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Homework

Homework 1

I Distributed on February 3rd

I Due on February 17th

Homework 2

I Distributed on March 3rd

I Due on March 24th (extra week for Spring Break)

Homework 3

I Distributed on April 9th

I Due on April 23rd

I The dates for this homework may change slightly
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Exams

Exam 1

I In class on Tuesday, February 24th from 11:30 am - 12:45 pm

I This will cover the first three chapters of material (intro,
mountain waves, boundary layer)

Exam 2

I Time to be announced later

I This will cover the fourth chapter of material (convection,
single/multi-cell storms, squall lines, supercells, tornadoes,
etc.)

Final Exam

I Thursday May 7 in NWC 5600 from 10:30 am - 12:30 pm
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Term Project

I Project will be a review of a mesoscale topic of your choice

I Distributed on Tuesday, March 10 - more info then

I Due on the last day of class (April 30th)
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Synoptic Scale

I Midlatitude synoptic-scale motions are primarily driven by
baroclinic instability.

I Baroclinic instability most likely with disturbances ∼ 3× LR

LR = NH/f ∼ 1000 km− Rossby radius of deformation

N → Brunt-Väisälä frequency

H → scale height of the atmosphere

f → Coriolis parameter
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Synoptic Scale

I LR can be thought of as the length scale at which the velocity
vector of a gravity wave is rotated such that it is
perpendicular to the pressure gradient

I In other words, LR is the scale at which rotational effects
become important

I For scales ∼ LR , velocity and pressure fields both adjust to
maintain balance between momentum and mass fields

I For scales � LR , velocity field adjusts to the pressure field
during geostrophic adjustment

I For scales � LR , pressure field adjusts to the velocity field
during geostrophic adjustment
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Synoptic Scale

I Synoptic scale (& LR) is characterized by near geostrophic
balance for straight flow

I Flow accelerations and ageostrophic motions are small

I Curved flow imbalances result in centripetal acceleration such
that flow is approximately parallel to curved isobars, i.e. the
gradient wind balance.
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Mesoscale

I For scales < LR , pressure gradients can be much larger than
on the synoptic scale, while Coriolis acceleration remains of
similar magnitude to that on the synoptic scale

I This leads to both large flow accelerations and ageostrophic
motions

I Thus, gradient wind balance does not hold
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Mesoscale

I Thus, the mesoscale is dynamically the scale for which both
ageostrophic advection and Coriolis acceleration are important

I Unlike the synoptic scale, the mesoscale can be forced by a
variety of drivers

I topography
I thermal instability
I symmetric instability
I barotropic instability
I Kelvin-Helmholtz instability, and more
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Mesoscale

Compared with synoptic scale disturbances (e.g., extratropical
cyclones), mesoscale phenomena are more short-lived. The
mesoscale Lagrangian timescales are bound by:

The buoyancy oscillation

I 2π/N ∼ 10 min

I simple gravity waves

A pendulum day

I 2π/f ∼ 17h

I inertial oscillations, such as low-level ageostrophic wind
component (leads to nocturnal low-level wind max)
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A Rough Definition

I Let us use a more qualitative definition and try to relate the
mesoscale to something more concrete.

I Roughly consider that the word mesoscale defines
meteorological events having spatial dimensions of
the order of one state.

I Thus, individual thunderstorms or cumulus clouds are
excluded since their scale is on the order of a few kilometers.

I Similarly, synoptic-scale cyclones are excluded since their scale
is on the order of several thousands of kilometers.
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Classification of Scales

13 / 70



Classification of Scales

I For purposes of this class, we will use Orlanski’s definitions

I Our primary focus will be meso-β (or classical mesoscale) and
meso-γ (or small or convective scale)

I We will also cover meso-α (e.g., hurricanes) and micro-α
scale (e.g., tornadoes).
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Time Scales

Some temporal scales in the atmosphere are obvious.

