rise
is shown in Fig. 1. The leading edge of the cap rises at a nearly constant
rate (�0:09 m s�1), especially from time t ¼ 10 to 25 s. Constant cap
speeds have been described in laboratory experiments on laminar
plumes by Shlien,16,17 Moses et al.,22 Moses et al.,23 Kaminski and
Jaupart,24 Davaille et al.,27 Cagney et al.,28 and others, though for
Prandtl numbers 1–5 orders of magnitude larger than in our DNS. The
notable increase in the width and depth of the cap with time is consis-
tent with cap growth through a continual supply of warm fluid rising
through the stem at a faster rate than the ascent speed of the cap.

A vertical cross section of the streamlines at t ¼ 20 s (Fig. 2)
depicts upward and outward displacements of environmental fluid in
advance of the rising cap and the entrainment of environmental fluid
into the stem. The flow exterior to the plume becomes increasingly
horizontal as the ground is approached. Figure 2 also shows that the
plume is surrounded by subsiding fluid (w < 0). As the similarity solu-
tion for w discussed in Sec. I is positive everywhere (it attains its peak
on the plume axis, decreases monotonically with r, and approaches 0
as r ! 1), it cannot apply to this exterior region.

Three measures of plume radius RðzÞ are shown in Fig. 3 at t
¼ 25 s. The R are defined by radii where (i) @2w=@r2 ¼ 0 (w inflection
point; approximate location of peak azimuthal vorticity), (ii) w ¼ 0
(interface between plume updraft and downdraft), and (iii) @w=@r
¼ 0 (peak downdraft). The inflection point yields the smallest R, and
the peak downdraft yields the largest. The curves of R vs z are piece-
wise constant because our calculations using the DNS data restricted R
to multiples of the grid spacing. The radii defined by the w ¼ 0 and
@w=@r ¼ 0 curves were checked against power law (A3) [R ¼ C z1=2]
using visual estimates of R from Fig. 3. The inflection point curve was
not checked because its piecewise nature made its assessment particu-
larly difficult. The w ¼ 0 and @w=@r ¼ 0 curves at z ¼ 0:1 m yielded
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R ¼ 0:045 and 0.065m, respectively. These were used to obtain C ¼
R=ð0:1mÞ1=2 ¼ 0:142m1=2 and 0:206m1=2, respectively, from which
we calculated the R at z ¼ 0:2 m as R ¼ C ð0:2mÞ1=2
¼ 0:064 and 0.092m. Subtracting these latter values from the corre-
sponding R observed at z ¼ 0:2 m (0.059 and 0.081m) and normaliz-
ing the differences by the latter observed values, yielded 8.5% and
13.6% discrepancies between the w ¼ 0 and @w=@r ¼ 0 curves and
the power law. In our study, it will be convenient to work with R
defined as the radius at which w ¼ 0,

wjr¼R ¼ 0: (1)

The radial dependences of the buoyancy b and velocity compo-
nents at t ¼ 25 s at selected low-altitudes in the plume interior are
shown in Fig. 4. On each level, the peak w is �100 times larger than
the peak u (�indicates “on the order of magnitude of”), though there
is a trend for the ratio of peak w to peak u to decrease with height.
Consistent with power laws (A1) and (A2), Fig. 4 shows that w along
the centerline (r ¼ 0) is nearly independent of z, while the centerline
buoyancy varies approximately as z�1 (z�0:96 based on data at z ¼ 0:1
and 1.0m; z�1:00 based on data at z ¼ 0:1 and 0.25m). Consistent
with power law (A9), which yields @u=@z > 0 (C > 0; F > 0; G

> 0; @G=@r < 0), Fig. 4 shows that u < 0 (inflow) with a magnitude
that decreases with height, so @u=@z > 0. Additional plots of u (not
shown) suggest that the boundary layer along the no-slip lower bound-
ary is about 3 cm deep in the vicinity of the plume.

The buoyancy and velocity components for the same time and
heights as in Fig. 4 are shown in Fig. 5 for the plume exterior. As in the
plume interior, u < 0 with a magnitude that decreases with height
(@u=@z > 0). There is descent (w < 0) throughout the exterior (as
noted, this descent indicates the inapplicability of the similarity model
in this region), with the peak downdraft located just outside the plume
edge. The peak w is�100 times smaller than the peak u.

The azimuthal vorticity,

g � @u
@z

� @w
@r

; (2)

and @u=@z @w=@r individually are shown in Fig. 6 at t ¼ 25 s at
height z ¼ 0:25 m. In the plume interior, g � � @w=@r. In contrast,
in the plume exterior, where @u=@z and � @w=@r are nearly equal
and opposite, @u=@z � @w=@r � 0, and the flow is nearly irrotational,
as in the previous studies (e.g., Taylor,37 Kraemer,38 and Moses
et al.22). A simple expression for u in this region is the equation for

FIG. 1. Vertical cross section of buoyancy (m s�2) at 5 s intervals. Only a portion of the 4 m wide computational domain is displayed.
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irrotational flow into an axial line sink, u ¼ UR=r, where U � ujr¼R.
As seen in Fig. 5(a), this sink solution is an excellent approximation to
u from the DNS.

The evolution of w and b in the plume interior at z ¼ 0:25 m is
shown in Fig. 7. At t ¼ 1 and 2 s, the cap has not yet crossed the z
¼ 0:25 m level and the ascent results from the near-irrotational push-
ing of fluid away from the advancing cap. At those times, b is essen-
tially zero (values less than 10�6 m s�2 do not appear on the diagram)
which is consistent with the fact that vertical motion in a neutrally-
stratified environment cannot change the fluid buoyancy. At later
times, the curves of both w and b saturate, with a “point of steadiness”
spreading radially outward from the plume axis. Since the flow at the
largest displayed radius r ¼ 0:06 m at the later times is still evolving,
so are the w ¼ 0 and @w=@r ¼ 0 curves in Fig. 3, at least at (and pre-
sumably above) z ¼ 0:25 m.

