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ABSTRACT

The NOAA Warn-on-Forecast System (WoFS) is an experimental rapidly updating convection-allowing

ensemble designed to provide probabilistic operational guidance on high-impact thunderstorm hazards. The

current WoFS uses physics diversity to help maintain ensemble spread. We assess the systematic impacts of

the three WoFS PBL schemes—YSU, MYJ, and MYNN—using novel, object-based methods tailored to

thunderstorms. Very short forecast lead times of 0–3 h are examined, which limits phase errors and thereby

facilitates comparisons of observed and model storms that occurred in the same area at the same time. This

evaluation framework facilitates assessment of systematic PBL scheme impacts on storms and storm envi-

ronments. Forecasts using all three PBL schemes exhibit overly narrow ranges of surface temperature,

dewpoint, and wind speed. The surface biases do not generally decrease at later forecast initialization times,

indicating that systematic PBL scheme errors are not well mitigated by data assimilation. The YSU scheme

exhibits the least bias of the three in surface temperature and moisture and in many sounding-derived con-

vective variables. Interscheme environmental differences are similar both near and far from storms and

qualitatively resemble the differences analyzed in previous studies. The YSU environments exhibit stronger

mixing, as expected of nonlocal PBL schemes; are slightly less favorable for storm intensification; and produce

correspondingly weaker storms than the MYJ and MYNN environments. On the other hand, systematic

interscheme differences in storm morphology and storm location forecast skill are negligible. Overall, the

results suggest that calibrating forecasts to correct for systematic differences between PBL schemes may

modestly improve WoFS and other convection-allowing ensemble guidance at short lead times.

1. Introduction

One challenge of objectivemodel evaluation is to focus

upon atmospheric features of greatest interest rather than

treating all fields and grid points equally. Object-based

methods address this challenge by extracting features

from themodel state and diagnosing operationally and/or

scientifically important attributes (e.g., Wolff et al. 2014).

Object-based methods are particularly well suited to

verifying convection-allowing model (CAM) analyses

and forecasts since discrete features, such as thunder-

storms, and their attributes are usually of primary interest

(e.g., Johnson et al. 2013; Stratman and Brewster 2017;

Jones et al. 2018; Skinner et al. 2018; Potvin et al. 2019;

Adams-Selin et al. 2019; Flora et al. 2019; Lawson et al.

2020, manuscript submitted toMon.Wea Rev.). A second

challenge for model evaluation is distilling biases and

systematic differences (e.g., between forecasts generated

using different model configurations) from many diverse

cases. Composite analysis techniques provide an objec-

tive way to illuminate such effects and then communicate

them to forecast users and model developers.

Potvin et al. (2019, hereafter P19) presented object-

based, composite analysis techniques for evaluating and

comparing CAM next-day forecasts. That work uti-

lized the Community Leveraged Unified Ensemble

(CLUE; Clark et al. 2018), a major feature of the

2016–19 NOAA Hazardous Weather Testbed Spring

Forecasting Experiments (SFEs; Kain et al. 2003;
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Clark et al. 2012; Gallo et al. 2017). The present study

extends the framework of P19 to evaluating systematic

forecast impacts of the three planetary boundary layer

(PBL) schemes used within the NOAAWarn-on-Forecast

(WoF; Stensrud et al. 2009, 2013) System (WoFS), an ex-

perimental CAM ensemble that is slated to be operation-

alized as part of the Unified Forecast System to provide

short-range probabilistic guidance for thunderstorm haz-

ards. Themuch shorter forecast lead times examined in the

present study (0–3h) than in P19 (18–26h) greatly in-

creases the number of cases where all the considered

models—in this study, WoFS members using each of the

three PBL schemes—produce a storm in proximity to the

same observed storm. This allows us to directly compare

simulated and observed storms that occurred in approxi-

mately the same location, time, and environment, and

thereby isolate PBL scheme impacts on modeled storms

and near-storm environments.

There are at least three motivations for assessing sys-

tematic impacts of parameterization schemes in multi-

physics ensembles. First, knowledge of systematic physics

scheme errors can inform the interpretation and post-

processing of ensemble forecasts (e.g., Johnson et al.

2011). For example, in generating probabilistic fore-

casts of storm intensity, ensemble members that use

physics schemes that produce large storm intensity

errors could be weighted less than other ensemble

members. Second, knowledge of the deficiencies in

current physics schemes can inform the development

of new and improved schemes. Third, identifying and

replacing underperforming physics schemes in an

ensemble system may improve the accuracy of the

ensemble. While considerable attention has been

given to the behavior of different PBL schemes at

6–36-h lead times (e.g., Hu et al. 2010; Coniglio et al.

2013; Cohen et al. 2015; Burlingame et al. 2017), much

less is known about PBL scheme impacts, particularly

on forecasts of storms, at the O(1) h lead times in the

purview of WoF. To the authors’ knowledge, Kerr

et al. (2017) is the only study to have addressed this

question.

The WoFS and the observational datasets used to

verify the analyses and forecasts in this study are de-

scribed in section 2. Procedures for extracting storm

objects and model fields within the near-storm envi-

ronment are detailed in section 3. In section 4, novel

verification techniques are used to evaluate and com-

pare forecast biases associated with the different WoFS

PBL schemes. Additional systematic physics impacts

on storm attributes and near-storm fields are examined

in section 5. Finally, section 6 summarizes the major

conclusions of this study and recommendations for

future work.

2. WoFS and observational datasets

a. WoFS configuration

The WoFS is a rapidly updating ensemble data as-

similation and prediction system designed to provide

probabilistic forecast guidance for thunderstorm haz-

ards including tornadoes, damaging winds, hail, heavy

rainfall, and lightning. The WoFS comprises 36 ensem-

ble members that use the Advanced Research version

3.8.1 of the Weather Research and Forecasting (WRF)

Model dynamical core (ARW; Skamarock et al. 2008;

Powers et al. 2017) with 3-km horizontal grid spacing

and 51 vertical levels. Radar and satellite observations

are assimilated every 15min and conventional obser-

vations every hour using an ensemble Kalman filter.