I diurnal cycle

I annual cycle

I inertial oscillation period - due to Earth’s rotation, the Coriolis
parameter f

I advective time scale - time taken to advect over certain
distance
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Space Scales

Some space scales in the atmosphere are obvious.

I global - related to earth’s radius

I scale height of the atmosphere - related to the total mass of
the atmosphere and gravity

I scale of fixed geographical features - mountain height, width,
width of continents, oceans, lakes
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Scale Analysis

Scale analysis is a very useful method for establishing the
importance of various processes in the atmosphere and terms in
the governing equations.

Based on the relative importance of these processes/terms, we can
deduce much of the behavior of motion at such scales.
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Scale Analysis

Consider this simple example:

du

dt
=
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ fv

What is this equation? Can you identify the terms in it?
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Scale Analysis

It’s of course the horizontal momentum equation

u, v → zonal, meridional wind components

p → pressure

ρ→ density

f → Coriolis parameter

du

dt
,
∂u

∂t
→ Lagrangian, Eulerian time derivatives

u
∂u

∂x
,w

∂u

∂z
→ advection

−1

ρ

∂p

∂x
→ horizontal pressure gradient force

fv → Coriolis acceleration
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Scale Analysis

du

dt
=
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ fv

With scale analysis, we

I assign a characteristic value for each of the variables,

I estimate the magnitude of each term, and

I determine their relative importance
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Scale Analysis

For example

du

dt
∼ ∆u

∆t
∼ V

T
,

where ,

I V is the velocity scale (typical magnitude or amplitude if
described as a wave component), and

I T the time scale (typical length of time for velocity to change
by ∆u, or the period for oscillations
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Scale Analysis

du

dt
∼ ∆u

∆t
∼ V

T
,

A point of emphasis

I The typical magnitude of change defines the scale, which is
not always the same as the magnitude of the quantity itself.

I The absolute temperature is a good example, as is surface
pressure.
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Scale Analysis

du

dt
=
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
= −1

ρ

∂p

∂x
+ fv

The utility of scale analysis

I For different scales, the terms in the equation of motion have
different importance.

I This leads to different behavior of the motion, meaning there
is a dynamic significance to the scale!
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Scale Analysis: Synoptic Scale

Let’s do the scale analysis for synoptic scale motion using the
horizontal momentum equation

I V ∼ 10 ms−1

I W ∼ 0.1 ms−1

I L ∼ 1000 km = 106 m

I H ∼ 10 km = 104 m

I T ∼ L/V ∼ 105 s

I f ∼ 10−4 s−1

I ρ ∼ 1 kgm−3

I ∆p in horizontal ∼ 10 mb = 1000 Pa
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Scale Analysis: Synoptic Scale

∆p in horizontal ∼ 10 mb = 1000 Pa

I Note, again, that it is the typical variation that determines
that typical scale, not the value itself

I Using the scale of 1000 mb will give you the wrong result
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Scale Analysis: Synoptic Scale

∂u

∂t
+u

∂u

∂x
+w

∂u

∂z
= −1

ρ

∂p

∂x
+fv
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Scale Analysis: Synoptic Scale

∂u

∂t
+u

∂u

∂x
+w

∂u

∂z
= −1

ρ

∂p

∂x
+fv

V

T

VV

L

WV

H
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ρL
fV
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Scale Analysis: Synoptic Scale

∂u
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Scale Analysis: Synoptic Scale

∂u

∂t
+u
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Scale Analysis: Synoptic Scale

∂u

∂t
+u

∂u

∂x
+w

∂u

∂z
= −1

ρ

∂p

∂x
+fv

10−4 10−4 10−4 10−3 10−3

It turns out that the time tendency and advection terms are one
order of magnitude smaller for synoptic scale flows.

The pressure gradient force and Coriolis force are in rough balance.
What kind of flow do you get in this case? quasi-geostrophic flow.

