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ABSTRACT

The turbulence temperature spectrum and structure parameter are related through a widely adopted

proportionality coefficient. We formally derive this expression, and present further evidence, to demonstrate

that this coefficient is too large by a factor of 2.

1. Introduction

It is customary to quantify the intensity of turbulent

fluctuations of meteorological fields through a single

parameter called the structure parameter. The structure

parameter, which is assumed constant within the inertial

subrange of turbulence scales, is relevant to many ap-

plications associated with atmospheric boundary layer

processes. One of the most studied structure parameters

is the (potential) temperature parameter, which is fre-

quently used to describe properties of electromagnetic

and acoustic wave propagation in the atmosphere. A

relationship between the scalar structure parameter and

the scalar spectral density in the inertial subrange was

first obtained by Tatarskii (1961) and evaluated for

temperature by Wyngaard et al. (1971). The latter form

has been widely used in the engineering and atmospheric

sciences for nearly fifty years. We formally rederive this

relationship and present evidence to demonstrate that

the associated proportionality coefficient is too large by

a factor of 2.

2. Deriving the integral spectral approximation of
the structure parameter

The second-order temperature structure function

(Tatarskii 1961; Wyngaard 2010) is defined as

D
T
(r)5 [T(x)2T(x1 r)]2 , (1)

where T is temperature or potential temperature when

Eq. (1) is used in the atmospheric context, x is the co-

ordinate direction in space, and r 5 jrj is the separation

distance (equal to the magnitude of the separation

vector). If we assume that turbulence is locally isotropic

and that the separation distance lies within the inertial

subrange of spatial scales of turbulent temperature

fluctuations, the temperature structure function may be

expressed as (Kolmogorov 1941)

D
T
(r)5C2

Tr
2/3 , (2)

where C2
T is the temperature structure-function param-

eter, often just called the temperature structure pa-

rameter. The following relationship betweenDT and the

one-dimensional spectral density of temperature fluc-

tuations FT is valid under the assumption of turbulence

isotropy (Wyngaard 2010):

D
T
5 2

ð‘
2‘

[12 cos(kr)]F
T
(k) dk

5 4

ð‘
0

[12 cos(kr)]F
T
(k) dk , (3)

where k is the wavenumber associatedwith the x direction.

Both Eqs. (2) and (3) are based on the fundamental defi-

nition of the structure function and require no additionalCorresponding author: Jeremy A. Gibbs, jeremy.gibbs@noaa.gov
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assumptions beyond their theoretical underpinnings.As an

aside, Essenwanger and Reiter [1969, their Eq. (6)]—an

oft-cited study focused on structure functions and power

spectra of atmospheric velocity increments—incorrectly

omits the leading factor of 2 in Eq. (3).

One can evaluate the integral in Eq. (3) analytically

by assuming that the entire spectrum has the inertial

subrange form

F
T
5Ak25/3 . (4)

To do this, we substitute Eq. (4) into Eq. (3) to obtain

D
T
5 4A

ð‘
0

[12 cos(kr)]k25/3 dk . (5)

We next take the integral employing integration by parts:
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sin(kr)k22/3 dk . (6)

We use the following table integral from Gradshteyn

and Ryzhik [2014, their Eq. (3.761), p. 440] for the

remaining part on the right-hand side of Eq. (6):

ð‘
0

xm21 sin(ax) dx5
p

2amG(12m) cos
mp

2

� � ,

where x 5 k, m 5 1/3 according to Eq. (6), and a 5 r.

This yields
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Noting that cos(p/6)5 sin(p/3) and G(2/3)5 (3/2)G(5/3),
we have
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Thus,
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and
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Making use of Eq. (2) gives us

2pAr2/3

G
5

3

� �
sin

p

3

� �5C2
Tr
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Solving for A provides

A5

C2
TG

5

3

� �
sin

p

3

� �
2p

’ 0:125C2
T , (9)

which results in

F
T
5Ak25/3 ’ 0:125C2

Tk
25/3 . (10)

However, Wyngaard et al. (1971) reported the rela-

tionship between FT and C2
T as

F
T
5 0:25C2

Tk
25/3 . (11)

The proportionality coefficient value of 0.25 was justified

by the following comment in the references of op. cit.:

‘‘The constant 0.25 stands for 2(2p)21G(5/3)sin(p/3).
Note that we use a range of 0 to1‘ for k1, whereas a2‘
to 1‘ range is used on p. 25 of Ref 1.’’

where ‘‘Ref. 1’’ is Tatarskii (1961) and k1 is the analog of

our k.

It appears that this value of 0.25 was an error. Since

there is no explicit derivation of Eq. (10) presented by

Tatarskii (1961), it seems likely that Wyngaard et al.

(1971) misinterpreted the limits of integration used to

arrive at Tatarskii’s formula [our Eq. (10)] and included

the extraneous factor of 2. However, as follows from our

derivation demonstrated above, the adjustment is al-

ready made in Eq. (3) to change the range from 0 to ‘.
This means that the expression (11) from Wyngaard

et al. (1971) incorporates a proportionality coefficient

that is larger than its actual value by a factor of 2.

3. Discussion

The relationship betweenFT and C2
T . in theWyngaard

et al. (1971) form, Eq. (11), has been widely used in

structure-parameter calculations (e.g., Kaimal 1973;

Asimakopoulos et al. 1976; Wyngaard and LeMone 1980;

Moulsley et al. 1981; Kohsiek 1982; Cuijpers and Kohsiek

1989; Beland 1993; Green et al. 1994; Muschinski et al.

2001, 2004; Cheinet and Siebesma 2009; Wilson and
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Fedorovich 2012; Maronga et al. 2013; Maronga 2014;

Maronga et al. 2014; Gibbs et al. 2016). The error reported

here may affect conclusions regarding the validity of this

relationship as compared with observational and numerical

data. Specifically, the majority of these cited studies found

reasonable agreement between this relationship and various

direct methods. Thus, the theoretical shortcomings of the

method were implicitly corrected through the use of an

improper proportionality coefficient.

Beyond the derivation presented above, we have further

reason to believe that Eq. (10) is the correct form of the

integral spectral approximation of the temperature structure

parameter. In Wyngaard [2010, their Eqs. (15.43) and

(16.64), p. 374], a specific form of our Eq. (4) is considered

that is subsequently integrated to arrive at an equivalent

expression for Eq. (8). Although the approximation (10) is

not presented in op. cit., one can easily show that the cor-

responding coefficient of proportionality is also 0.125 instead

of the widely adopted value of 0.25 from Wyngaard et al.

(1971).We recommend thatEq. (10) be used going forward.
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