Figure 8 shows the evolution of w along the plume axis at various
heights. This centerline w is nearly 0m s�1 from t ¼ 0 s until cap pas-
sage, when it increases explosively and then rapidly overshoots and
undershoots its steady-state value. Cap passage is rapid, taking place
within 1 s on the z ¼ 0:25 m level. The steady state centerline updraft
speed of � 0:19 m s�1, which is largely independent of z [consistent
with Eq. (A1)], is slightly more than twice the cap speed. The evolution
of the sum S �P r b w over all points in a line from the plume axis to

the edge of the computational domain (S is proportional to the buoy-
ancy flux F) depicted in Fig. 9 is similar to that of w along the plume
axis.

III. THEORETICAL ANALYSIS OF THE STEADY STATE
A. Governing equations prior to approximations in the
plume interior and exterior

We analyze the laminar axisymmetric plume theoretically, in its
steady state, using a cylindrical polar coordinate system with origin at
the heat source and axial coordinate pointing vertically; r is the radial
coordinate, z is the vertical (axial) coordinate (ground at z ¼ 0), u is
the radial velocity component (u < 0 indicates inflow), and w is the
vertical velocity component. The dependent variables are independent
of the azimuthal coordinate, and there is no azimuthal velocity compo-
nent. The motion is governed by the steady Boussinesq-approximated
radial and vertical equations of motion,

u
@u
@r

þ w
@u
@z

¼ � @P
@r

þ �
1
r
@

@r
r
@u
@r

� �
þ @2u

@z2
� u
r2

� �
; (3)

u
@w
@r

þ w
@w
@z

¼ � @P
@z

þ bþ �
1
r
@

@r
r
@w
@r

� �
þ @2w

@z2

� �
; (4)

the thermal energy equation,

1
r
@

@r
rubð Þ þ 1

r
@

@z
rwbð Þ ¼ �

Pr
1
r
@

@r
r
@b
@r

� �
þ @2b

@z2

� �
; (5)

and the Boussinesq form of mass conservation equation (incompressi-
bility condition),

FIG. 2. Vertical cross section of buoyancy and streamlines at t ¼ 20 s (correspond-
ing to fourth panel of Fig. 1).

FIG. 3. Height dependences of three measures of plume radius RðzÞ at t ¼ 25 s:
radius where (i) @2w=@r2 ¼ 0, (ii) w ¼ 0, and (iii) @w=@r ¼ 0. The R used in our
derivations is the radius where w ¼ 0.
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@u
@r

þ u
r
þ @w

@z
¼ 0: (6)

Here, P � ðP � PrÞ=qr0 is the kinematic perturbation pressure
[P is the pressure, Pr ¼ PrðzÞ is the pressure in a motionless reference
environment, and qr0 is a constant reference value of density] and b
� gðH�HrÞ=Hr0 is the buoyancy [H is the potential temperature,
Hr ¼ HrðzÞ is the potential temperature in the reference environment,

Hr0 � Hrð0Þ, g is the acceleration due to gravity]. The Prandtl number
Pr� �=j is constant, as are � and j. To facilitate integration of the gov-
erning equations, we have put the advection terms in Eqs. (3) and (4) in
the advective form, but the advection terms in Eq. (5) in the flux form.

The governing equations will be approximated separately in the
plume exterior (r > R) and interior (0 < r < R) and integrated with
respect to r. The integrated equations will be evaluated using the cen-
terline conditions

FIG. 4. Radial profiles of (a) u, (b) w, and (c) b in the plume interior at t ¼ 25 s at selected heights. Arrows point toward increasing z.

FIG. 5. As in Fig. 4, but for the plume exterior. The dots on the u-panel represent the approximate solution u ¼ UR=r , where U � ujr¼R .
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ujr¼0 ¼ 0;
@w
@r

����
r¼0

¼ 0;
@b
@r

����
r¼0

¼ 0; (7)

(so gjr¼0 ¼ 0), the remote (r ! 1) conditions

lim
r!1 u ¼ 0; lim

r!1 b ¼ 0; lim
r!1P ¼ 0; (8)

and continuity of P across the plume edge, with R defined through
Eq. (1).

B. Steady plume exterior

Motivated by the DNS results, we consider flow in the exterior
region at low altitudes but above the ground-based boundary layer.
For scaling purposes, we consider this flow to be nearly irrotational
(@u=@z � @w=@r) and mostly horizontal (u � w, which is shorthand
for juj � jwj). These relations scale as U E=H E � W E=L E and
U E � W E , where U E and W E are the radial and vertical velocity
scales, and L E and H E are the radial and vertical length scales

FIG. 6. Radial profiles of @u=@z, @w=@r ,
and g � @u=@z � @w=@r at t ¼ 25 s at
height z ¼ 0:25 m in (a) plume interior
and (b) plume exterior.

FIG. 7. Radial profiles of (a) w and (b) b at selected times at height z ¼ 0:25 m in the plume interior. Results are shown at 1 s intervals for t < 5 s and at 5 s intervals for t >
5 s. Arrows point toward increasing t.
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(superscript E for exterior). SinceU E � W E , the ratio of radial to ver-
tical length scales is much less than 1: eE � L E=H E � W E=
U E � 1. Accordingly, the ratio of vertical to horizontal diffusion of a
dependent variable /, ð@2/=@z2Þ=ð@2/=@r2Þ� ðL E=H EÞ2 ¼ ðeEÞ2,
and the ratio of vertical to horizontal advection of /, ðw@/=@zÞ=
ðu@/=@rÞ� ðW E=H EÞðU E=L EÞ¼ ðL E=H EÞ2 ¼ ðeEÞ2 are both

much less than 1. We are, therefore, justified in neglecting the vertical
advection and vertical diffusion terms in Eqs. (3)–(5).

