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3.3.2 Reynolds Fluxes and Their Physical Interpretation

Turbulent flux of momentum and turbulent stress

The variances and covariances (u′u′ , u′v′ , u′w′ , v′u′ , v′v′ , v′w′ , w′u′ , w′v′ , w′w′) that appear in the
Reynolds-averaged Navier-Stokes equations are the components of the turbulent kinematic momentum flux.
This name becomes apparent if we consider products of these quantities and density, e.g.,
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The above term, for instance, has a meaning of x component of momentum transported in average by fluctu-
ating velocity component w′ per unit time per unit area of the surface normal to z axis. On the other hand,
this termmay also be interpreted as z component of momentum transported in average by fluctuating velocity
component u′ per unit time per unit area of the surface normal to x axis. Thus, these fluxes can be thought
of as the transport of mass per unit area per unit time. In other words, they represent the force per unit area.

Physical quantities having opposite signs to the momentum flux components are components of the turbulent
stress:

• τxx = −ρu′u′

• τxy = −ρu′v′

• τxz = −ρu′w′

• τyx = −ρv′u′

• τyy = −ρv′v′

• τyz = −ρv′w′

• τzx = −ρw′u′

• τzy = −ρw′v′

• τzz = −ρw′w′ ,

where τxy = τyx, τxz = τzx, τyz = τzy. Here, τxx, τyy, τyy are the normal components of the turbulent
stress, while τxy = τyx, τxz = τzx, τyz = τzy are the shear components of the stress. Why is this called a
stress? Why do we describe the components as normal and shear?
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Consider an idealized cubic volume.

Figure 1: Idealized cubic volume indicating turbulent stresses. Note here, e.g., σx = τxx.

Let’s consider our previous example of τxz . Here, the flux of the momentum parallel to a volume face (e.g.,
the flux of u′ through lower boundary of a cubed volume by w′) causes the parallel momentum (u′ in this
case) to change at that face. Accordingly, the momentum flux is the stress applied at this face. We therefore
call the momentum fluxes in the momentum equations the Reynolds stresses.

Note, that in meteorological literature, the turbulent momentum flux and turbulent shear stress are usually
normalized by density (i.e., -w′u′ = τzx/ρ). These normalized quantities are often called turbulent momen-
tum flux and turbulent shear stress with the word kinematic being omitted.

We now apply the notion of turbulent stresses and momentum flux in the Reynolds-averaged momentum
balance equations
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In models of atmospheric flows (including boundary-layer flows), which are essentially turbulent (with the
exception of some special flow cases), viscous terms on the right-hand sides of our original equations are
usually neglected. This is a reasonably safe assumption in turbulent boundary layer flows since the effects of
molecular diffusion are much smaller than the effects of turbulent eddies.
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Turbulent fluxes of heat

The covariances (u′θ′ , v′θ′ , and w′θ′) that appear in the Reynolds-averaged heat balance equation are the
components of vector ~Qh, the so-called turbulent kinematic heat flux (also called the turbulent temperature
flux). This name becomes apparent if we consider products of these quantities, density, and cp, e.g.,
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The above term, for instance, has a meaning of heat energy transported, in average, by turbulent fluctuations
u

′ (i.e., in the x direction) per unit time per unit area of the surface normal to the x axis. These terms are
also known as the sensible heat flux, whose components are given by

• Qhx = ρcpu
′θ′

• Qhy = ρcpv
′θ′

• Qhz = ρcpw
′θ′

Note, that in meteorological literature, the turbulent heat flux is usually normalized by density and cp (i.e.,
u′θ′ = Qhx/(ρcp). These normalized quantities are often called turbulent heat flux with the word kinematic
being omitted. We now apply the notion of turbulent heat flux in the Reynolds-averaged momentum balance
equations
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)
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We have neglected diffusion terms because divergences of molecular heat fluxes under typical atmospheric
boundary layer flow conditions are considerably smaller than their turbulent counterparts.

Figure 2: Idealized depiction of two air parcel being transported by turbulent eddies.
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Let’s look at the physical meaning of these fluxes in more detail.

Suppose we have an idealized turbulent eddy near the ground on a hot summer day. If we start with a
particular profile of θ, how will it change with time?

Due to surface heating, θ is typically super-adiabatic near the ground (∂θ/∂z < 0), as shown here in Fig. 2.

Assume that we have two parcels, A and B. Parcel A moves downward and parcel B upward. When A moves
downward, it becomes colder than its environment. Accordingly, it carries a negative θ′ . Parcel B, on the
other hand, becomes warmer than its environment and thus carries a positive θ′ .