During the 2017 (2018) NOAA Hazardous Weather

Testbed SFEs, the WoFS was run over a 750 km 3
750 km (900km3 900 km) domain whose daily location

was determined in collaboration with the NOAA Storm

Prediction Center. Initial and boundary conditions for

each WoFS ensemble member are provided by the corre-

spondingmemberof the 36-memberHigh-ResolutionRapid

Refresh (Benjamin et al. 2016)Ensemble (HRRRE;Dowell

et al. 2016). In 2017–18, WoFS members were initialized

from 1-h HRRRE forecasts valid at 1800 UTC. Each

WoFSmember uses one of three PBL parameterizations

available in the WRF-ARW: the Yonsei University

(YSU; Hong et al. 2006), Mellor–Yamada–Janjić (MYJ;

Mellor and Yamada 1982; Janjić 2002), or Mellor–

Yamada–Nakanishi–Niino (MYNN; Nakanishi and Niino

2004, 2006) scheme; and one of two sets of radiation pa-

rameterizations: the Dudhia (1989) shortwave and Rapid

Radiative Transfer Model (RRTM; Mlawer et al. 1997)

longwave schemes, or theRapidRadiative TransferModel

for Global (RRTMG; Iacono et al. 2008) longwave and

shortwave schemes. This yields a total of six unique

physics combinations among the ensemble members. In

earlier work, we examined systematic impacts of the two

pairs of radiation schemes and of the six PBL–radiation

scheme combinations. Those preliminary analyses

revealed the choice of PBL scheme has a much

greater impact on forecasts than the choice of radia-

tion schemes, consistent with Kerr et al. (2017); thus,

for brevity, we will not discuss those experiments in

this paper. All members use the RUC land surface

model (Smirnova et al. 2016) and the NSSL two-

moment microphysics scheme (Mansell et al. 2010).

Only members 1–18 are used to generate free fore-

casts; these members use the same physics as mem-

bers 19–36, respectively. Herein we analyze 0–3-h

WoFS forecasts initialized hourly at 1900–0200 UTC

over 40 days during the 2017 and 2018 SFEs.
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b. MRMS products, ASOS observations, and
soundings

The NSSL Multi-Radar Multi-Sensor (MRMS; Smith

et al. 2016) system is used to verify WoFS forecasts of

storm location and morphological attributes. Model

composite reflectivity (REFLCOMP) is verifiedwith the

MRMS REFLCOMP product that is computed by cal-

culating the exponential inverse-distance-weighted av-

erage of the reflectivity from each contributing radar

and then taking the column-maximum (Smith et al.

2016). The MRMS REFLCOMP is interpolated to the

WoFS grid using the Cressman scheme with a 3-km ra-

dius of influence. Automated Surface Observing System

(ASOS) observations of 2-m temperature (T_2M), 2-m

dewpoint (TD_2M), and 10-m wind components u and y

(U_10M, V_10M) are used to verify forecasts of the

same variables and of 10-mwind speed (WSPD_10M) in

the vicinity of storms. National Weather Service ra-

winsonde observations valid within the WoFS domains

analyzed in this study are used to verifymodel profiles of

temperature, dewpoint, mixing ratio, u, and y, along

with several sounding-derived parameters commonly

used in severe thunderstorm forecasting. The rawinsonde

observations were obtained from the University of

Wyoming sounding database (http://weather.uwyo.edu/

upperair/sounding.html) via the Unidata Siphon Python

package version 0.8 (May et al. 2017). Both the model

and observed sounding-derived parameters are calcu-

lated using the Sounding and Hodograph Analysis

and Research Program in Python (SHARPpy) package

(Blumberg et al. 2017). Following Coniglio et al. (2013),

we compare the observed soundings to model soundings

valid one hour prior, since 1) radiosondes are typically

launched nearly one hour before their nominally valid

times, and 2) we are primarily interested in the lowest

kilometer of the vertical error profiles.

Definitions of all variables examined in this study are

provided in Table 1.

3. Storm object identification

Object-based methods focus evaluation upon discrete

features (e.g., storms) of greatest interest to the user,

and avoid traditional methods’ unduly large penalty for

phase errors. Such methods are particularly well suited

to verifying and comparing WoF ensemble output,

which is designed primarily to provide forecasters with

guidance on near-term (0–3h) evolution of potentially

high-impact storms. As in P19, we extract both storm

objects and, in the case of model storms, their near-

storm environments (NSEs). Each NSE is a prescribed

set of model fields within a 120km 3 120km domain

centered on the storm object centroid. The NSE domain

is sized to encompass storm–environment interactions

that can modulate storm intensity, not to represent the

preconvective environment, and is consistent with the

recommendations of Potvin et al. (2010). Most of our

analysis of environmental variables is conducted within

these NSEs since we are primarily interested in PBL

scheme impacts within and near simulated storms.

The first step of the storm object1 extraction is to

identify regions of the MRMS and WoFS REFLCOMP

fields exceeding prescribed thresholds. The MRMS

REFLCOMP threshold is set to the 99.9th percentile of

the set of MRMSREFLCOMP values compiled over all

the forecasts used in this study. TheWoFSREFLCOMP

threshold for each PBL scheme is computed similarly

but across all ensemble members using that scheme. The

resulting MRMS REFLCOMP threshold is 40.5 dBZ

TABLE 1. Descriptions of the primary variables analyzed in this

study. The lowest 100-mb layer was used to calculate mixed-layer

(ML) variables. STPfixed is computed as in Thompson et al. (2012)

except using SRH0–1 instead of SRH valid over the effective in-

flow layer.

Variable Description

REFLCOMP Composite reflectivity (dBZ)

UH2–5, UH0–2 Hourly maximum 2–5-/0–2-km updraft

helicity (m2 s22)

RAIN_1H Hourly accumulated rainfall (in.)

WMAX Column-maximum vertical

velocity (m s21)

SBCAPE, MLCAPE Surface-based/mixed-layer convective

available potential energy (J kg21)

SRH0–3, SRH0–1 0–3-/0–1-km storm relative

helicity (m2 s22)

T_2M 2-m AGL temperature (8C)
TD_2M 2-m AGL dewpoint (8C)
SBCIN, MLCIN Surface-based/mixed-layer convective

inhibition (J kg21)

MLSTP Mixed-layer significant tornado

parameter

STPfixed Fixed-layer significant tornado parameter

SCP Supercell composite parameter

VORTMAX Column-maximum vertical vorticity

below 2 km AGL (s21)

MLLCL Mixed-layer lifted condensation level (m)

U_10M, V_10M 10-m AGL zonal, meridional wind

components (m s21)

WSPD_10M 10-m AGL wind speed (m s21)

MAXHAIL Maximum hail diameter (in.) at surface

from WRF-HAILCAST (Adams-Selin

et al. 2019)

PBL_HGT PBL top height (m AGL) computed as in

Coniglio et al. (2013)

1 Object identification, extraction, and characterization in this

study were performed using the Python Scikit-image library

(Van der Walt et al. 2014).
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and the WoFS REFLCOMP thresholds range over

44.0–44.3 dBZ. Using percentile thresholds accounts

for the systematic difference between the MRMS and

WoFS REFLCOMP.

Preliminary storm objects identified using the

REFLCOMP thresholding procedure are then merged

into a single object if their boundaries lie within 10km of

each other. This step prevents mesoscale convective

systems (MCSs) with localized weaknesses in their in-

tense convection from being misidentified as multiple

discrete storms. Next, objects with area ,12 grid cells

(108 km2) are discarded since very small objects are less

likely to correspond to the intense, organized storms

which are the focus of this study. Finally, to excludeMCSs,

storm objects with length .75km or area .2500km2 are

discarded.2 Restricting the analysis to discrete storms

avoids the difficulty of tailoring analysis methods to

very different storm modes and facilitates interpreta-

tion of the results. It would be valuable, however, to

extend our methodology to MCSs in future work to

determine whether systematic PBL scheme impacts

vary between MCSs and more discrete storms.

