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Overview

The Boundary Layer and Related Phenomena
Reynolds Fluxes and Their Physical Intepretation
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Turbulent flux of momentum and turbulent stress

The variances and covariances (u'v’, u'v', J'w', Vv, v'V', v'W/,
w'u', w'v', w'w') that appear in the Reynolds-averaged
Navier-Stokes equations are the components of the turbulent
kinematic momentum flux.
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Turbulent flux of momentum and turbulent stress

This name becomes apparent if we consider products of these
quantities and density, e.g.,
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Turbulent flux of momentum and turbulent stress
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The above term, for instance, has a meaning of x component of
momentum transported in average by fluctuating velocity
component w' per unit time per unit area of the surface normal to

Z axis.
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Turbulent flux of momentum and turbulent stress
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On the other hand, this term may also be interpreted as z
component of momentum transported in average by fluctuating
velocity component u' per unit time per unit area of the surface
normal to x axis.
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Turbulent flux of momentum and turbulent stress
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Thus, these fluxes can be thought of as the transport of mass per
unit area per unit time. In other words, they represent the force
per unit area.
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Turbulent flux of momentum and turbulent stress

Physical quantities having opposite signs to the momentum flux
components are components of the turbulent stress:
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Turbulent flux of momentum and turbulent stress

Note, Txy = Tyx, Txz = Tax, Tyz = Tzy-

Here, 7., 7yy, 7, are the normal components of the turbulent
stress, while 7., = Tyx, Txz = Tax, Tyz = Tz, are the shear
components of the stress.

Why is this called a stress? Why do we describe the components
as normal and shear?
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Turbulent flux of momentum and turbulent stress

Think about an idealized cubic volume.
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Figure: ldealized cubic volume indicating turbulent stresses. Note here,

e.g., Ox = Txx-
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Turbulent flux of momentum and turbulent stress
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Txz — the flux of the momentum parallel to a volume face (e.g., of
/ !

u through a boundary of a cubed volume by w') causes the

parallel momentum (v’ in this case) to change at that face.

Accordingly, the momentum flux is the stress applied at this face.
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Turbulent flux of momentum and turbulent stress

We therefore call the momentum fluxes in the momentum
equations the Reynolds stresses.
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Turbulent flux of momentum and turbulent stress

Note, that in meteorological literature, the turbulent momentum
flux and turbulent shear stress are usually normalized by density
(ie., -w'u' = 7, /p).

These normalized quantities are often called turbulent momentum
flux and turbulent shear stress with the word kinematic being
omitted.
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Turbulent flux of momentum and turbulent stress

We now apply the notion of turbulent stresses and momentum flux
in the Reynolds-averaged momentum balance equations
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Turbulent flux of momentum and turbulent stress

In models of atmospheric flows (including boundary-layer flows),
which are essentially turbulent (with the exception of some special
flow cases), viscous terms on the right-hand sides of our original
equations are usually neglected.

This is a reasonably safe assumption in turbulent boundary layer

flows since the effects of molecular diffusion are much smaller than
the effects of turbulent eddies.
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Turbulent fluxes of heat

The covariances (u'0’, v'0', and w'@’) that appear in the
Reynolds-averaged heat balance equation are the components of
vector Q},, the so-called turbulent kinematic heat flux (also called
the turbulent temperature flux).
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Turbulent fluxes of heat

This name becomes apparent if we consider products of these
quantities, density, and ¢,, e.g.,
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Turbulent fluxes of heat
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The above term, for instance, has a meaning of heat energy
transported, in average, by turbulent fluctuations u (i.e., in the x
direction) per unit time per unit area of the surface normal to the
X axis.
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Turbulent fluxes of heat
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These terms are also known as the sensible heat flux, whose
components are given by

> th = pcpﬁ
> Qn, = pcpv')

> Qn, = pcpw'0’
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Turbulent fluxes of heat
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Note, that in meteorological literature, the turbulent heat flux is
usually normalized by density and ¢, (i.e., u'6" = Qpn, /(pcp).

These normalized quantities are often called turbulent heat flux
with the word kinematic being omitted.

20 /27



Turbulent fluxes of heat

We now apply the notion of turbulent heat flux in the
Reynolds-averaged momentum balance equations
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Turbulent fluxes of heat
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We have neglected diffusion terms because divergences of molecular heat

fluxes under typical atmospheric boundary layer flow conditions are

considerably smaller than their turbulent counterparts.



Turbulent fluxes of heat
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Suppose we have an idealized turbulent eddy near the ground on a
hot summer day. If we start with a particular profile of 8, how will
it change with time?
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Turbulent fluxes of heat
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Due to surface heating, ¢ is typically super-adiabatic near the
ground (96/0z < 0),
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Turbulent fluxes of heat
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Assume that we have two parcels, A and B. Parcel A moves
downward and parcel B upward. When A moves downward, it
becomes colder than its environment. Accordingly, it carries a

. ’ .
negative 6 . Parcel B, on the other hand, becomes warmer than its
environment and thus carries a positive 6 .
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Turbulent fluxes of heat
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Therefore
Parcel A: w' <0 and 8 <0 — w6 >0 (positive heat flux)
Parcel B: w' > 0and §' >0 — w'6# > 0 (positive heat flux)
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The End
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