An alternative scaling based on the incompressibility condition
(6), in which both @u=@r and u=r scale asU E=L E , and @w=@z scales
as W E=H E , produces U E=L E � W E=H E , which combines with
U E � W E to yield eE � 1. This inequality contradicts the previous
result that eE � 1. The paradox is resolved by noting that since the
magnitude of u decreases with the radius in the exterior region, @u=@r
and u=r have opposite signs and will at least partially cancel in their
sum in Eq. (6), with total cancelation if u / 1=r [the latter being a
good approximation to u at low levels; see Fig. 5(a)]. As j@u=@r þ u=rj
is substantially less than j@u=@rj and ju=rj individually, this alternative
scaling is not appropriate for low-levels of the exterior region.

With their vertical advection and vertical diffusion terms
neglected, Eqs. (3)–(5) become

u
@u
@r

¼ � @P
@r

þ �
@

@r
1
r
@

@r
ðr uÞ

� �
; (9)

u
@w
@r

¼ � @P
@z

þ bþ �

r
@

@r
r
@w
@r

� �
; (10)

1
r
@

@r
rubð Þ ¼ �

Pr
1
r
@

@r
r
@b
@r

� �
: (11)

In arriving at Eq. (9), we have also made use of the following identity:

1
r
@

@r
r
@u
@r

� �
� u

r2
¼ @

@r
1
r
@

@r
ðr uÞ

� �
: (12)

Integration of Eq. (9) [using Eq. (8)] yields

P ¼ � 1
2
u2 þ �

r
@

@r
r uð Þ: (13)

Equation (11) integrates (after multiplication by r) to

u b ¼ �

Pr
@b
@r

; (14)

where we have assumed that u and b approach their remote values (8)
sufficiently rapidly, that is, limr!1 r b u ¼ 0 and limr!1 r @b=@r
¼ 0. Application of Eq. (13) in Eq. (10) yields

u g ¼ �b þ �

r
@

@r
r gð Þ: (15)

Eliminating u between Eqs. (14) and (15) yields

0 ¼ �rb2 þ � b
@

@r
r gð Þ � �

Pr
r g

@b
@r

: (16)

The identity

b
@

@r
r gð Þ � 1

Pr
r g

@b
@r

¼ b1þ1=Pr @

@r
r g
b1=Pr

� �
(17)

reduces Eq. (16) to

0 ¼ �r b2 þ � b1þ1=Pr @

@r
r g
b1=Pr

� �
: (18)

We will return to Eq. (18) after we have approximated and partially
integrated the equations governing the plume interior.

FIG. 8. Evolution of w on the plume axis (r ¼ 0) at selected heights.

FIG. 9. Evolution of S �P rbw at selected heights.
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C. Steady plume interior

For the plume interior, we denote the radial and vertical velocity
scales by U I and W I and the radial and vertical length scales by L I

and H I (superscript I for interior). Because of the characteristic slen-
derness of the plume, eI � L I=H I � 1, and we are again justified in
neglecting the vertical viscous/diffusion terms in Eqs. (3)–(5).
However, since the flow is mostly vertical (W I � U I), the ratio of
vertical to horizontal advection of a dependent variable /,
ðw@/=@zÞ=ðu @/=@rÞ � ðW I=U IÞ eI is indeterminate. To get more
information about that ratio, recall from Fig. 4 that there is a radius
within the plume interior (call it R	) at which juj attains its peak value.
For r > R	, juj decreases with radius, as in the plume exterior, and the
incompressibility condition cannot be used to obtain a reliable scaling
(see discussion in Sec. III B). However, for r<R	, @u=@r and u=r have
the same sign, and the scaled incompressibility condition yields (legiti-
mately) W I=U I � H I=L I . Since the ratio of vertical to horizontal
advection of a variable / then scales as ðw@/=@zÞ=ðu@/=@rÞ
� W IL I=ðU IH IÞ ¼ L IH I=ðH IL IÞ ¼ 1, both vertical and hori-
zontal advection terms should be retained. It is convenient to retain
these terms over the whole interior region, not just for r < R	.

With their vertical viscous/diffusion terms neglected, and Eq.
(12) used to rewrite the viscous term in Eq. (3), Eqs. (3)–(5) become

u
@u
@r

þ w
@u
@z

¼ � @P
@r

þ �
@

@r
1
r
@

@r
ruð Þ

� �
; (19)

u
@w
@r

þ w
@w
@z

¼ � @P
@z

þ bþ �
1
r
@

@r
r
@w
@r

� �� �
; (20)

1
r
@

@r
rubð Þ þ 1

r
@

@z
rwbð Þ ¼ �

Pr
1
r
@

@r
r
@b
@r

� �� �
: (21)

It can be noted that the governing equations for the laminar plumes
over point sources considered in the similarity studies of Zeldovich,30

Yih,32 Batchelor,13 Fujii,33 and Brand and Lahey34 are consistent with
our (21) (or its integrated form) and (20) (though with @P=@z omit-
ted), but not (19); none of those studies made provision for a radial
equation of motion.