In assessing systematic PBL scheme impacts, it would

not make sense to compare two ensemble member

forecasts within a region where only one member con-

tains a storm, since the differences between the two

forecasts could arise largely from the presence of a

storm (and attendant storm–environment interactions)

in one member and the absence of that storm in the

other, and not necessarily from the use of different PBL

schemes. This consideration together with our objective

of evaluating PBL scheme impacts on model storms

and NSEs motivates the development of a framework

in which inter-PBL-scheme comparisons are restricted

to storm-object-containing regions. Owing to the short

(0–3-h) forecast lead times in the present study, there

are numerous instances where model storms simulated

with each of the three WoFS PBL schemes occur in

proximity to an observed (MRMS) storm. To exploit

this property of the WoFS forecasts, we cycle through

eachMRMS storm (object) and search for model storms

whose centroid lies within 40km of the MRMS storm

centroid at the same valid time. The first such storm

identified for each PBL scheme is provisionally retained.

If such a storm is not identified for all three PBL

schemes, then the MRMS storm and provisionally re-

tained WoFS storms are discarded. Otherwise, the four

(MRMS,YSU,MYNN, andMYJ) stormobjects, referred

to hereafter as a ‘‘storm tetrad’’ (Fig. 1), are retained and

their correspondence to one another is utilized in subse-

quent analysis.3 This selection procedure yields 4398

storm tetrads that are then used for all analysis in this

study except for the storm object matching verification

(section 4a), which uses the full set of WoFS and MRMS

storm objects (6311 MRMS storms and approximately

10000 storms for each WoFS member).

Restricting the analysis to these storm tetrads ensures

that the analyzed mean interscheme differences arise

primarily from systematic PBL scheme impacts, and are

not substantially biased by sampling errors associated

with uneven representation of convective scenarios

among storms simulated with different PBL schemes.

Analyzing differences between the three model storms

within each tetrad rather than between model storms

randomly drawn from each of the three unordered sets

of storm objects also reduces the variance in the com-

puted inter-PBL-scheme differences, and therefore

the uncertainty in the mean interscheme differences.

Finally, anchoring the storm tetrads on observed storms

focuses the analysis onmodel storms that have been well

FIG. 1. Schematic of a storm tetrad. Each model storm object

centroid lies within 40 km of the observed storm centroid at the

same forecast valid time.

2 Storm object length is computed by Scikit-image, and is the

length of the major axis of the ellipse having the same normalized

second central moments as the storm object.

3 Repeating our analysis using a 20-km proximity criterion for

the storm tetrads produces similar mean inter-PBL-scheme dif-

ferences as does the 40-km criterion. The uncertainty in the dif-

ferences, however, is substantially increased since the number of

storm tetrads is approximately halved with the stricter proximity

criterion.
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constrained by the WoFS data assimilation and are

therefore of greatest value to forecasters (as opposed

to potentially spurious convection that should be given

less credence). Further discussion of our storm tetrad

methodology can be found in the appendix.

4. Physics impacts on forecast performance

a. Storm object matching

To assess PBL scheme impacts on the accuracy of

analyzed and forecast storm locations, storm objects in

each WoFS member and the MRMS storm objects are

matched to one another at lead times of 0, 1, 2, and 3h.

The object matching is performed using the technique of

Skinner et al. (2018), which was itself derived from the

matching technique in the Method for Object-Based

Diagnostic Evaluation (MODE; Davis et al. 2006a,b).

The effective maximum allowable displacement between

forecast and observed storm centroids and boundaries is

32 km and no allowance is made for timing errors. WoFS

storm objects in MRMS REFLCOMP data voids are

not included in the matching. Matched forecast objects

are counted as hits, unmatched forecast objects as false

alarms, and unmatched observed objects as misses.

Probability of detection (POD), false alarm ratio (FAR),

success ratio (SR; 12 FAR), critical success index (CSI),

and frequency bias are then computed from the totals of

hits, misses, and false alarms for each ensemble member

and plotted on a performance diagram (Roebber 2009;

Fig. 2). None of the four verification statistics vary

substantially between the PBL schemes (i.e., all three

schemes produce similarly skillful 0–3-h forecasts of

storm locations).4

b. Surface verification

All ASOS observations lying within extracted NSEs

and collected within 2.5min of the forecast valid time

are compared to model values obtained by bilinear inter-

polation from the surrounding four grid points. Treating

the observations as truth, forecast errors (interpolated-

model-minus-observation differences) are computed for

T_2M, TD_2M, U_10M, V_10M, and WSPD_10M and

analyzed in several ways. First, to identify any systematic

interscheme differences in the spatial configuration of the

NSEs, the forecast bias (average error) for each PBL

scheme is computed within 9 subdomains obtained by

dividing the NSE domain into a 3 3 3 grid (Fig. 3). The

confident lower bound for each bias is computed by

bootstrapping (10 000 iterations) the forecast errors to

produce a distribution of bias realizations.5 Spatial gra-

dients in bias were fairly similar across the three PBL

schemes (Fig. 3). For example, TD_2M biases were

lowest southwest of storm centroids and highest near

and northeast of storm centroids in all three cases

(Fig. 3b). It therefore appears that any systematic in-

terscheme differences that may exist in the simulated

storm–environment interactions are too small to quali-

tatively impact the spatial configuration of the NSE.

Forecast error distributions for each PBL scheme are

now examined and compared (Fig. 4). Using a similar

bootstrapping procedure as for the previous analysis

(Fig. 3), medians and confident lower bounds are com-

puted for the forecast biases and the interscheme dif-

ferences in bias. TheYSU scheme consistently produced

the warmest, driest NSEs, while the MYJ scheme pro-

duced the coolest, moistest NSEs (Figs. 4a,b). Our

finding that the YSU scheme produces warmer, drier

PBLs than the MYJ scheme in the 0–3-h forecasts is

FIG. 2. Reflectivity object matching verification for each of the

18 WoFS forecast members, color-coded by PBL scheme (blue5
YSU, red 5 MYJ, green 5 MYNN) and labeled by lead time.

CSI and frequency bias are contoured in blue and gray, respectively.

4 Additional experiments revealed that including MCSs in the

verification and/or setting the maximum allowable temporal offset

to 25min substantially improved the POD, FAR, and CSI. In all

three of those experiments, however, no single PBL scheme out-

performed the others.

