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Trapped Lee Waves

One of the most prominent features of mountain waves is the long
train of wave clouds over the lee of mountain ridges in the lower
atmosphere. This type of wave differs from the dispersive tails
shown earlier for the l ≈ k case in that it is located in the lower
atmosphere and there is no vertical phase tilt.

These types of trapped lee waves occur when the Scorer parameter
decreases rapidly with height (Scorer 1949).
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Trapped Lee Waves

Figure: Satellite imagery for lee wave clouds observed at 1431 UTC, 22
October 2003, over western Virginia. Clouds originate at the Appalachian
Mountains. (Courtesy of NASA).
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Trapped Lee Waves

In considering flows forced by two-dimensional sinusoidal
mountains and two-dimensional isolated mountains, we made the
following assumptions and approximations when constructing the
equations of motion:

I steady-state (∂/∂t = 0)
I non-rotating (f = 0)
I adiabatic q̇ = 0
I Boussinesq (incompressible, ∇~u = 0; ρ = ρ, except with g)
I inviscid (Frx and Frz = 0)
I two-dimensional (v = 0, ∂/∂y = 0)
I u(z) = constant
I N(z) = constant
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Trapped Lee Waves

Here, we modify these assumptions to allow for vertical variation in
either the zonal wind or static stability

i.e., u(z) or N(z) 6= constant.

Here, the governing equation is

∇2w
′

+ l2(z)w
′

= 0 (1)

6 / 56



Trapped Lee Waves

The Scorer parameter takes its full form

l2(z) =
N2(z)

u2(z)
− 1

u(z)

∂2u(z)

∂z2
. (2)

The condition for vertical propagation becomes ks < l , where ks is
the s-th Fourier component of the topography.
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Trapped Lee Waves

If the mean cross mountain wind speed increases strongly with
height

or

there is a low-level stable layer so that N decreases strongly with
height

there may two layers of fluid with different Scorer parameter values

I lU → upper layer

I lL → lower layer
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Trapped Lee Waves

Assume lU < lL

This means that waves whose wavenumbers fall between the two
Scorer parameter values will:

I propagate vertically in the lower layer

I decay with height in the upper layer
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Trapped Lee Waves

When the zonal wind or static stability is approximately constant
within each layer, waves can experience refraction and/or reflection
at the adjoining interface.

This is physically similar to optical rays passing through fluids of
varying density.
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Trapped Lee Waves

For reflection, each upward-propagating wave has an associated
downward-propagating wave. These waves interact with one
another.

The interaction of these waves is constructive (destructive) when
the amplitude increases (decreases).
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Trapped Lee Waves

For constructive interference, lee wave energy becomes trapped in
the lower layer, which is then called a wave duct.

The trapped wave is capable of transporting energy over long
distances with little attenuation.
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Trapped Lee Waves

Linear theory is expected to reproduce accurate results when the
non-dimensional mountain height Nhm/u � 1.

Even when this value is not necessarily small, in the cases with
constant u and N, the difference between linear predictions and
the full non-linear solutions remains small so long that waves do
not break.
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Trapped Lee Waves

However, these differences become dramatic when u and N vary in
a way that produces trapped lee waves.

Numerical simulations have shown that linear theory only reliably
predicts wave amplitude when the ratio of lee wavelength to
mountain width is greater than unity.
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Trapped Lee Waves

Figure: Streamlines in air flow over a mountain for (a) steady flow
subject to the linear approximation and (b) the fully nonlinear and
unsteady solution. [From Markowski and Richardson]
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Lee Waves and Rotors

Due to the co-existence of the upward propagating waves and
downward propagating waves, there exists no phase tilt in the lee
waves.

Once lee waves form, regions of reversed cross-mountain winds
near the surface beneath the crests of the lee waves may develop
due to the presence of a reversed pressure gradient force.
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Lee Waves and Rotors

In the presence of surface friction, a sheet of vorticity parallel to
the mountain range forms along the lee slopes, which originates in
the region of high shear within the boundary layer.

The vortex sheet separates from the surface, ascends into the crest
of the first lee wave, and remains aloft as it is advected
downstream by the undulating flow in the lee waves
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Lee Waves and Rotors

The vortex with recirculated air is known as rotor and the process
that forms it is known as boundary layer separation.

