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The one-dimensional stochastic Burgers equation has the remarkable ability to mimic
some of the fundamental statistical and dynamical properties of three-dimensional
fully developed turbulence. In this study, we numerically investigate the competence of
commonly used dynamic eddy-viscosity-type subgrid-scales (SGSs) models in large-
eddy simulation of this equation. We found that the inertial-range characteristics of
Burgers turbulence (also known as Burgulence) are well preserved by this class of SGS
models.

Keywords: Burgers equation; large-eddy simulation; multifractal; subgrid scale

1. Introduction

Large-eddy simulation (LES) is at present the most efficient technique available for high-
Reynolds-number turbulent flow simulations, in which the larger scales of motion are
explicitly resolved and in which the smaller ones subgridscales, SGSs are parameterized.
Due to strong influence of the SGS parameterization on the dynamics of the resolved tur-
bulence, considerable research efforts have been made during the past decades, and several
SGS models have been proposed (see [1–4] for recent reviews). Without any doubt, the
dynamic eddy-viscosity SGS models [5,6] and their modified versions are the most widely
used SGS models. These models proved to be very successful in various LES applica-
tions [7]. However, it is not known whether this class of SGS models can capture essential
inertial-range characteristics (e.g., multifractality) of high-Reynolds-number turbulence. In
order to answer this question conclusively, one would need to perform three-dimensional
direct numerical simulation (DNS) of high-Reynolds-number turbulent flows and subse-
quently compare the higher-order statistics derived from the filtered DNS fields with the
LES-generated statistics. Unfortunately, such a task is computationally prohibitive at the
present time. For this reason, in the present paper, we address this intriguing question using
the one-dimensional stochastic (multifractal) Burgers equation as a testbed.

Burgers equation [8] and its stochastic variants have been often used in the literature ei-
ther to gain insight into complex structure of fully developed three-dimensional turbulence
or to validate a new methodology before generalizing it to the three-dimensional case (see
[9–13] for SGS modeling; [14] for Karhunen–Loéve expansion of turbulent flows; [15] for
feedback control, among others). Apart from simplicity, the popularity of Burgers equation
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2 S. Basu

could be attributed to its apparent similarity to three-dimensional turbulence (e.g., nonlin-
earity structure, energy spectrum, intermittency of energy dissipation) and ease of numerical
computation. At the same time, this equation has also been a favorite toy model for turbu-
lence in the theoretical physics community because of its analytical tractability [16–30].

The organization of this paper is as follows: In the following section, we describe the
DNS of the stochastic Burgers equation (SBE) and compare it with published theoretical and
numerical results. Then, in Section 3, we proceed with the description of the LES results,
using two commonly used dynamic eddy-viscosity SGS models.1 The simulated results are
compared in detail with the filtered DNS results. A comprehensive set of statistics (e.g.,
kinetic energy, SGS energy dissipation, enstrophy balance, higher-order moments, temporal
decorrelation) are considered in order to draw inferences on the accuracy of dynamic SGS
modeling approach in the present context. Conclusions are presented in Section 4.

2. DNS of the SBE

The one-dimensional SBE reads as [21]

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ η(x, t), (1)

where u(x, t) is the velocity field; ν is viscosity; and η(x, t) is a noise term (white in
time but spatially correlated) of the form

〈η̂(k, t)η̂(k′, t ′)〉 = 2D0|k|βδ(k + k′)δ(t − t ′),

where η̂(k, t) denotes the spatial Fourier transform of the noise η(x, t) and D0 and β

are the amplitude and spectral slope of the noise. Chekhlov and Yakhot [21] showed that
for β = −1 and k (or r) in the inertial range, the energy spectrum (or the second-order
structure function) closely resembles the K41 predictions, i.e., E(k) = 〈|û(k)|2〉 ∼ k−5/3

(or S2(r) ∼ r2/3). However, the higher-order structure functions strongly deviate from
monofractality (K41 predictions). In fact, in this case Sq≤2(r) ∼ rq/3 and Sq>2(r) ∼ r .
This anomalous bifractal behavior is associated with shock formation, which is an intrinsic
property of the Burgers equation. Please note that the qth-order structure function Sq(r) is
defined as follows:

Sq(r) = 〈(u(x + r) − u(x))q〉 = 〈(δru)q〉 ∼ rζq . (2)

The angular brackets denote spatial averaging, and r is a separation distance that varies
in the inertial range. If the scaling exponent ζq is a nonlinear function of q, then the field
is called multifractal; otherwise it is termed as monofractal [32, 33].