Therefore:

• Parcel A

– w
′
< 0 and θ′ < 0→ w′θ′ > 0 (positive heat flux)

• Parcel B

– w
′
> 0 and θ′ > 0→ w′θ′ > 0 (positive heat flux)

Even though both fluxes are positive, the physical process is different. Positive heat flux can be caused by
either transporting (by turbulent eddies) colder air downward or transporting warmer air upward.

If we only consider the vertical turbulent heat flux (which tend to dominate in convective boundary layer),
assume that the mean velocity is zero (i.e., there is no mean wind advection), and neglect molecular diffusion
effects, then the Reynolds-averaged thermodynamic energy equation becomes

∂θ

∂t
= −

∂w′θ′

∂z
. (5)

We see that temperature changes as a result of the heat flux divergence, not the heat flux itself. Thus, temper-
ature changes only when the net heat flux into an air parcel (or volume) is non-zero. In the above example,
the flux at levels z1 and z2 are both positive. However, because the vertical gradient of θ is larger at z1, the
flux there has a larger magnitude. Meaning,

∂θ

∂t
= −

∂w′θ′

∂z
= −

w′θ′z2 − w
′θ′z1

z2 − z1
> 0 . (6)

Therefore, the mean potential temperature θ in the layer between z1 and z2 will increase with time! If the
heat flux is positive at both levels and increases with height, then the temperature will decrease in time (even
though the heat flux is positive). This happens because more heat is leaving the layer at the top boundary
that is entering from the bottom.

Similar reasoning can be applied to turbulent fluxes of other material quantities such as water vapor mixing
ratio, and to momentum.
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Turbulent fluxes of moisture

The covariances (u′q′ , v′q′ , and w′q′) that appear in the Reynolds-averaged moisture balance equation are
the components of vector ~Qe, the so-called kinematic flux of water vapor (also called the kinematic flux of
moisture). This name becomes apparent if we consider products of these quantities, density, and Lv, e.g.,
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The above term, for instance, has a meaning of moisture energy transported, in average, by turbulent fluctu-
ations u′ (i.e., in the x direction) per unit time per unit area of the surface normal to the x axis. These terms
are also known as the latent heat flux, whose components are given by

• Qex = ρLvu
′q′

• Qey = ρLvv
′q′

• Qez = ρLvw
′q′ .

Note, that in meteorological literature, the turbulent moisture flux is usually normalized by density and Lv
(i.e., u′q′ = Qex/(ρLv). These normalized quantities are often called turbulent moisture flux with the word
kinematic being omitted.

We now apply the notion of turbulent moisture flux in the Reynolds-averaged momentum balance equations
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We have again neglected diffusion terms because divergences of molecular moisture fluxes under typical
atmospheric boundary layer flow conditions are considerably smaller than their turbulent counterparts.

Note, however, that molecular diffusion terms may become important for the flows in the very close vicinity
of the underlying surface or during microscale physical processes (e.g., in clouds).

3.3.3 Turbulence Closure Problem

As we have seen, the process of Reynolds averaging results in 12 additional terms - the turbulent Reynolds
fluxes [note here that there are 12 and not 15 since τxy = τyx, τxz = τzx, and τyz = τzy]. This means
we need 12 new prognostic equations to solve for these second-order fluxes. As it turns out, the prognostic
equations for these second-order fluxes contain third-order moments. Likewise, the prognostic equations for
the third-order moments contain fourth-order moments - and so on. This is known as the turbulence closure
problem. It means that we need a way to close our system of equations.
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Parameterization of turbulent fluxes

A popular way to “solve” the turbulence closure problem is to make use of parameterizations - that is, relating
unknown quantities to known terms. Fully considering the different parameterization schemes is beyond the
scope of this course. However, we will briefly discuss one simple approach.

It is often assumed that turbulent eddies act in a way analogous to molecular diffusion. That is, the turbulent
flux is assumed to be proportional to the local gradient of the corresponding mean value. Specifically, this
is given by, e.g.,

u′w′ = −Km

∂u

∂z
(8)

v′w′ = −Km

∂v

∂z
(9)

w′θ′ = −Kh

∂θ

∂z
(10)

w′q′ = −Ke

∂q

∂z
. (11)

whereKm,Kh, andKe are called the eddy viscosity, eddy diffusivity for heat, and eddy diffusivity for mois-
ture, respectively. This approach is often referred to asK-theory,K-closure, or flux-gradient theory. In this
approach, the Reynolds-averaged equations give expressions for the mean variables, but we must prescribe
theK terms. In the simplest case, these terms (sometimes called transfer coefficients) are taken as constant.
In more complex schemes,Km is parameterized in terms of the mean flow, static stability, and/or turbulence
kinetic energy, while Kh and Ke are subsequently prescribed as a function of Km. We will not cover such
approaches.