Scale analysis confirms our previous dynamical reasoning.
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Scale Analysis: Synoptic Scale

Let’s do the scale analysis for synoptic scale motion using the
vertical momentum equation

I ∆p over vertical length scale H ∼ 1000 mb = 105 Pa
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Scale Analysis: Synoptic Scale

∂w

∂t
+u

∂w

∂x
+w

∂w

∂z
= −1

ρ

∂p

∂z
−g
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Scale Analysis: Synoptic Scale

∂w
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Scale Analysis: Synoptic Scale

∂w
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Scale Analysis: Synoptic Scale

∂w

∂t
+u

∂w
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Scale Analysis: Synoptic Scale

∂w

∂t
+u

∂w

∂x
+w

∂w

∂z
= −1

ρ

∂p

∂z
−g

10−6 10−6 10−6 10 10

Vertical acceleration � vertical pressure gradient and gravitational
terms, which are of the same order of magnitude.

The balance between these two terms gives the hydrostatic balance
- a very good approximation for synoptic scale flows.

Also, the vertical motion is much smaller than the horizontal
motion.
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Scale Analysis: Synoptic Scale

We saw a good example of horizontal scale determining the
dynamics of motion!

In summary, synoptic (and up) scale flows are

I quasi-two-dimensional (because w << u )

I hydrostatic (we can see it by performing scale analysis for
vertical equation of motion)

I Coriolis force is a dominant term in the equation of motion
and it is in rough balance with the PGF

I the flow is quasi-geostrophic
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Scale Analysis: Mesoscale

What’s all this synoptic scale stuff? What about the mesoscale?

Okay. Let’s do the scale analysis for mesoscale motion using the
horizontal momentum equation

I V ∼ 10 ms−1

I W ∼ 1 ms−1 (↑)

I L ∼ 100 km = 105 m (↓)

I H ∼ 10 km = 104 m

I T ∼ L/V = 104 s (↓)

I f ∼ 10−4 s−1

I ρ ∼ 1 kgm−3

I ∆p in horizontal ∼ 1 mb = 100 Pa (↓)
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Scale Analysis: Mesoscale

∂u

∂t
+u

∂u

∂x
+w
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ρ
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∂x
+fv
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Scale Analysis: Mesoscale
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Scale Analysis: Mesoscale
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Scale Analysis: Mesoscale
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Scale Analysis: Mesoscale

∂u

∂t
+u

∂u

∂x
+w

∂u

∂z
= −1

ρ

∂p

∂x
+fv

10−3 10−3 10−3 10−3 10−3

All terms in the equation are of the same magnitude

None of them can be neglected

We no longer have geostrophy!
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Scale Analysis: Mesoscale

Let’s do the scale analysis for mesoscale motion using the vertical
momentum equation

I The hydrostatic approximation is still reasonable for the
mesoscale
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Scale Analysis: Mesoscale

∂w

∂t
+u

∂w

∂x
+w

∂w
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= −1

ρ

∂p

∂z
−g
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Scale Analysis: Mesoscale
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Scale Analysis: Mesoscale
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Scale Analysis: Mesoscale
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Scale Analysis: Mesoscale

∂w

∂t
+u
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+w
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∂z
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Vertical acceleration � vertical pressure gradient and gravitational
terms, which are of the same order of magnitude.

The balance between these two terms gives the hydrostatic balance
- still a good approximation for mesoscale flows.

The vertical motion is much smaller than the horizontal motion.
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Scale Analysis: Mesoscale

Scale analysis confirms our previous dynamical reasoning.

In summary, for mesoscale flows:

I non-geostrophic (i.e., ageostrophic component is significant)

I quasi-two-dimensional (because w � u)

I nearly hydrostatic

I Coriolis force is non-negligible

This can be a dynamic definition of the mesoscale, or in Orlanski’s
definition, the meso-β scale.
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Scale Analysis: Convection/Storm Scale

We can go one step further down the scale, looking at cumulus
convection or even supercell storms.