Hayot and Jayaprakash [25–27] further generalized the results of Chekhlov and Yakhot
[21,22]. Their theoretical and numerical investigations revealed that in the range −1 < β <

0, as β tends to −1, increasingly multifractal structures appear. The results of Chekhlov
and Yakhot [21,22] are recovered for β ≤ −1. They also showed that for −1 < β < −2/3,
the scaling exponents could be analytically (with self-consistent assumptions) derived as
follows:

ζ2 = −2β

3
, (3a)

ζ3 = −β, (3b)
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Figure 1. The velocity field u(x, t) at t = 200 (for β = −3/4).

ζ4 = 2 − β

3
, (3c)

ζ5 = 1 − 1 + β

12
. (3d)

In this work, we selected a value of β = −3/4, which represents the case in which
the dynamics of SBE portray complex multifractal behavior. Figure 1 shows a snapshot
of a representative velocity field – co-existence of shocks and small-scale turbulence-like
structures are clearly visible. Capturing the statistical and dynamical properties of these
intricate structures could be quite challenging for any LES-SGS model, as we will see later
in Section 3.

We use a Fourier collocation code to solve the SBE over a domain of length L = 2π .
Time advancement is done via the explicit second-order Adams–Bashforth scheme (�t =
1 × 10−4). The nonlinear terms are computed in the conservative form and dealiased in the
Fourier domain, using the 3/2 rule; 212 modes are used for the DNS (�xDNS = 2π/8192),
whereas, 28 modes are used for the LES (�xLES = 2π/512). We would like to note that one
could use lesser number of modes (say, 26) to perform more-or-less reliable LES of SBE.
However, we found it quite challenging to estimate higher-order moments from coarser
resolution runs.

The viscosity (ν) and noise amplitude (D0) are taken to be equal to 1 × 10−5 and
1 × 10−6, respectively. The noise term η(x, t) is generated as follows:

η(x, t) =
√

2D0/�tF−1(|k|β/2f̂ (k)), (4)

where f̂ (k) is the Fourier transform of a Gaussian random variable f (x) with mean = 0
and standard deviation = √

N (such that 〈|f̂ (k)|2〉 = 1). The notation F−1 denotes inverse
Fourier transform; N is the number of grid points (i.e., N = 2π/�x). The simulations are
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Figure 2. The second-order structure function (left) and the energy spectrum (right) of the DNS
field for β = −3/4 (computed in an interval of 0.1 time units and averaged from t = 100 to 200).
The dashed and dotted lines show theoretical predictions by Hayot and Jayaprakash [27]. The slopes
of the dashed and dotted lines in the left plot are 0.50 and 1.75, respectively, whereas, the slopes of
the dashed and dotted lines in the right plot are −1.50 and −2.75, respectively.

run for T = 200 units (i.e., 2 × 106 time steps). This corresponds to approximately two
eddy turnover periods (since π/urms ∼ 100). All the statistics are averaged from t = 100
to 200.

The second-order structure function and energy spectrum are plotted in Figure 2. In the
inertial range, we get ζ2 = 0.5 as expected [see Equation (3)]. The spectral slope (σ ) of
−1.5 in the inertial range is also anticipated, since σ = −1 − ζ2. As predicted by Hayot and
Jayaprakash [27], in the dissipation range, the energy spectrum portrays free-field behavior
with a spectral slope of −2 + β. This, of course, leads to an exponent of 1.75 in the case
of second-order structure function (see Figure 2).

In Figure 3, we have plotted the (centralized) skewness and flatness factors of the
velocity increments (see p. 41 of [33] for definitions). As mentioned earlier, one of the
inherent characteristics of the Burgers equation is the creation of shocks. This leads to large
magnitudes of negative velocity differences, and as a consequence, the velocity increment
skewnesses are always negative and increase with decreasing increment. Similarly, due to
small-scale intermittency, the flatness factor increases with decreasing increment. For large
increments (r/L → 1), both these factors approach the Gaussian value of skewness = 0
and flatness = 3.

