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An a posteriori study of LES SFS models

a posteriori studies of LES SFS models

The ultimate test of an LES SFS model is to examine its performance in actual turbulent flow simulations.

Many di�erent types of flows have been used for this purpose. Homogeneous turbulent flows (e.g., Lu et

al., 2008) are popular candidates, including homogeneous shear flow, rotating turbulence, forced isotropic

turbulence (e.g., Overholt and Pope, 1998), and decaying isotropic turbulence. These flows are chosen for

many reasons including lack of di�culties associated with filtering and modeling at boundary conditions and

the relative ease (compared to more complex flows) in analyzing the resulting turbulent flow fields.

In addition to these traditional flows used to study the performance of LES SFS models, researchers have

also used simplified mathematical models of the Navier-Stokes equations to test models (and in general study

the physics of turbulence). One method of particular interest is the use of the stochastic Burgers equation (or

Burgulence) to test models (e.g., Basu, 2009). This o�ers the advantage of simple model implementation

and overall low computational costs (even for DNS).

project description

The class project will be to conduct your own a posteriori study of SFS models. You will do this using the

provided Burgers turbulence code (Matlab). The minimum requirement will be to examine three SFS models

(see Lecture 12 for a rough summary of di�erent types of SFS models). You will submit the assignment in

the form of a short report (maximum of 4-5 pages, including references and figures). In this project, you will

need to implement the models in the provided stochastic 1D Burgers equation code.

I expect that you will not simply implement the two easiest models that you can find (the code already includes

constant coe�cient Smagorinsky model), but will instead choose models based on their properties that make

them ideal for your problem of interest. Don’t feel confined to the limited description given here and contact

me if you want to do something closer to your research topic but are unsure of how to proceed. The project

report is due by Tuesday November 22

nd

.

The report should contain the following components (or equivalent). You don’t need to think of this list as

defining the sections of your paper, rather it o�ers key elements that I will be looking for:

• A brief introduction explaining the general idea of LES and the goal of your study. You don’t have

to show all the LES equations, but you must include at least a description of the LES methodology.

This includes a description of scale separation using a low-pass filter and the closure problem (i.e.,

what SFS stress term must be modeled). You should also briefly describe the rationale of using the 1D

filtered Burgers equation as a model for the full LES equations.
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• A description of the three models you have chosen to evaluate, including at least their general basis,

any key assumptions they make, and any interesting model coe�cients etc. that they use.

• A short description of the numerical implementation (e.g., pseudospectral methods, etc.). The Matlab

code that you will be using is based on Basu (2009) and will be discussed during the next lecture. You

should make sure to mention:

– numerical methods used to solve the equation

– initial conditions

– simulation parameters that govern the evolution and initial velocity field

– grid resolution and time step that you used for each case and the total execution time – also specify

the type of computer used and version of Matlab

You should cite references when possible, although citing a reference does not completely get you

o� the hook from describing the code you are using. The requirement is that an informed reader (in

numerical methods and turbulence) doesn’t have to check the references just to get a basic idea of your

numerical treatment. I expect your description to be as brief as possible.

• Key results (statistical) from your study. See below for a description of the minimum stats to calculate.

• A summary of the major findings from your study. It is fine if these are similar results to what has been

found previously or are not completely conclusive. Still, your summary should demonstrate knowledge

of the models you tested and their strengths, limitations, and any di�erences.

• Any references you used in your report

Your report should give as a minimum the following statistics. Note, you are encouraged to calculate other

relevant turbulence and SFS statistics depending on your application/interests and the models that you choose

to study. Listed here are minimum requirements. All statistics should be compared to statistics calculated

from the provided DNS data or your own DNS run.

• Evolution of the kinetic energy (KE) for the entire flow field and how it adjusts with time for each

model and for at least two filter widths � (see Basu figure 6).

• The second-order structure function and energy spectrum of the velocity both averaged over 100 time

increments for each model and for at least two filter widths � (see Basu figure 7). Note you can

calculate the spectrum using Fourier transforms (instead of Haar wavelets used by Basu, 2009).

• A plot of the temporal evolution of the mean SFS, molecular, and total energy dissipation for each of

your chosen models for at least two filter widths � (see Basu figure 8).

• The centralized skewness and kurtosis factors of the velocity increments as functions of the separation

distance for each tested SFS model for at least two filter widths (see Basu figures 3 and 10).
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Procedurally, you will calculate your DNS statistics by first separating the velocity field into resolved and

SFS components by calculating ũ and

fu2 where the tilde (̃ ) is a filter at scale �. Note, calculating

fu2 means

filtering the product u2. Use one of the common filters discussed in class (and that you used in homework

#2) that is appropriate for the model you are comparing to. Once you have the filtered fields you can calculate

the exact SFS stress tensor ⌧� = fu2� ũũ and the exact filtered strain rate tensor (simply the filtered velocity

derivative in this context). You will also need to calculate the other statistics listed above to compare with.

This is an important step when comparing LES to DNS data to make sure that the e�ect of filter shape is

included in the analysis (e.g., for spectra) and that you are comparing the same statistics.

The project report is due by Tuesday November 22

nd

. Please don’t hesitate to contact me with any questions

or problems.
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