Let’s do the scale analysis using the horizontal momentum equation

I V ∼ 10 ms−1

I W ∼ 10 ms−1 (↑)

I L ∼ 10 km = 104 m (↓)

I H ∼ 10 km = 104 m

I T ∼ L/V = 103 s (↓)

I f ∼ 10−4 s−1

I ρ ∼ 1 kgm−3

I ∆p in horizontal ∼ 1 mb = 100 Pa
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Scale Analysis: Convection/Storm Scale
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∂t
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Scale Analysis: Convection/Storm Scale
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Scale Analysis: Convection/Storm Scale
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Scale Analysis: Convection/Storm Scale
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Scale Analysis: Convection/Storm Scale

∂u

∂t
+u

∂u

∂x
+w

∂u

∂z
= −1

ρ

∂p

∂x
+fv

10−2 10−2 10−2 10−2 10−3

Coriolis force is an order of magnitude smaller than the other terms

Coriolis can be neglected when studying cumulus convection that
lasts for an hour or so.

Again, the acceleration term is as important as the PGF.
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Scale Analysis: Convection/Storm Scale

Let’s do the scale analysis using the vertical momentum equation -
which are now based on the Bousinessq equations of motion.

I ∇ · ~u ≈ 0

I ρ = constant everywhere, except when paired with gravity

I viscosity, thermal diffusivity, and specific heat are assumed
constant

The Boussinesq approximation is used because it is the residual
between the PGF and buoyancy force terms. Therefore we want to
estimate the terms in terms of the deviations/perturbations from
the hydrostatically balanced base state.
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Scale Analysis: Convection/Storm Scale
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Scale Analysis: Convection/Storm Scale
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Scale Analysis: Convection/Storm Scale
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Scale Analysis: Convection/Storm Scale

∂w

∂t
+u

∂w

∂x
+w

∂w

∂z
= −1

ρ

∂p′

∂z
+
θ′

θ
g

W

T

VW

L

WW

H

∆p

ρH

∆θ

θ0
g

10

103
10× 10

104
10× 10

104
102

0.5× 104
1× 10

300

10−2 10−2 10−2 2× 10−2 3× 10−2

61 / 70



Scale Analysis: Convection/Storm Scale

∂w
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Here we are using the vertical mean density as the density scale in
PGF term.

Clearly, the vertical acceleration term is now important.

Thus, the hydrostatic approximation is no longer applicable.
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Scale Analysis: Convection/Storm Scale

In summary, for convective/storm scale:

I three-dimensional

I nonhydrostatic

I ageostrophic

I Coriolis force is negligible

In Orlanski’s definition, this is the meso-γ scale.

63 / 70



Scale Analysis: Small Scales

As one goes further down to the micro-scales, the basic dynamics
becomes similar to the meso-γ flows - the flow is

I three-dimensional

I nonhydrostatic

I ageostrophic

I Coriolis force is negligible
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Know whether hydrostatic is reasonable a prioiri

The analysis I showed made assumptions about whether the
hydrostatic approximation was appropriate. Here’s how to do that.

We want to assess the scales of vertical acceleration and PGF. You
can show that

O
(
dw
dt

)
O
(
−1
ρ
∂p′

∂z

) ∼ (
H

L

)2

where
H

L
→ aspect ratio
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Know whether hydrostatic is reasonable a prioiri

H/L� 1→ hydrostatic (at least a reasonable approximation)

H/L & 1→ nonhydrostatic

From our cases:
Synoptic: H/L = 104/106 = 10−2 → hydrostatic
Meso-β: H/L = 104/105 = 10−1 → hydrostatic
Meso-γ: H/L = 104/104 = 1→ nonhydrostatic

Read for yourself Markowski and Richardson (page 9) for complete
details.
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Know whether hydrostatic is reasonable a prioiri
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Summary

There are more than one way to define the scales of weather
systems.

I Time/space scales of the system.

I Physically meaningful non-dimensional parameters (e.g.,
Rossby number).
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Summary

The most important thing to know is the key characteristics
associated with weather systems/disturbances at each of these
scales!

Don’t get caught up in arbitrary names scientists give to the
scales. Focus on physical features.
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The End

Have a Great Weekend
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