5 If the 5th and 95th percentiles of this distribution have opposite

signs (i.e., if the 90% confidence interval contains zero), then the

bias is not statistically significantly different from zero, and the

confident lower bound is therefore set to zero. If the 5th and 95th

percentiles have the same sign, then the confident lower bound is

set to the percentile value nearer to zero.
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FIG. 3. Bias statistics for (a) T_2M and (b) TD_2M for each PBL subensemble and the full ensemble.

TheNSE-wide bias, number of analyzed stormsN, and number of analyzedASOSobservationsNobs are

listed at the top of each panel. The NSE is divided into nine subdomains that are shaded by their sample

bias. Each subdomain’s sample bias and confident lower bound on the bias (in parentheses) is annotated.

The REFLCOMP probability-matched means are contoured (10, 30, and 50 dBZ) for reference.
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consistent with previous studies that examined longer

forecast lead times (Hu et al. 2010; García-Díez et al.

2013; Clark et al. 2015; Burlingame et al. 2017; Jahn and

Gallus 2018). This result also comports with the deeper

mixing often seen in nonlocal schemes, which account

for countergradient fluxes (e.g., Cohen et al. 2015) and

therefore tend to produce more entrainment at the PBL

top (e.g., Hu et al. 2010). All three schemes were too

moist on average, with the YSU scheme being the least

biased with respect to both T_2M and TD_2M (biases of

0.08 and 0.38C, respectively) and the MYJ scheme the

most biased (biases of20.38 and 1.38C, respectively). In
terms of WSPD_10M, the YSU and MYNN schemes

were essentially unbiased, but the MYJ scheme had a pos-

itive bias of 1.2ms21 (Fig. 4c). Forecast biases and inter-

PBL differences in U_10M and V_10M were,0.5ms21 in

magnitude (not shown). Recomputing the error distribu-

tions over all ASOS records within theWoFS domains (not

just those within NSEs) revealed that interscheme differ-

ences in bias are similar both near and far from storms

(Fig. 5). Thus, systematic interscheme differences in surface

fieldmagnitudes do not appear to be substantially enhanced

or damped by simulated storm–environment interactions.

This result is consistent with the spatial similarities between

NSEs simulated with the different PBL schemes (Fig. 3).

To assess the signal-to-noise ratio of the PBL scheme

impacts on surface variables in individual cases, we

computed the mean standard deviation of each PBL

scheme subensemble over the set of all ASOS observa-

tions, and then compared the standard deviations to the

mean interscheme differences that were already pre-

sented in Fig. 5 (Table 2). The subensemble spread is

generally at least as large as themean differences between

FIG. 4. Notched box-and-whisker plots of errors in (a) T_2M,

(b) TD_2M, and (c) WSPD_10M for each subensemble. The boxes

span the interquartile range (IQR), and the whiskers extend to half

the IQR beyond the first and third quartiles. The notches span the

95%bootstrap confidence interval of themedian (N5 10 000). The

medians and confident lower bounds (in parentheses) of the biases

are annotated within the boxes; the medians and confident lower

bounds (in parentheses) of the bias differences are annotated be-

tween the boxes. The median mean absolute errors (MAEs) are

annotated below each box.

FIG. 5. As in Fig. 4, but using ASOS observations both within and

outside NSEs.
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subensembles, indicating that differences arising from

systematic PBL scheme impacts are substantially masked

by differences arising from other sources (e.g., different

initial conditions) in individual cases. The similarity of the

medians and confident lower bounds of the forecast bia-

ses and interscheme differences (Fig. 5), however, indi-

cates that we sample a large enough number of cases to

confidently isolate the systematic PBL scheme impacts

despite the low signal-to-noise ratio in individual cases.

To explore how the forecast biases for T_2M, TD_2M,

and WSPD_10M vary with the observed surface condi-

tions, we perform two types of distribution-oriented

verification (Murphy and Winkler 1987; Brooks and

Doswell 1996). First, we examine forecast amplitude

biases binned over prescribed intervals of observed

values (Fig. 6). The amplitude biases for all three var-

iables vary greatly with the observed conditions. In

instances where rarer (i.e., nearer the tails of the fre-

quency distribution) values of the variables are ob-

served, the forecasts tend to have more common (i.e.,

nearer the mode of the frequency distribution) values,

regardless of the PBL scheme. For example, the fore-

casts are, on average, much too warm in particularly

cool conditions, and much too cool in particularly

warm conditions (Fig. 6a). These forecast biases could

result from values near both tails of the observed fre-

quency distributions being predicted too rarely and,

correspondingly, midrange values being predicted too

often. In other words, the forecasts could exhibit nar-

rower probability distributions than does the real at-

mosphere. There is another type of forecast error,

however, that could contribute to the amplitude biases

seen in Fig. 6. Even for forecast and observed probability

distributions that are identical, unavoidable phase errors

TABLE 2. Mean PBL scheme subensemble standard deviations

and mean inter-PBL-scheme differences valid across all ASOS

observations.

YSU

stdev

MYJ

stdev

MYNN

stdev

MYJ–

YSU

MYNN–

MYJ

MYNN–

YSU

T_2M 0.7 0.7 0.7 20.3 0.0 20.3

TD_2M 0.9 1.0 0.9 1.0 20.3 0.7

WSPD_10M 0.9 1.0 0.8 0.8 21.0 20.2

FIG. 6. Forecast amplitude bias valid for binned observed values of (a) T_2M, (b) TD_2M,

and (c) WSPD_10M. Observation sample sizes are listed below corresponding bins.
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in CAM forecasts will create a tendency for more-

common values to be predicted in instances where rarer

values are observed. This is because even a modest

spatiotemporal offset between the forecast and ob-

served fields in any given case would tend to cause rarer

values in the observed field to overlap more-common

values in the forecast field (and vice versa) by virtue of

the larger coverage of the latter. To account for the

effect of this sampling bias on the amplitude biases

(Fig. 6), we additionally examine the frequency bias

distributions (Fig. 7). This additional analysis indicates

that much of the forecast amplitude bias in T_2M, TD_

2M, and WSPD_10M arises from overly narrow fore-

cast frequency distributions of these variables, and not

solely from the sampling bias just discussed. For ex-

ample, the too-moist forecasts in drier conditions and

too-dry forecasts in moister conditions (Fig. 6b) can be

explained largely by negative biases in the forecast

frequency distributions of TD_2M near the tails of the

observed distributions (Fig. 7b). Whether the fre-

quency distribution biases arise primarily from limita-

tions of the PBL schemes themselves or from some

other model deficiency cannot be determined from this

analysis alone; we briefly return to this question in

section 6.