These rotors are often observed to the lee of steep mountain
ranges such as over the Owens Valley, California, on the eastern
slope of Sierra Nevada).

Occasionally, a turbulent, altocumulus cloud forms with the rotor
and is referred to as rotor cloud.
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Lee Waves and Rotors

Figure: Streamlines and horizontal vorticity (colored, s−1) in a numerical
simulation using a no-slip lower-boundary condition. Horizontal wind
speeds less than or equal to zero are shown using blue isotachs (every
2 ms−1). [From Markowski and Richardson]
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Nonlinear Flows Over Two-Dimensional Mountains

The linear dynamics of mountain waves over 2D ridges are
fundamentally understood.

Linear theory, however, begins to break down when the
perturbation velocity (u

′
) becomes large compared with the basic

flow (u) in some regions, so that the flow becomes stagnant.
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Nonlinear Flows Over Two-Dimensional Mountains

This happens when the mountain becomes very high, the basic
flow becomes very slow, or the stratification becomes very strong.

In other words, flow becomes more nonlinear when the Froude
number, u/Nhm, becomes small.
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Nonlinear Flows Over Two-Dimensional Mountains

Thus, in order to fully understand the dynamics of nonlinear
phenomena, such as upstream blocking, wave breaking, severe
downslope winds and lee vortices, we need to take a nonlinear
approach.

Nonlinear response of a continuously stratified flow over a
mountain is very complicated since the nonlinearity may come from
the basic flow characteristics, the mountain height, or the transient
behavior of the internal flow, such as wave steepening.
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Nonlinear Flows Over Two-Dimensional Mountains

Another way to understand why linear theory fails in these cases:

In linear theory, the forcing at a particular wavelength is obtained
by the Fourier transform of the mountain.

As a result, little forcing is produced at the resonant wavelength if
the mountain is much wider than that wavelength.
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Nonlinear Flows Over Two-Dimensional Mountains

The non-linear wave amplitude when resonant wavelengths are
short compared to the mountain width is due to enhancement of
shorter wavelengths through nonlinear wave interactions rather
than through direct terrain forcing.

These interactions are not accounted for in linear theory.

24 / 56



Nonlinear Flows Over Two-Dimensional Mountains

Long (1955) derived the governing equation for the
finite-amplitude, steady state, two-dimensional, inviscid,
continuously and stably stratified flow.

He obtained an equation for vertical displacement of a streamline
from its far upstream δ. It looks essentially the same as the
equation for w

′
that we derived earlier for linear waves:

∇2δ + l2δ = 0 , (3)

where l = N/u is the Scorer parameter of the basic flow far
upstream.
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Nonlinear Flows Over Two-Dimensional Mountains

Figure: A certain critical streamline divides and encompasses a region of
uniform potential temperature. H0 is the original height of the dividing
streamline, θc is the potential temperature in the well-mixed region
between the split streamlines, δ is the displacement of an arbitrary
streamline, δ is the displacement of the dividing streamline, and H1 is the
nadir of the lower dividing streamline. [From Markowski and Richardson]
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Nonlinear Flows Over Two-Dimensional Mountains

The main difference from the linear problem is that non-linear
lower boundary condition has to be used to represent the
finite-amplitude mountain:

δ(x , z) = h(x) at z = h(x) . (4)

The nonlinear lower boundary condition is applied on the mountain
surface, instead of approximately applied at z = 0 as in the linear
lower boundary condition.
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Nonlinear Flows Over Two-Dimensional Mountains

In the next figure, streamlines of analytical solutions are shown for
flow over a semi-circle obstacle for the non-dimensional mountain
heights = 0.5, 1.0, 1.27, and 1.5.

The non-dimensional mountain height (the reciprocal of the
Froude number) is a measure of the non-linearity of the
continuously stratified flow.
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Nonlinear Flows Over Two-Dimensional Mountains

Figure: Streamlines of Longs model solutions for uniform flow over a
semi-circle obstacle with Nh/U = (a) 0.5, (b) 1.0, (c) 1.27, and (d) 1.5.
Note that the streamlines become vertical in (c) and overturn in (d).
(Adapted after Miles 1968)
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Nonlinear Flows Over Two-Dimensional Mountains

When Nhm/u is small (e.g., 0.5) the flow is more linear.