Our analysis of Eqs. (19)–(21) is guided by the exterior plume
analysis, but is more involved because of the presence of the vertical
advection terms. Integration of Eq. (19) from r ¼ 0 (where u ¼ 0) to
arbitrary r within the plume interior produces

P ¼ P0ðzÞ �
ðr
0
w0 @u

0

@z
dr 0 � �

r
@

@r
ruð Þ

� �
r¼0

� 1
2
u2 þ �

r
@

@r
ruð Þ;
(22)

where P0ðzÞ is the centerline perturbation pressure, r 0 is a dummy
integration variable, and other primed variables are functions of r 0

[e.g., w0 � wðr 0; zÞ]. To ensure continuity of P across the plume
edge, set PðR; zÞ from Eq. (22) equal to PðR; zÞ from Eq. (13),
obtaining

P0 ¼
ðR
0
w0 @u

0

@z
dr 0 þ �

r
@

@r
ruð Þ

� �
r¼0

: (23)

Application of Eq. (23) in Eq. (22) yields

P ¼
ðR
r
w0 @u

0

@z
dr 0 � 1

2
u2 þ �

r
@

@r
ruð Þ; (24)

which, when substituted into Eq. (20), produces

u g � w
@w
@z

� @

@z

ðR
r
w0 @u

0

@z
dr 0 ¼ �b þ �

r
@

@r
r gð Þ: (25)

After multiplying Eq. (21) by r and integrating the result from r ¼ 0
(where u and @b=@r vanish) to arbitrary r ð
 RÞ, we get

ub þ 1
r
@

@z

ðr
0
r 0w0b0 dr 0 ¼ �

Pr
@b
@r

: (26)

Subtracting g� ð26Þ from b� ð25Þ, multiplying the result by r,
and using Eq. (17) to simplify the viscous/diffusive terms yields

� rbw
@w
@z|fflfflfflfflfflffl{zfflfflfflfflfflffl}

Term 1

�rb
@

@z

ðR
r
w0 @u

0

@z
dr 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term 2

� @u
@z

@

@z

ðr
0
r 0w0b0dr 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term3

þ @w
@r

@

@z

ðr
0
r 0w0b0dr 0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term 4

¼ � rb2|fflffl{zfflffl}
Term 5

þ �b1þ1=Pr @

@r
r g

b1=Pr

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term 6

: (27)

We now compare the magnitudes of the terms in Eq. (27). Term
5 should be retained since it originates from the buoyancy force in Eq.
(20), which drives the flow. As in the similarity studies, we assume that
w @w=@z � b. In this case, Term 1 is of the same order of magnitude
as Term 5. However, as we now show, Term 1 cancels with Term 4.
Using Eqs. (A1), (A2), (A10), and (A11), we can write the sum of
Term 1 and Term 4 as

Term 1 þ Term 4

¼ �rbw
@w
@z

þ @w
@r

@

@z

ðr
0
r 0w0b0dr 0

¼ F2

�2z1=2
dG
dn

�
C
2z

n2GH|fflfflfflfflffl{zfflfflfflfflffl}
TermA

þ 1
C

@

@z
1
z

ðr
0
r 0G0H0dr 0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

TermB

�
: (28)

As described in the Appendix, the vertical velocity function G ¼ GðnÞ
and buoyancy function H ¼ HðnÞ are functions of the similarity vari-
able n � r=RðzÞ, where RðzÞ ¼ Cz1=2, C ¼ c�3=4=F1=4 (c is a nondi-
mensional number), and F is a constant representing the strength of
the heat source. Using @ð Þ=@z ¼ �½n=ð2zÞ�@ð Þ=@n, Term B in Eq.
(28) is evaluated as

1
C

@

@z
1
z

ðr
0
r 0G0H0dr 0

� �
¼ 1

C
@

@z
R2

z

ðn
0
n0G0H0dn0

 !

¼ C
@

@z

ðn
0
n0G0H0dn0 ¼ � C

2z
n2GH: (29)

As this term cancels with term A, Eq. (28) reduces to
Term 1 þ Term 4 ¼ 0.

Since @w=@r � @u=@z, Term 3 is much smaller than Term 4,
which is equal and opposite to Term 1, which has the same order of
magnitude as Term 5. Thus, Term 3� Term 5 and Term 3 can be
safely neglected.

Finally, we examine the ratio T25 � Term 2=Term 5. Since
@u=@z � @w=@r, w @w=@z � b, and wjr¼R ¼ 0 [from Eq. (1)],
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T25 ¼ 1
b
@

@z

ðR
r
w0 @u

0

@z
dr 0 � 1

b
@

@z

ðR
r
w0 @w

0

@r 0 dr
0

¼ 1
2b

@w2

@z

� �����R
r

¼ �w
b
@w
@z

� 1: (30)

Thus, T25 � 1, and Term 2 can be safely neglected.
With all of the terms on the left hand side of Eq. (27) canceling or

being small enough to be safely neglected, Eq. (27) reduces to

0 ¼ �rb2 þ � b1þ1=Pr @

@r
r g
b1=Pr

� �
; (31)

which is the same as the exterior plume relation (18).

IV. STEADY VORTICITY-BUOYANCY RELATION

Despite differences in the approximated governing equations and
in locations where a radial boundary condition is imposed (r ¼ 0 for
plume interior, r ! 1 for plume exterior), the same relation (31) [Eq.
(18)] applies to both the plume interior and exterior. The results
obtained in this section using that relation are, therefore, valid for any r.

A. Pr5 1

For the special case Pr ¼ 1, the same factor b1þ1=Pr ¼ b2 appears
in both terms of Eq. (31), and can be divided out, yielding

0 ¼ �r þ �
@

@r
r g
b

� �
: (32)

Integrating Eq. (32) from r ¼ 0, where the vorticity vanishes but the
buoyancy is non-zero, to arbitrary r, and rearranging the result yields a
remarkably simple relation between the vorticity and buoyancy

g ¼ rb
2�

: (33)

Rearranging Eq. (33) yields the inverse relation,

b ¼ 2�g
r

: (34)

The vorticity–buoyancy relation (33) [or its equivalent, (34)] is our
study’s main result.