Not all of the amplitude biases in the surface variables

can be explained by frequency distribution biases. For

example, the MYJ forecasts produce too many higher-

end WSPD_10M and too few lower-end WSPD_10M

(Fig. 7c), which strongly suggests that the negative am-

plitude bias in higher-end WSPD_10M (Fig. 6c) arises

from the aforementioned sampling bias, since the sam-

pling bias can explain both the lower- and higher-end

amplitude biases, whereas the frequency bias alone

would produce a positive amplitude bias in higher-end

WSPD_10M. Such detailed insights into the dependence

of forecast bias on the observed atmospheric conditions

could beexploitedby calibration techniques to improveboth

deterministic and probabilistic forecasts. Distinguishing the

effects of forecast probability distribution errors and phase

errors (and resulting sampling bias) on amplitude biasesmay

be important for optimizing forecast calibration, since the

two types of error should ideally be treated differently.

The amplitude and frequency bias distributions asso-

ciated with the different PBL schemes exhibit many

similarities. For example, while the mean TD_2M

FIG. 7. As in Fig. 6, but for frequency bias.
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amplitude bias substantially differs among the schemes

(as previously noted; e.g., Fig. 4), the interscheme dif-

ference in bias is relatively constant across the examined

range of observed TD_2M (Fig. 6b). The frequency

biases for all three variables differ more among the PBL

schemes than do the amplitude biases (cf. Figs. 6, 7).

Overall, however, the systematic impacts of the PBL

schemes on surface forecast biases appear to be reason-

ably similar across a range of warm season conditions,

which should make it easier to develop post hoc correc-

tions for these biases. The insensitivity of interscheme

differences in forecast amplitude biases combined with

the much larger variations in the forecast amplitude

biases themselves may largely explain why analyzed

surface and PBL biases, and therefore assessments of

the relative accuracy of different PBL schemes, quali-

tatively vary between prior studies (which often focus on

different seasons, regions, and atmospheric scenarios

from one another), despite analyzed error differences

between the schemes generally agreeing across studies.

For example, in our analysis, the predicted TD_2M av-

erage is approximately 18C higher in the MYJ forecasts

than in the YSU forecasts across the range of observed

TD_2M (Fig. 6b); however, the YSU forecasts exhibit

a much smaller TD_2M amplitude bias magnitude

than the MYJ forecasts in lower-TD_2M conditions,

but a much higher bias magnitude in higher-TD_2M

conditions.

To assess how the PBL scheme impacts evolve with

time, we examine time series of mean forecast bias in

T_2M and TD_2M versus initialization time (aggregated

over all lead times) and lead time (aggregated over all

initialization times; Fig. 8). The relative differences

between the YSU scheme and each other scheme

(Figs. 4a,b) are valid at most of the initialization and all

lead times, whereas the differences between the MYNN

biases and the MYJ biases are more variable. Bias

magnitudes in both variables neither steadily increase

nor decrease with initialization and lead time, which

suggests that while systematic PBL scheme errors do not

rapidly accumulate as forecasts proceed, neither are

FIG. 8. Bias vs (top) initialization time and (bottom) lead time in (a),(c) T_2M and (b),(d) TD_2M. The dashed

curves indicate the mean observed values of each variable for reference.

FIG. 9. Storm-relative release locations of soundings used to verify

model near-storm vertical profiles.

2576 MONTHLY WEATHER REV IEW VOLUME 148

D
ow

nloaded from
 http://journals.am

etsoc.org/m
w

r/article-pdf/148/6/2567/4946762/m
w

rd190389.pdf by guest on 23 June 2020



FIG. 10. Notched box-and-whisker plots of model errors in (a) SBCAPE, (b) MLCAPE, (c) SBCIN,

(d) MLCIN, (e) SRH0–3, (f) SRH0–1, (g) STPfixed, and (h) PBL_HGT. The medians and confident lower

bounds (in parentheses) of the biases are annotated within the boxes with the medians and confident lower

bounds (in parentheses) of the bias differences annotated between the boxes. The median MAEs are anno-

tated below each box.
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they effectively damped by the data assimilation. The

failure of a sophisticated, rapidly updating data assimi-

lation system to satisfactorily mitigate surface biases is

perhaps not surprising given the sparseness of surface

and PBL observations, and the inability to efficiently

assimilate observations in the presence of erroneous

ensemble covariances. The T_2M biases in the analyses

(0-min lead times in Fig. 8c) are slightly smaller (YSU)

or slightly larger (MYJ, MYNN) than the biases in the

NOAA Real-Time Mesoscale Analysis computed over

the CONUS and for the same analysis times examined

in the present study (Morris et al. 2020).

c. Vertical profile verification

Rawinsonde soundings valid within 240-km-diameter

storm-centered domains (Fig. 9) are used to verify

model vertical profiles of temperature, moisture, wind,

pressure, and height, with emphasis on the lowest 1 km

AGL. The model profiles are constructed at the WoFS

grid point nearest the corresponding rawinsonde station.

Sounding-derived parameters—MLCAPE, MLCIN,

SBCAPE, SBCIN,MUCAPE,MUCIN, SRH0–3, SRH0–1,

SCP, STPfixed, and PBL_HGT (Table 1)—are com-

puted from both the observed and model soundings,

and then the model errors are compared across the

PBL schemes (Fig. 10).

For many of the examined sounding parameters, the

three PBL schemes produce very different forecast error

distributions. For the majority of parameters, the YSU

scheme produced the largest range of errors, and the

MYJ scheme the smallest range of errors. In terms of

SBCAPE, theMYNN and (especially) YSU schemes are

negatively biased, while the MYJ scheme is essentially

unbiased (Fig. 10a). The MYJ and MYNN schemes

produce too much MLCAPE, while the YSU scheme is

essentially unbiased in this parameter (Fig. 10b). All

three schemes underpredict the magnitudes of SBCIN

(Fig. 10c) and MLCIN (Fig. 10d). This could be related

to the tendency formodels to coarsely represent capping

inversions (Coniglio et al. 2013). However, manual in-

spection revealed only 14% of the observed soundings

contain capping inversions (this perhaps isn’t surprising

since we used only those soundings collected near on-

going convection), which suggests another, unknown

factor is contributing to the underprediction of convec-

tive inhibition. YSU forecasts are essentially unbiased in

SRH0–3 and SRH0–1, while MYJ andMYNN are weakly

positively biased (Figs. 10e,f). Cohen et al. (2017), who

analyzed cold-season environments over the Southeast

United States, likewise found that YSU produces lower

SRH than MYJ. YSU produces lower STPfixed than the

other two schemes (Fig. 10g), which is not surprising

considering the interscheme differences in MLCAPE

and SRH0–1 (Figs. 10b,f), two of the four variables in the

STPfixed calculation.

Computing PBL heights (PBL_HGT) from the virtual

potential temperature profile as inConiglio et al. (2013),we

find that all three schemes produce PBLs that are too deep,

with YSU producing the largest PBL_HGT overestimates

(Fig. 10h), consistent with the scheme’s tendency to over-

mix the PBL. While previous studies have also found that

the YSU scheme tends to produce larger PBL heights than

other schemes, the same studies concluded that MYJ un-

derestimates, not overestimates, PBL heights (Hu et al.