Turbulent kinetic energy (TKE), e, is a measure of the intensity of turbulence and is defined as

e =
1

2

(
u′u′ + v′v′ + w′w′

)
. (12)

TKE is a maximum during the early afternoon in the middle of the boundary layer, and a minimum during
the nighttime hours (see Fig. 3).

Figure 3: Simulation of the time and space variation of TKE (m2/s2) from theWangara, Australia, boundary
layer field experiment. [From Markowski and Richardson]
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The procedure to obtain a prognostic equation for TKE is described in detail in Markowski and Richardson.
We will not worry here about the details. The equation is given by
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.

The meaning of each term is given here: (I) time rate of change of TKE, (II) advection of TKE by the
mean wind, (III) buoyancy generation / destruction, (IV) shear production of TKE, (V) transport of TKE by
turbulent motions, (VI) transport of TKE by pressure, (VII) dissipation of TKE

Note here that terms (II), (V), and (VI) neither create or destroy TKE, they simply move it within the bound-
ary layer. There is no Coriolis term, its effects cannot generate TKE. Term (III) describes TKE genera-
tion/destruction by buoyancy, while term (IV) describes TKE production by velocity gradients. Dissipation
must generally be parameterized, and represents the transfer of energy to the molecular scale. Thus, it is acts
as a TKE destruction term.

Figure 4: Typical ranges of terms in the TKE budget equation during daytime, composited from observations
and numerical simulations from a number of investigators. [From Markowski and Richardson]
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3.3.4 Surface Energy Budget

The exchange of heat and moisture between the surface and overlying atmosphere is responsible for the
diurnal variations in boundary layer temperature, humidity, and depth. Aswe covered earlier, heat fluxes from
the surface play a major role in generating boundary layer turbulence. Thus, it is worthwhile to examine the
energy balance at the surface. It is through this so-called surface energy budget that surface heat andmoisture
fluxes are inescapably tied to the net radiation received at the surface.

The surface mainly receives predominantly short-wave radiation from the sun, with the amount absorbed
by the ground dependent on the cloud fraction, solar angle, and surface albedo. The ground also receives
predominantly long-wave (infrared) radiation emitted by clouds and the atmosphere. However, the earth’s
surface also emits radiation at long wavelengths. The net radiation, Rn, is the difference between the incom-
ing short-wave and long-wave radiation and the outgoing long-wave radiation.

The sensible heat flux, Qh, is related to the heating of the atmosphere from below. Air is largely transparent
to incoming solar (short-wave) radiation and therefore is not heated directly by solar radiation; rather, diurnal
boundary layer warming occurs via the heat flux convergence term (−∂w′θ′/∂z).

The latent heat flux, Qe, on the other hand, represents the portion of the net radiation used in evaporation,
transpiration, or the melting of ice at the surface. There also is a small, non-negligible downward flux of heat
into the ground. This ground heat flux (Qg) is usually relatively small compared with the sensible heat flux.

The surface energy budget, that is, the relationship between the net radiation and the sensible, latent, and
ground heat fluxes, can be expressed as

Rn = Qh +Qe +Qg , (14)

where Rn is defined to be positive when incoming radiation exceeds outgoing radiation, and the heat fluxes
are defined to be positive when directed away from the surface (i.e., Qh and Qe are positive when directed
upward, and Qg is positive when directed downward).

Figure 5: Schematic representation of the surface energy budget during daytime and nighttime. Actual
magnitudes of the terms depend on the type of surface and its characteristics (e.g., soil type, soil moisture,
vegetation), time of year, time of day, and weather. [From Markowski and Richardson]
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Qg is generally the smallest of the three surface fluxes. Its exact value depends on the soil type and moisture
content ( 10% of the Rn).

Qe depends on the amount of available surface moisture, which is a function of vegetation, soil wetness, land
use, and near-surface wind speed. It can range from ∼ 0 in a desert to more than 400 W/m2 in a jungle.

Qh depends on the temperature difference between the surface and the air, as well as the wind speed. Daytime
values can range from 10 to more than 500 W/m2.

The ratio of sensible and latent heat fluxes is known as the Bowen ratio

B =
Qh

Qe
. (15)

The larger the Bowen ratio, the larger the amount of sensible heating of the lower atmosphere for a given net
radiation and ground heat flux.

Bowen ratios are typically smallest over oceans, where B ∼ 0.1.

On the other hand, B ∼ 0.5 over forests and B ∼ 3-5 in arid regions.

In deserts or regions of severe drought, B > 10 has been observed!

The Bowen ratio can have large local diurnal variations, depending on precipitation. For example B drops
after heavy rains.
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