We now assess the validity of Eq. (33) using buoyancy and vortic-
ity data from the DNS. Radial profiles of g and rb=ð2�Þ [left and right
hand sides of Eq. (33), respectively] on the z ¼ 0:25 m surface are
shown at different times in Fig. 10. The cap had passed through that
level around t ¼ 3 s (Fig. 8), which was about 1 s before the first time
shown in Fig. 10. For r in the range 0m 
 r� 0:02 m, g and rb=ð2�Þ
are in a steady state and in good agreement with each other for all
times shown. For larger radii, in the range 0.02m � r� 0:045 m, a
steady state is reached but at progressively later times for increasing r.
In this region, there is good agreement between g and rb=ð2�Þ in the

FIG. 10. Radial profiles of g (solid curves) and br=ð2�Þ (circles) at various times at height z ¼ 0:25 m. Results are shown t ¼ 4 s (shortly after plume passage) and at 5 s
intervals starting at t ¼ 5 s.
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steady state and also, remarkably, at earlier times, when the flow is still
evolving. For r � 0:045 m, a steady state is not reached by the end of
the simulation but there is again good agreement between the two
evolving profiles. At t ¼ 25 s, g and rb=ð2�Þ are in good agreement
for 6 orders of magnitude of their values.

Figure 11, which is analogous to Fig. 10, but for the lower eleva-
tion of z ¼ 0:1 m, again shows good agreement between g and
rb=ð2�Þ. However, as seen in Fig. 3, the plume radius R at t ¼ 25 s at
z ¼ 0:1 m is about 75% of R at z ¼ 0:25 m, whether R is defined by
w ¼ 0 or @w=@r ¼ 0. Thus, Fig. 11 shows that, at t ¼ 25 s, the region
over which Eq. (33) is valid extends further into the plume exterior
than in Fig. 10.

It can be shown that the similarity solutions for b and w for Pr
¼ 1 (e.g., Brand and Lahey34) with g approximated as g � �@w=@r,
yield the same vorticity–buoyancy relation (33). However, as discussed
in Secs. I and II, the similarity solution is only valid for the plume inte-
rior. The DNS confirms that the theoretical prediction (33) applies to
both the plume interior and exterior and extends its validity to at least
part of the transient state.

As an aside, we note that Figs. 7(a) and 10 show that in the
plume interior there is a regime lasting a few seconds in which
g ð� �@w=@rÞ is in a steady state while w is still evolving. For
example, w is still evolving at r ¼ 0:015 m at t ¼ 4 s, at r ¼ 0:02 m at
t ¼ 5 s, at r ¼ 0:03 m at t ¼ 10 s, and at r ¼ 0:04 m at t ¼ 15 s, while
g at those same radii and times is not. We do not have an explanation
for this interesting phenomenon.

B. Arbitrary Pr

A vorticity–buoyancy relation can also be derived for arbitrary
Pr. Dividing (31) by b1þ1=Pr and integrating the resulting equation
with respect to r yields a relation analogous to Eq. (33),

g ¼ b1=Pr

�r

ðr
0
r 0b01�1=Prdr 0: (35)

To get the inverse relation, divide Eq. (31) by � r b2g=Pr, and put the
result in the form of a linear equation for 1=b,

@

@r
1
b

� �
þ 1

b

� �
Pr
r g

@

@r
r gð Þ ¼ Pr

�g
: (36)

It is straightforward to solve Eq. (36) using the method of integrating
factors and then obtain b as

b ¼ �

Pr
rPrgPrÐ r

0 r
0Pr g0Pr�1 dr 0

: (37)

We have not explored the validity of these arbitrary-Pr expressions.

V. UNSTEADY FLOW CALCULATION, Pr5 1

We have seen that Eq. (33) applies not just to the (steady) state
for which it was derived, but also to part of the evolving state following
passage of the cap. To make this result plausible, we revisit the deriva-
tion of Eq. (32), with the local derivatives @u=@t, @w=@t, and @b=@t

FIG. 11. As in Fig. 10, but at height z ¼ 0:1 m.
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included on the left hand sides of Eqs. (3)–(5), respectively, and simi-
larly included in the equations for the plume exterior [Eqs. (9)–(11)]
and interior [Eqs. (19)–(21)].

A. Unsteady plume exterior

The unsteady version of Eq. (13) is

P ¼
ð1
r

@u0

@t
dr 0 � 1

2
u2 þ �

r
@

@r
ruð Þ: (38)

Application of Eq. (38) in the unsteady version of Eq. (10) yields

� @

@t

ð1
r
g0 dr 0 þ ug ¼ �b þ �

r
@

@r
r gð Þ: (39)

The integrated thermal energy equation [analogous to Eq. (14)] is

� 1
r
@

@t

ð1
r
b0r 0dr 0 þ ub ¼ �

@b
@r

: (40)

Subtracting g� ð40Þ from b� ð39Þ, multiplying the result by r, and
using Eq. (17) to simplify the viscous/diffusive terms yields

�rb
@

@t

ð1
r
g0dr 0 þ g

@

@t

ð1
r
b0r 0dr 0 ¼ �rb2 þ � b2

@

@r
r g
b

� �
:

(41)

If the steady vorticity-buoyancy relation (33) is applied in Eq. (41), the
unsteady terms cancel, and Eq. (41) reduces to the identity 0 ¼ 0. In
this sense, Eq. (33) is consistent with the unsteady governing equations
in the exterior region.