2010;García-Díez et al. 2013;Coniglio et al. 2013). It should
be noted that the methods used to compute PBL heights

varied among these studies, as did factors important to

simulated PBL height growth rates, including grid spacing

and the relative representation of buoyant versus me-

chanical turbulence production regimes (Deardorff 1972;

Moeng and Sullivan 1994). Equally noteworthy, however,

is the similarity of Coniglio et al. (2013) to the present

study, but for our focus onmuch shorter forecast lead times

than in other studies. The question of whether this ten-

dency for even local schemes to overdeepen the PBL is

particular to the HRRRE and/or WoFS configurations

used in the present study or generally obtains at O(1) h

lead times would be worth pursuing in future work.

In many instances, the confidence intervals on the

sounding parameter biases and interschemebias differences

are very large, as indicated by large differences between the

medians and confident lower bounds in Fig. 10. This large

uncertainty in the sounding parameter biases and bias dif-

ferences contrasts with the highly confident surface variable

error analyses (Figs. 4, 5). This can be explained in part by

the much smaller number of soundings than ASOS obser-

vations, but repeating the signal-to-noise ratio analysis that

was performed for all surface observations (Table 2) for all

soundings collected within WoFS domains (i.e., whether

near a storm or not) reveals that systematic PBL scheme

impacts are dominated by intra-sub-ensemble differences

in individual cases (Table 3). These results motivate av-

eraging over all subensemble members containing a

TABLE 3. As in Table 2, but for all soundings launched within

WoFS domains.

YSU

stdev

MYJ

stdev

MYNN

stdev

MYJ–

YSU

MYNN–

MYJ

MYNN–

YSU

SBCAPE 257 306 280 239 238 276

MLCAPE 196 243 221 44 223 21

SBCIN 36 36 35 23 3 0

MLCIN 33 34 33 219 11 27

SRH0–3 36 36 36 26 0 26

SRH0–1 24 26 25 3 0 2

STPfixed 0.2 0.3 0.2 0 0 0

PBL_HGT 364 326 320 2175 38 2138
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FIG. 11. (a)–(d) Vertical profiles of model bias (solid) and MAE (dashed) in (a) temperature,

(b) mixing ratio, (c) u, and (d) y within the 240-kmNSEs (N5 118). Surface biases (semicircles) and

MAE (rectangles) in (a) T_2M, (b) TD_2M, (c)U_10M, and (d) V_10Mwere computed fromASOS

observations collectedwithin theNSEs. (e)–(h)As in (a)–(d), but using soundings outside the 240-km

NSEs (N 5 571) and all ASOS observations collected within the WoFS forecast domains.
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matched storm (or using a much larger number of cases)

in future work in order to obtain more confident esti-

mates of biases and interscheme differences.

Next, vertical profiles of model bias andMAE (Fig. 11)

are computed for each PBL scheme by interpolating the

observed and model soundings to a common vertical

grid. The vertical grid begins at 100m AGL and pro-

ceeds in 100-m increments to 1000m AGL, 200-m in-

crements from 1200 to 3000m, and 300-m increments

from 3300 to 5100m. The inter-PBL differences within

the lowest 1km of the vertical profiles of bias (Figs. 11a–d)

are qualitatively consistent with the inter-PBL differ-

ences in ASOS biases. For example, the YSU and MYJ

profiles are the warmest/driest and coolest/moistest, re-

spectively (Figs. 11a,b), consistent with many previous

studies (Hu et al. 2010; García-Díez et al. 2013; Clark

et al. 2015; Kerr et al. 2017; Burlingame et al. 2017; Jahn

and Gallus 2018). The warmer, drier YSU profiles con-

tribute to the lower YSU forecast values of SBCAPE,

MUCAPE, and STPfixed noted above. All three schemes

exaggerate PBL lapse rates (Fig. 11a). YSU produces the

smallest temperature MAE in the lowest 1km AGL

(Fig. 11a), while MYNN produces both the largest tem-

perature MAE and (by far) dewpoint MAE (Figs. 11a,b),

consistent with Coniglio et al. (2013). No one scheme

performs categorically better than the other with regard to

low-level winds (Figs. 11c,d), though large interscheme dif-

ferences in error characteristics occur at individual levels.

Repeating the analysis for all soundings collected

within theWoFS domains (Figs. 11e–h) and comparing to

the near-storm analysis suggests that the more prominent

interscheme PBL profile differences are similar whether

near or far from storms. Some of the differences between

the near-storm and all-soundings analyses are likely due

to sampling errors, especially in the former (N 5 118),

making it difficult to attribute small differences to

changes in PBL scheme behavior nearer versus farther

from storms. Together with the previously demonstrated

similarity of interscheme differences in surface biases

near versus far from storms (cf. Figs. 4, 5), these results

suggest that storms do not strongly modulate model dif-

ferences arising between the different PBL schemes.

Surface bias and MAE are computed for each variable

in Fig. 11 using ASOS observations collected within NSEs

(Figs. 11a–d) or throughout the WoFS forecast domains

(Figs. 11e–h). While the ordering of the surface biases for

the different PBL schemes generally reflects the ordering

of the biases over the lowest 1-km AGL, substantial ver-

tical discontinuities appear between the surface errors and

100-m AGL errors in most instances. We speculate that

these discontinuities arise in part from the diagnostic na-

ture of the surface variables, which are largely determined

by the land surface model and surface layer schemes and

therefore only indirectly linked to the prognostic variables

on the model vertical grid. Differences in the scales rep-

resented by the observed and model variables, and how

these scale mismatches themselves differ between vari-

ables within versus just above the surface layer, may also

contribute to the vertical discontinuities in errors.

The biases in each of the model surface and sounding-

derived variables are listed for each PBL scheme in Fig. 12.

While no scheme performed categorically better than the

others with respect to these metrics, YSU produced fore-

cast biases that were similar to or smaller than those pro-

duced by the MYJ and MYNN schemes for 9 of the 11

variables. Of course, there are numerous other forecast

metrics that could be considered, and the optimal choice of

PBL scheme will likely depend upon the application.

5. Physics impacts on storm and near-storm
environment (nse) characteristics

a. Probability-matched means of storm and
NSE fields

Probability-matched means (PMMs; Ebert 2001) of

NSE fields are computed as in P19. PMMs preserve

the average probability distribution of constituent

cases, thus mitigating the damping of extrema and

FIG. 12. PBL scheme forecast biases computed from near-storm

ASOS and sounding verification. Green, yellow, and red shading

indicate subjectively determined small, medium, and large biases,

respectively, in forecast variables.
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gradients that occurs with simple averaging. The

spatial gradients in the PMM fields vary little across

the PBL schemes (Fig. 13). Differences in the field

magnitudes are consistent with the error differences

noted in section 4; for example, the YSU PMMs exhibit

lower MLCAPE (Fig. 13a) and TD_2M (Fig. 13b) than

the other schemes.