As Nhm/u increases to 1.27, the flow becomes more non-linear and
its streamlines become vertical at the first level of wave steepening.

For flow with Nhm/u > 1.27, the flow becomes statically and
dynamically (shear) unstable.
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Generation of Severe Downslope Winds

Severe downslope winds over the lee of a mountain ridge have
been observed in various places around the world, such as the
chinook over the Rocky Mountains, foehn over the Alps.

One well-known event is the 11 January 1972 windstorm that
occurred in Boulder, Colorado.

With this event, the peak wind gust reached as high as 60 ms−1

(!!!) and produced severe damage in the Boulder, Colorado area.
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Generation of Severe Downslope Winds

Figure: Analysis of potential temperatures (blue contours; K) from
aircraft flight data and rawinsondes on 11 January 1972 during a
downslope windstorm near Boulder, CO. [From Markowski and
Richardson]

32 / 56



Generation of Severe Downslope Winds

Figure: Analysis of the westerly wind component (blue contours; m/s) on
11 January 1972 during the downslope windstorm near Boulder, CO.
[From Markowski and Richardson]
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Generation of Severe Downslope Winds

The basic dynamics of the severe downslope wind can be
understood from the following two major theories:

(a) resonant amplification theory

(b) hydraulic jump theory

(along with later studies on the effects of instabilities, wave
ducting, nonlinearity, and upstream flow blocking)
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Resonant Amplification Theory

Idealized nonlinear numerical experiments indicate that a high-drag
(severe-wind) state occurs after an upward propagating mountain
wave breaks above a mountain.

The wave-breaking region is characterized by strong turbulent
mixing, with a local wind reversal on top of it.

The wind reversal level coincides with the critical level for a
stationary mountain wave and, thus, is also referred to as the
wave-induced critical level.
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Resonant Amplification Theory

Waves can not propagate through the critical level and are
reflected downwards.

The wave breaking region aloft acts as an internal boundary which
reflects the upward propagating waves back to the ground and
produces a high-drag state through partial resonance with the
upward propagating mountain waves.
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Resonant Amplification Theory

Figure: Illustration of wave reflection and transmission between the
ground surface and some upper level. [From Nappo, 2002]
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Resonant Amplification Theory

When the critical level is located at a non-dimensional height of
zi/λz = 3/4 + n above the surface, non-linear resonant
amplification occurs between the upward propagating waves
generated by the mountain and the downward propagating waves
reflected from the critical level. (n is an integer, zi is a prescribed
critical level height, λz = 2πu/N is the vertical hydrostatic length
scale)

On the other hand, if the basic-flow critical level is located at a
non-dimensional height zi/λz 6= 3/4 + n (e.g., 1.15), there is no
wave resonance and no severe downslope winds are generated.
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Resonant Amplification Theory

Figure: Wave ducting as revealed by the time evolution of horizontal
wind speeds and regions of local Ri < 0.25 (shaded) for a flow with
uniform wind and constant static stability over a mountain ridge at ut/a
(a) 12.6, and (d) 50.4. The Froude number of the uniform basic wind is
1.0. (Adapted after Wang and Lin 1999)
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Resonant Amplification Theory

Figure: Effects of nonlinearity on the development of severe downslope
winds: (a) Potential temperature field from nonlinear numerical
simulations for a basic flow with and ; (b) Same as (a) except from linear
numerical simulations. The contour interval is 1 K in both (a) and (b).
(Adapted after Wang and Lin 1999)
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Resonant Amplification Theory

Shortly after the occurrence of wave breaking, regions with local
Ri < 0.25 form

This turbulent mixing region expands downward and downstream
due to strong non-linear effects on the flow near the critical level
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Resonant Amplification Theory

This region expands downward by wave reflection and ducting from
the wave-induced critical level and accelerates downstream by the
non-linear advection.

Effects of wave reflection are evidenced by the fact that the wave
duct with severe downslope wind is located below the region of the
turbulent mixing.

42 / 56



Resonant Amplification Theory

In the absence of non-linearity, the wave-breaking region does not
expand downward to reduce the depth of the lower uniform wind
layer.