B. Unsteady plume interior

For the plume interior, consider the unsteady form of Eq. (22),

P ¼ P0ðz; tÞ �
ðr
0

@u0

@t
dr 0 �

ðr
0
w0 @u

0

@z
dr 0

� �

r
@

@r
ruð Þ

� �
r¼0

� 1
2
u2 þ �

r
@

@r
ruð Þ: (42)

To ensure continuity of pressure across the plume edge, we set Pjr¼R
from Eq. (38) equal toPjr¼R from Eq. (42), obtaining

P0 ¼
ð1
0

@u0

@t
dr 0 þ

ðR
0
w0 @u

0

@z
dr 0 þ �

r
@

@r
ruð Þ

� �
r¼0

; (43)

which reduces Eq. (42) to

P ¼
ð1
r

@u0

@t
dr 0 þ

ðR
r
w0 @u

0

@z
dr 0 � 1

2
u2 þ �

r
@

@r
ruð Þ: (44)

Application of Eq. (44) in the unsteady version of Eq. (20) yields

� @

@t

ð1
r
g0dr 0 þ ug � w

@w
@z

� @

@z

ðR
r
w0 @u

0

@z
dr 0 ¼ �bþ �

r
@

@r
r gð Þ:
(45)

For Pr¼ 1, the unsteady version of Eq. (26) is

1
r
@

@t

ðr
0
r 0 b0dr 0 þ ub þ 1

r
@

@z

ðr
0
r 0w0b0dr 0 ¼ �

@b
@r

: (46)

Subtracting g� ð46Þ from b� ð45Þ, and multiplying the result by r
yields

� rb
@

@t

ð1
r
g0dr 0 þ g

@

@t

ð0
r
r 0 b0dr 0 þ Term 1 þ Term 2

þ Term3 þ Term4 ¼ Term5 þ Term 6; (47)

where Term 1, …, Term 6 were defined in Eq. (27). The first term in
Eq. (47) is the same as in the exterior relation (41), while the second
term differs from that in Eq. (41) only in the upper limit of integration.
If the steady vorticity–buoyancy relation (33) is imposed in Eq. (47),
the local derivative terms combine as

� rb
@

@t

ð1
r
g0dr 0 � g

@

@t

ðr
0
r 0 b0dr 0

¼ �2�g
@

@t

ð1
0
g0dr 0 ¼ �2�g

@w
@t

� �
r¼0

; (48)

where we considered
Ð1
0 g0dr 0 to be dominated by the vorticity in the

plume interior and used (1):
Ð1
0 g0dr 0 � Ð R0 g0dr 0 � � Ð R0 @w0=@r 0 dr 0

¼ �ðwjr¼R � wjr¼0Þ ¼ wjr¼0. Recall from Figs. 7 and 8 that on any
level through which the cap has passed, the centerline vertical velocity,
wjr¼0, rapidly approaches its steady state; w attains a steady state first
at the centerline, with a point of steadiness spreading radially outward
across the plume. Thus, on any level through which the cap has passed,
@w=@tjr¼0 � 0, even though much of the plume at that level may still
be evolving. In such a scenario, Eq. (33) reduces Eq. (47) to the steady
state relation (27), the same arguments used in Sec. III C to justify the
neglect of Term 2 and Term 3 in Eq. (27) also justify the neglect of
those terms in the unsteady state, and Term 5 and Term 6 again sum
to zero. However, the power laws that led to Term 1 canceling with
Term 4 in the steady state may no longer apply. Indeed, an analysis of
DNS data in the evolving part of the plume interior (not presented)
showed that the constraint 2z @w=@z þ r @w=@r ¼ 0, which follows
from Eq. (A1), was not well satisfied. Nevertheless, with Eq. (33)
imposed in Eq. (47), g approximated as g � �@w=@r, and wjr¼0 in a
near steady state after cap passage and also relatively independent of z
(recall Fig. 8), Term 1 and Term 4 do nearly cancel:

Term1 þ Term 4 ¼ �rbw
@w
@z

þ @w
@r

@

@z

ðr
0
r 0w0b0dr 0

� 2�
@w
@r

w
@w
@z

� @

@z

ðr
0
w0 @w

0

@r 0 dr
0

� �

¼ 2�
@w
@r

w
@w
@z

� 1
2
@w2

@z

����r
0

 !

¼ 2�
@w
@r

w
@w
@z

� �����
r¼0

" #
¼ 0: (49)

Thus, Eq. (33) has reduced the unsteady plume interior relation (47),
approximately, to the identity 0 ¼ 0.
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VI. SUMMARY AND CONCLUSIONS

We have revisited the classical problem of a steady laminar plume
driven by a maintained point source of heat on a horizontal boundary.
Attention is restricted to relatively weak temperature perturbations
(Boussinesq dynamics), viscosity and diffusivity coefficients that are
independent of temperature, and neutral stratification. Analyses of the
equations of motion and thermal energy, approximated separately for
the plume interior and exterior, revealed the same fundamental con-
nection between the azimuthal vorticity and buoyancy in both regions:
for a Prandtl number of 1, the vorticity is related to the buoyancy by
g ¼ rb=ð2�Þ [from Eq. (33)]. An analagous but more complex relation
for arbitrary Pr was obtained as (35). A DNS of a laminar axisymmet-
ric plume in a fluid with a Prandtl number of 1 confirmed the validity
of Eq. (33) in both interior and exterior regions for the steady state
(which it was derived for) and, surprisingly, also for the evolving state
after cap passage. An analysis of the unsteady governing equations fol-
lowing the same steps used to derive (33) for the steady state made the
validity of Eq. (33) plausible for unsteady flows. However, as our analy-
sis was not a proof, the validity of Eq. (33) in unsteady conditions still
needs justification.