One of the more interesting features visible in the

PMMs is worth a brief digression. The SRH0–3 shows a

maximum about 20 km southeast of the storm in the

FIG. 13. Probability-matched mean (a) MLCAPE and WMAX, (b) TD_2M and RAIN_1H, (c) MLLCL and

MAXVORT, and (d) SRH0–3. REFLCOMP is contoured at 10, 30, and 50 dBZ for reference.
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FIG. 14. Notched box-and-whisker plots of differences in NSE maxima between each pair of PBL schemes:

(a) MLCAPE, (b) SRH0–1, (c) MLSTP, (d) UH2–5, (e) VORTMAX, and (f) WMAX.
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region where supercells are known to enhance the low-

level wind shear in the near-field environment (Parker

2014; Wade et al. 2018). This feature, which also arises in

next-day forecasts (P19), is evidence that 3-km grid spac-

ing can at least qualitatively capture the near- and in-storm

perturbation low pressure associated with the storm–

environment interactions that are hypothesized to be the

primary driver of the enhanced low-level inflow and shear.

These results support the hypothesis that 3-kmgrid spacing

is sufficient to realistically simulate many of the important

processes within supercells (e.g., Potvin and Flora 2015).

b. Distributions of NSE maxima

NSE-wide (i.e., within each storm-centered 120-km

box) maxima6 are computed for several model fields for

each PBL scheme. Differences are then computed be-

tween each pair of schemes (Fig. 14). The MYJ and

MYNN schemes, on average, produce larger MLCAPE

(Fig. 14a), SRH0–1 (Fig. 14b), and STPfixed (Fig. 14c)

than the YSU scheme, consistent with the sounding

parameter verification (Fig. 10). This translates to gen-

erally more strongly rotating storms (Figs. 14d,e) with

stronger updrafts (Fig. 14f) and attendant hail sizes (not

shown) with the MYJ and MYNN schemes. The MYJ–

MYNN differences in NSE maxima are much smaller

than the MYJ–YSU and MYNN–YSU differences, with

the MYNN scheme on average producing slightly less

favorable NSEs and weaker storms than the MYJ

scheme. The relative similarity between the MYJ and

MYNN results is perhaps not surprising given that both

schemes are based on the Mellor–Yamada 1.5-order

local scheme (Mellor and Yamada 1974, 1982).

To assess how the PBL scheme impacts evolve with

time, we examine time series of mean interscheme fore-

cast differences versus initialization time (aggregated over

all lead times) and lead time (aggregated over all initiali-

zation times; Fig. 15). Interscheme differences in both the

storm environment (e.g., Fig. 15a) and storm attributes

(e.g., Fig. 15b) generally decrease with initialization time,

possibly due in part to the decreases in MLCAPE and

UH2–5 themselves over this period (Figs. 15a,b).However,

the interscheme differences either increase with lead time

(Figs. 15c,d) or exhibit very little trend overall.

c. Distributions of storm attributes

Inter-scheme differences in several storm attributes

were examined using a procedure similar to that used

for the NSE maxima intercomparisons. As shown in

Table 4, themean area, length, and orientation of storms

did not meaningfully vary among the PBL schemes, nor

FIG. 15. Interscheme differences in NSE maxima vs (top) initialization time and (bottom) lead time: (a),(c)

MLCAPE, and (b),(d) UH2–5. The dashed curves indicate the mean absolute values of each variable for reference.

TABLE 4. Mean characteristics of observed (MRMS) storms and

storms simulated using the YSU, MYJ, and MYNN schemes.

YSU MYJ MYNN MRMS

Storm area (km2) 445 461 450 340

Storm length (km) 34.4 34.8 34.0 33.3

Storm orientation (8) 210 210 211 212

Cold pool area (km2) 644 686 703 N/A

Updraft area (km2) 150 144 140 N/A
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FIG. 16. Kernel density estimates of (a) MLCAPE and WMAX, and (b) SRH0–1 and UH0–2. The Pearson corre-

lation coefficient r is shown on each panel.
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did the mean area of storm updrafts (identified using

a w threshold of 2.5m s21) or cold pools (identified

using a 21.78C threshold for deviation of T_2M from

the NSE mean). Thus, while systematic NSE differences

between schemes produced nontrivial differences in storm

intensity (section 5c), the NSE differences did not sub-

stantially impact storm morphology.

d. Bivariate kernel density estimates

As in P19, bivariate kernel density estimates (KDEs)

are examined for selected pairs of statistics to identify

systematic differences in the relationships between storm

and/or NSE characteristics (Fig. 16). KDEs were com-

puted for:MLCAPE andWMAX (Fig. 16a), SRH0–1 and

UH0–2 (Fig. 16b), MLCAPE andMAXHAIL,MLCAPE

and UH2–5, MLCAPE and SRH0–3, and CAPE0–3 and

UH0–2. No substantial interscheme differences arose in

any of the bivariate relationships examined, suggesting

the choice of PBL scheme did not fundamentally alter

important storm–environment interactions.

e. Daily mean analyses

To assess the variability of PBL impacts across different

convective events, we repeat some of our analyses on each

daily set of forecasts containing at least 30 storm objects

(N5 36).ComputingPMMs (section5a) for individual days

(not shown) reveals that differences between the geometry

of NSEs simulated with different PBL schemes vary nearly

as little on individual days as over the full 40-day dataset.

Thus, even on a regional scale, the choice of PBL scheme

does not appear to substantially impact the qualitative

spatial patterns of NSEs at 0–3-h lead times. Daily analyses

of field magnitudes likewise confirm the representativeness

of the all-days results. Computing surface variable biases

(section 4b) for individual days (Fig. 17) noticeably reduces

interscheme overlap in bias distributions relative to the all-

days biases (cf. Figs. 4, 17). Similarly, interscheme differ-

ences in NSEmaxima (section 5b) valid for individual days

(Fig. 18) are larger than for the full dataset (cf. Figs. 14, 18).

These two results indicate the relative PBL scheme impacts

documented in previous sections are not confined to a

narrow range of atmospheric scenarios, but instead fre-

quently recur from day to day during the warm season. The

repeatability of the interscheme forecast differences, which

could also be inferred from the amplitude bias distributions

(Fig. 6), suggests that it would be straightforward to develop

postprocessing techniques to mitigate forecast biases asso-

ciated with different PBL schemes.

6. Summary and discussion

The systematic impacts of the three PBL schemes

used in the NSSL Warn-on-Forecast System (WoFS)

were assessed using a novel evaluation framework tailored

to thunderstorms and near-storm environments (NSEs).

This storm-based framework is being developed in part to

improve our understanding of the impacts of CAM design

choices on the simulation and prediction of thunderstorm

initiation, track, and intensity. Such knowledge will be

crucial for improving operational forecasts of thunder-

storm hazards at lead times of minutes to days.