This, in turn, prohibits the formation of the severe downslope wind
and internal hydraulic jump.
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Hydraulic Jump Theory
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Hydraulic Jump Theory

The above image depicts a hydraulic jump in a kitchen sink, which
shows a very rapid change in the flow depth across the jump.
Around the place where the tap water hits the sink, you will see a
smooth looking flow pattern. A little further away, you will see a
sudden ‘jump’ in the water level. This is a hydraulic jump.
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Hydraulic Jump Theory

A hydraulic theory was proposed to explain the development of
severe downslope winds based on the similarity of flow
configurations of severe downslope windstorms and finite-depth,
homogeneous flow over a mountain ridge. (Smith 1985)
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Hydraulic Jump Theory

The hydraulic theory attributes the high-drag (severe-wind) state
to the interaction between a smoothly stratified flow and the deep,
well-mixed, turbulent dead region above the lee slope in the middle
troposphere.

Though not directly applicable to stratified atmosphere associated
with downslope wind storms, using shallow water theory will offer
some intuition about flow traversing a barrier.
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Hydraulic Jump Theory

Math Break

Pages 10 and 11 of the notes.

48 / 56



Hydraulic Jump Theory

Fr > 1

I On the windward side, ∂ht/∂x > 0 and ∂D/∂x > 0.

I Thus, fluid traveling uphill will thicken, reaching its maximum
thickness at the peak of the mountain.

I On the lee side, ∂ht/∂x < 0 and ∂D/∂x < 0

I Thus, fluid traveling downhill will thin.

I As the thickness of the fluid changes, the zonal velocity also
changes to maintain constant mass flux.

I Thus, when Fr > 1, there is a minimum in zonal velocity at
the top of the mountain where the fluid is thickest.
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Hydraulic Jump Theory

Fr > 1

If we consider a parcel embedded in a westerly wind, the parcel will
decelerate as it passes over the mountain and then return to its
original wind speed at the leeward base of the mountain (assuming
we neglect friction).

This regime represents a transfer of energy from kinetic to potential
and back to kinetic. We find such behavior to be quite intuitive.

Consider, for example, a ball rolling up a hill then descending once
it crests the peak. Flow where Fr > 1 is called supercritical flow.
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Hydraulic Jump Theory

Fr < 1

I On the windward side, ∂ht/∂x > 0 and ∂D/∂x < 0.

I Thus, fluid traveling uphill will thin, reaching its maximum
thinness at the peak of the mountain.

I On the lee side, ∂ht/∂x < 0 and ∂D/∂x > 0

I Thus, luid traveling downhill will thicken.
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Hydraulic Jump Theory

Fr < 1

The acceleration obtained by an isolated air parcel depends on the
difference between the pressure gradient force arising from changes
in the fluid depth versus the amount of work associated with
ascending the terrain.

Here, the pressure gradient force dominates and leads to a net
positive acceleration following the parcel as it ascends.

On the lee side, the fluid thickens and returns to its original depth
as the parcel decelerates to its original speed. Flow where Fr < 1 is
called subcritical flow.
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Hydraulic Jump Theory

Fr ≈ 1

Both of the previously considered cases both return the parcel to
its original wind speed when it reaches the lee side.

How do we get winds that accelerate along the entire path from
the windward to the leeward side?

For the windward side, this acceleration requires subcritical flow,
while on the leeward side the acceleration requires supercritical
flow.

In other words, the acceleration on the windward side must cause u
to cross the threshold from subcritical to supercritical flow, which is
likely to happen only if the flow has a Fr close to unity at the start.
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Hydraulic Jump Theory

Fr ≈ 1

The transition from subcritical to supercritical results in leeward
wind speeds that exceed their original value on the windward side.

In accordance with the increasing speeds, the fluid thickness
decreases over the entire path.

This causes the free surface to drop sharply on the leeward side
(analogous to the descending isentropes during downslope wind
events) and results in what is called a hydraulic jump.

Hydraulic jumps are very turbulent, and large amounts of energy
are dissipated within them.
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Hydraulic Jump Theory

Figure: Flow over an obstacle for the simple case of a single layer of fluid
having a free surface. (a) Supercritical flow (Fr > 1) everywhere, (b)
Subcritical flow (Fr < 1) everywhere, (c) Supercritical flow on the lee
slope with adjustment to subcritical flow at a hydraulic jump near the
base of the obstacle. [From Markowski and Richardson])
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The End
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