It should be reiterated that the vorticity–buoyancy relation at the
heart of our study is specific to laminar plumes over a point source of
heat on a horizontal boundary. The possibility that a related or equiva-
lent relation applies to turbulent versions of these plumes (i.e., not
involving the kinematic viscosity or thermal diffusivity) was not
explored.
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APPENDIX: POWER LAWS FOR THE PLUME INTERIOR

Using notation from Batchelor,13 we summarize the power
laws30,32–34 for the plume interior as

w ¼ F1=2

�1=2
GðnÞ; (A1)

b ¼ F
�z

HðnÞ; (A2)

R ¼ C z1=2; (A3)
where nðr; zÞ is the nondimensional similarity variable

n � r
RðzÞ : (A4)

The positive constant F, which has dimensions of ðLengthÞ4=
ðTimeÞ3, is proportional to the heat flux supplied by the source. The
positive constant C ¼ c�3=4=F1=4, where c ð> 0Þ is a nondimen-

sional number, has dimensions of ðLengthÞ1=2.
The power-law for u is readily obtained from Eq. (A1) and

u ¼ � 1
r
@w
@z

; (A5)

w ¼ 1
r
@w
@r

; (A6)

where w is the Stokes streamfunction.39 In view of Eqs. (A1) and
(A3), integration of r� (A6), from r ¼ 0 (where w is a constant
which, without loss of generality, is set to 0) to arbitrary r yields
w ¼ ðF=�Þ1=2 Ð r0 r 0G0dr 0 or, in view of Eq. (A4),

w ¼ C2F1=2

�1=2
z
ðn
0
n0G0dn0: (A7)

Applying Eq. (A7) in Eq. (A5) [using @n=@z ¼ �n=ð2zÞ] then
yields

u ¼ C2F1=2

�1=2
1
r

�
ðn
0
n0G0dn0 þ 1

2
n2G

" #
: (A8)

From Eq. (A8), we obtain the shear as

@u
@z

¼ �CF1=2

4�1=2
z�3=2n2

dG
dn

: (A9)

The spatial derivatives of w, obtained from Eq. (A1), are

@w
@r

¼ F1=2

C�1=2
z�1=2 dG

dn
; (A10)

@w
@z

¼ � F1=2

2�1=2
z�1 n

dG
dn

: (A11)

REFERENCES
1J. M. Wilczak and J. E. Tillman, “The three-dimensional structure of convection
in the atmospheric surface layer,” J. Atmos. Sci. 37, 2424–2443 (1980).
2R. B. Stull, An Introduction to Boundary-Layer Meteorology (Kluwer Academic
Publishers, 1988), p. 670.

3A. G. Williams and J. M. Hacker, “The composite shape and structure of coher-
ent eddies in the convective boundary layer,” Boundary Layer Meteorol. 61,
213–245 (1992).

4K. A. Emanuel, Atmospheric Convection (Oxford University Press, 1988), p. 592.
5W. Morgan, “Convective plumes in the lower mantle,” Nature 230, 42–43
(1971).

6R. W. Griffiths and I. H. Campbell, “Stirring and structure in mantle starting
plumes,” Earth Planet. Sci. Lett. 99, 66–78 (1990).

7G. Schubert, D. L. Turcotte, and P. Olson, “Hot spots and mantle plumes,” in
Mantle Convection in the Earth and Planets (Cambridge University Press,
2001), pp. 499–546.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 043604 (2025); doi: 10.1063/5.0260318 37, 043604-12

Published under an exclusive license by AIP Publishing

 03 April 2025 16:56:37

https://doi.org/10.1175/1520-0469(1980)037<2424:TTDSOC>2.0.CO;2
https://doi.org/10.1007/BF02042933
https://doi.org/10.1038/230042a0
https://doi.org/10.1016/0012-821X(90)90071-5
pubs.aip.org/aip/phf


8I. Kumagai, A. Davaille, K. Kurita, and E. Stutzmann, “Mantle plumes: Thin,
fat, successful, or failing? Constraints to explain hot spot volcanism through
time and space,” Geophys. Res. Lett. 35, L16301, https://doi.org/10.1029/
2008GL035079 (2008).

9B. Gebhart, “Buoyancy induced fluid motions characteristic of applications in
technology,” J. Fluids Eng. 101, 5–28 (1979).

10R. C. Adhikari and M. Pahlevani, “Characteristics of thermal plume from an
array of rectangular straight fins with openings on the base in natural convec-
tion,” Int. J. Therm. Sci. 182, 107798 (2022).

11R. Mateus, A. Pinto, and J. M. C. Pereira, “Dynamics of thermal plumes for large
spaces: A comparative study of in-situ smoke test and a CFD model,” Energy
Build. 319, 114512 (2024).

12C. Yang, Y. Jin, N. Lu, J. Xiong, S. Yu, and A. Li, “Flow characteristics of ther-
mal plumes above rectangular heat sources with different aspect ratios,”
J. Build. Eng. 103, 112043 (2025).

13G. K. Batchelor, “Heat convection and buoyancy effects in fluids,” Q. J. R.
Meteorol. Soc. 80, 339–358 (1954).

14C.-S. Yih, Fluid Mechanics: A Concise Introduction to the Theory (West River
Press, 1979), p. 622.

15B. Gebhart, Y. Jaluria, R. L. Mahajan, and B. Sammakia, Buoyancy-Induced
Flows and Transport (Hemisphere Publishing Corp., 1988), p. 1001.

16D. J. Shlien, “Some laminar thermal and plume experiments,” Phys. Fluids 19,
1089–1098 (1976).

17D. J. Shlien, “Relations between point sources buoyant convection phenomena,”
Phys. Fluids 22, 2277–2283 (1979).