Very short forecast lead times of 0–3h were examined

in the present study, which facilitated comparisons be-

tween observational analyses and different model sim-

ulations of storms and thereby increased the precision

with which PBL scheme impacts could be measured.

ASOS verification revealed that all three WoFS PBL

schemes–YSU, MYJ, and MYNN–exhibit a cool, moist

bias at the surface, with the YSU members producing

the least bias, consistent with the well-documented

larger mixing and associated warming and drying as-

sociated with this and other nonlocal PBL schemes rel-

ative to the MYNN and (especially) MYJ schemes.

Rawinsonde verification revealed that the qualitative

interscheme differences in surface temperature and

FIG. 17. As in Fig. 4, but for daily biases.
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FIG. 18. As in Fig. 14, but for daily biases.
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dewpoint extended through at least 1km AGL. YSU

produced the least biased estimates of many important

environmental variables, but substantially underestimated

surface-based CAPE. All three schemes substantially

underpredicted convective inhibition, which may in part

explain the storm frequency biases identified in the

WoFS (Skinner et al. 2018) and other ARW CAM en-

sembles (Potvin et al. 2019).

Forecasts using all three schemes produced too narrow a

distribution of surface temperature, dewpoint, and wind

speed. There are a number of potential explanations for

thismodel deficiency. For example, PBL schemeswere not

originally designed to parameterize the finescale processes

that CAMs would ideally capture; if PBL scheme limita-

tions do indeed contribute to the overly narrow surface

forecast distributions, then perhaps scale-aware/scale-

adaptive PBL schemes (e.g., Olson et al. 2019) will be

capable of accurately representing a wider range of at-

mospheric conditions. It is also possible that current land

surfacemodels are incapable of accurately parameterizing

the full spectrum of warm-season atmospheric conditions.

Insufficient spread in land surface conditions could also

have contributed to the problem; the WoFS does not

perturb the land surface variables, and the HRRRE in

2017–18 only perturbed soilmoisture, and only at the start

of cycling each day. The same overly narrow surface

variable distributions are also present in the HRRRE

forecasts used to initialize the WoFS (not shown), and

therefore cannot be a consequence of rapid radar and/or

satellite data assimilation or some other special aspect of

the WoFS. Finally, the same model bias is present in re-

gions distant from storms (not shown), and therefore

cannot be attributed to storm–environment interactions.

While surface biases varied greatly with the observed

conditions, the systematic interscheme differences in

surface forecasts were much less sensitive. Surface and

PBL biases were similar near versus far from storms, in-

dicating that systematic differences in PBL scheme im-

pacts are not strongly modulated by storm–environment

interactions. Surface bias magnitudes did not generally

increase with forecast lead time, suggesting that PBL

scheme errors do not rapidly accumulate as forecasts

proceed.On the other hand, the biases were not generally

lower for later forecast initialization times, suggesting

that systematic PBL scheme errors are not effectively

damped by data assimilation, presumably due in part to

the sparseness of surface and PBL observations.

The choice of PBL scheme did not systematically change

the spatial configuration of NSE fields, but did impact

the magnitudes of both environmental and storm in-

tensity parameters. The YSU ensemble members

produced weaker storms than the MYJ and MYNN

members, which is likely attributable at least in part

to the less favorable storm environments simulated in

the YSU members. Examination of relationships be-

tween storm intensity and environmental parameters

suggested the choice of PBL scheme did not funda-

mentally alter important storm–environment inter-

actions. This makes it more probable that the storm

intensity differences among the three PBL schemes

arise primarily from environmental differences. Despite

substantially modifying storm environments and storm

intensity, the choice of PBL scheme did not substantially

impact storm morphology or the skill of storm location

predictions. Thus, while it may be worthwhile to weight

WoFS ensemble member forecasts differently based on

their PBL scheme, especially given the repeatability of

the interscheme forecast impacts across different events,

this approach is only expected to modestly improve

probabilistic forecast guidance for convective hazards.

We plan to extend the analysis methods developed

herein to assist in evaluating potential WoFS configu-

ration changes, including increased horizontal and

vertical model resolution, implementation of scale-

aware PBL schemes, and transition to the FV3 dy-

namic core. The analysis methods could also be used to

compare storm and NSE characteristics (both observed

and WoFS-simulated) in different scenarios, for ex-

ample, in Plains-type versus low-CAPE/high-shear re-

gimes or on days with high versus low WoFS forecast

skill. The present framework could be modified to as-

sess PBL scheme impacts on mesoscale convective

systems and their environments. Finally, this study was

primarily concerned with PBL scheme impacts on

simulations of existing storms; it would be valuable to

extend this analysis to the prestorm environment and

convection initiation.
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APPENDIX

Storm Tetrad Considerations

Herein we present three cautionary notes about our

storm tetrad approach to assessing systematic impacts of

different PBL schemes. First, the correspondence be-

tween the storms comprising each tetrad should not be

interpreted too literally. Forecast and observed storms

originating at substantially different locations or times

can end up in the same area at the same time by hap-

penstance; for example, during the forecast, a spurious

model storm may initiate near a real, mature storm that

developed well upstream. Observed and model storms

can also evolve very differently (e.g., exhibit different

convective modes) even when they do develop and

move in proximity to one another. Our method there-

fore does not ensure that all three model storms in a

tetrad closely represent the observed storm. This limi-

tation likely reduces the signal-to-noise ratio of the

systematic PBL scheme impacts, and could be addressed

using object matching methods that enforce similarity in

storm morphology and intensity (e.g., Johnson et al.

2020). Still, by comparing only model storms that oc-

curred in proximity to an observed storm and therefore

to each other, we ensure that comparisons between

storms that developed in disparate environments are

quite rare.

Second, in an ensemble with systematic differences in

initial conditions (ICs) between members using the

same PBL scheme, our method of selecting the first

storm for each PBL scheme found in proximity to a

given observed storm would be inappropriate. It would

instead be necessary to use an approach that selects

model storms randomly among the members of each

PBL subensemble to avoid analyzing a combination

of systematic interscheme differences and systematic

IC differences. To account for the potential existence

of unexpected systematic IC differences among the

WoFS members, we repeated many of the analyses

shown in this paper using storm tetrads created from

same-physics (both the PBL and radiation schemes)

ensemble members. The mean differences between

same-physics storms were generally statistically in-

significant, indicating that the systematic inter-PBL-

scheme differences obtained in this study are not

substantially modified (if at all) by any systematic

intermember IC differences that unexpectedly occur

in the WoFS.

Third, rather than selecting a single matched storm

(and NSE) per PBL scheme for each intercomparison

(i.e., our storm tetrad approach), we could have aver-

aged over all subensemble members containing a matched

storm. This would likely have increased the signal-to-noise

ratio of the systematic PBL scheme impacts in our analyses

by damping the influence of initial condition differences.

Making this modification could substantially reduce the

rate of type-II errors in future applications of our meth-

odological framework.
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