18D. J. Shlien and R. L. Boxman, “Temperature field measurement of an axisym-
metric laminar plume,” Phys. Fluids 22, 631–634 (1979).

19D. J. Shlien and R. L. Boxman, “Laminar starting plume temperature field mea-
surement,” Int. J. Heat Mass Transfer 24, 919–931 (1981).

20J. Tanny and D. J. Shlien, “Velocity field measurements of a laminar starting
plume,” Phys. Fluids 28, 1027–1032 (1985).

21P. Olson and H. Singer, “Creeping plumes,” J. Fluid Mech. 158, 511–531
(1985).

22E. Moses, G. Zocchi, I. Procaccia, and A. Libchaber, “The dynamics and inter-
action of laminar thermal plumes,” Europhys. Lett. 14, 55–60 (1991).

23E. Moses, G. Zocchi, and A. Libchaber, “An experimental study of laminar
plumes,” J. Fluid Mech. 251, 581–601 (1993).

24E. Kaminski and C. Jaupart, “Laminar starting plumes in high-Prandtl-number
fluids,” J. Fluid Mech. 478, 287–298 (2003).

25J. Vatteville, P. E. van Keken, A. Limare, and A. Davaille, “Starting laminar
plumes: Comparison of laboratory and numerical modeling,” Geochem.
Geophys. Geosyst. 10, Q12013 (2009).

26M. C. Rogers and S. W. Morris, “Natural versus forced convection in laminar
starting plumes,” Phys. Fluids 21, 083601 (2009).

27A. Davaille, A. Limare, F. Touitou, I. Kumagai, and J. Vatteville, “Anatomy of a
laminar starting thermal plume at high Prandtl number,” Exp. Fluids 50, 285–
300 (2011).

28N. Cagney, W. H. Newsome, C. Lithgow-Bertelloni, A. Cotel, S. R. Hart, and J.
A. Whitehead, “Temperature and velocity measurements of a rising thermal
plume,” Geochem. Geophys. Geosyst. 16, 579–599 (2015).

29P.-J. Qin, Y.-Y. Hou, J.-D. He, P. Wei, and S.-D. Huang, “Formation and evolu-
tion of laminar thermal structures: Correlation to the thermal boundary layer
and effects of heating time,” J. Fluid Mech. 984, A60 (2024).

30Y. B. Zeldovich, “The asymptotic laws of freely-ascending convective flows,”
Zh. Eksper. Teor. Fiz. 7, 1463–1465 (1937).

31Selected Works of Yakov Borisovich Zeldovich, Chemical Physics and
Hydrodynamics Vol. 1, edited J. P. Ostriker, G. I. Barenblatt, and R. A. Sunyaev
(Princeton University Press, 1992), pp. 82–85.

32C.-S. Yih, “Free convection due to a point source of heat,” in Proceedings of the First
U.S. National Congress of AppliedMechanics (ASME, NewYork, 1951), pp. 941–947.

33T. Fujii, “Theory of the steady laminar natural convection above a horizontal line
heat source and a point heat source,” Int. J. HeatMass Transfer 6, 597–606 (1963).

34R. S. Brand and F. J. Lahey, “The heated laminar vertical jet,” J. Fluid Mech. 29,
305–315 (1967).

35H. Schlichting, Boundary-Layer Theory, 7th ed. (McGraw-Hill, 1979), p. 817.
36C. C. van Heerwaarden, B. J. H. van Stratum, T. Heus, J. A. Gibbs, E.
Fedorovich, and J. P. Mellado, “MicroHH 1.0: A computational fluid dynamics
code for direct numerical simulation and large-eddy simulation of atmospheric
boundary layer flows,” Geosci. Model Dev. 10, 3145–3165 (2017).

37G. I. Taylor, “Flow induced by jets,” J. Aerosp. Sci. 25, 464–465 (1958).
38K. Kraemer, “Die Potentialstr€omung in der Umgebung von Freistrahlen,” Z.
Flugwiss 19, 93–104 (1971).

39P. K. Kundu and I. M. Cohen, Fluid Mechanics, 2nd ed. (Academic Press,
2002), p. 730.

Physics of Fluids ARTICLE pubs.aip.org/aip/pof

Phys. Fluids 37, 043604 (2025); doi: 10.1063/5.0260318 37, 043604-13

Published under an exclusive license by AIP Publishing

 03 April 2025 16:56:37

https://doi.org/10.1029/2008GL035079
https://doi.org/10.1115/1.3448735
https://doi.org/10.1016/j.ijthermalsci.2022.107798
https://doi.org/10.1016/j.enbuild.2024.114512
https://doi.org/10.1016/j.enbuild.2024.114512
https://doi.org/10.1016/j.jobe.2025.112043
https://doi.org/10.1002/qj.49708034504
https://doi.org/10.1002/qj.49708034504
https://doi.org/10.1063/1.861614
https://doi.org/10.1063/1.862537
https://doi.org/10.1063/1.862645
https://doi.org/10.1016/S0017-9310(81)80016-6
https://doi.org/10.1063/1.865023
https://doi.org/10.1017/S0022112085002749
https://doi.org/10.1209/0295-5075/14/1/010
https://doi.org/10.1017/S0022112093003532
https://doi.org/10.1017/S0022112002003233
https://doi.org/10.1029/2009GC002739
https://doi.org/10.1029/2009GC002739
https://doi.org/10.1063/1.3207837
https://doi.org/10.1007/s00348-010-0924-y
https://doi.org/10.1002/2014GC005576
https://doi.org/10.1017/jfm.2024.266
https://doi.org/10.1016/0017-9310(63)90015-2
https://doi.org/10.1017/S0022112067000837
https://doi.org/10.5194/gmd-10-3145-2017
pubs.aip.org/aip/phf