3. LES of the SBE

The spatially filtered version of Equation (1) is written as

∂ũ

∂t
+ ũ

∂ũ

∂x
= ν

∂2ũ

∂x2
+ η̃(x, t) − 1

2

∂τ

∂x
, (5)

where the tilde denotes the filtering operation, using a filter of characteristic width �f . This
filtered equation is now amenable for numerical solution (LES) on a grid of mesh size �x,
considerably larger than the smallest scale of motion (the Kolmogorov scale). It is common
practice to use the ratio of filter width to grid spacing, �f /�x = 1 or 2 (see Chapter 9
of [1] for detailed discussion on this ratio and its impact on error dynamics). In this study,
we considered a filter to grid ratio of 1.
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Figure 3. The skewness (circles) and flatness (stars) factors of the velocity increments as functions
of r/L. These statistics are computed in an interval of 0.1 time units and averaged from t = 100 to
200.

The SGS stress, τ in Equation (5), defined as

τ = ũ2 − ũũ, (6)

is not known. It essentially represents the contribution of unresolved scales (smaller than
�f ) to the total momentum transport and must be parameterized (via an SGS model) as
a function of the resolved velocity field. The classical Smagorinsky-type eddy-viscosity
model (SMAG) expresses the SGS stress tensor in terms of the resolved strain rate tensor
[34]. In the one-dimensional context, the SGS stress is of the form

τSMAG = −2(CS�f )2

∣∣∣∣∂ũ

∂x

∣∣∣∣
(

∂ũ

∂x

)
. (7)

This SGS model assumes that the energy dissipation rate (ε) equals the SGS energy
production rate (P ). In order to avoid this strong assumption, Wong and Lilly [35] proposed a
new SGS model (henceforth denoted as WONG) based on Kolmogorov’s scaling hypothesis.
The one-dimensional version of this SGS model is as follows:

τWONG = −2
(
CW�

4/3
f

) (
∂ũ

∂x

)
. (8)

In an LES, the SGS coefficient CS (also known as the Smagorinsky coefficient) or
CW is usually not known and has to be specified a priori. In the case of the SBE, one
could attempt to analytically derive these coefficients following the classical approach
of Lilly [36] with certain assumptions. Another alternative would be to use the dynamic
formulation of Germano [5, 6]. Basically, the dynamic formulation avoids the need for
a priori specification of CS or CW because they are evaluated directly from the resolved
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6 S. Basu

scales, utilizing the notion of scale similarity. The basics of the dynamic formulation have
been extensively covered in Geurts [1] and Sagaut [4] and will not be reiterated here.

For the present one-dimensional case, following the error-minimization approach of
Lilly [6], the dynamic SGS coefficients could be evaluated as

C2
S = 〈L11M11〉

〈M11M11〉 , (9a)

CW = 〈L11N11〉
〈N11N11〉 , (9b)

where L11 = T11 − τ11 = ũ2 − ũ ũ. This relation is known as the Germano identity. The
overbar denotes test filtering at a scale �; τ11 and T11 are the SGS stresses at scales �f

and �, respectively. Thus, L11 represents the SGS stress between �f and �. We employ
a spectral cutoff filter (i.e., F̂�f

(k) = 1, if k�f < π, and F̂�f
(k) = 0, otherwise), with

� = 2�f . For this case, M11 and N11 could be written as:

M11 = −2�2
f

(
4

∣∣∣∣∂ũ

∂x

∣∣∣∣
(

∂ũ

∂x

)
−

∣∣∣∣∂ũ

∂x

∣∣∣∣
(

∂ũ

∂x

))
, (10a)

N11 = −2�
4/3
f

∂ũ

∂x
(24/3 − 1). (10b)

In Equation (9) the angular brackets denote averaging over the entire one-dimensional
domain. To avoid numerical instabilities, the dynamic coefficients C2

S and CW are set to
zero whenever Equation (9) yields a negative value. This commonly used procedure is
known as ‘clipping’ [1]. Qualitatively, the evolutions of the dynamic SGS coefficients are
quite similar, as shown in Figure 4.

0 50 100 150 200

0.05

0.1

0.15

t

C
S
2

0 50 100 150 200
0

0.005

0.01

0.015

C
W

Figure 4. Evolution of the dynamic Smagorinsky coefficient (C2
S) (red solid line) and the dynamic

Wong–Lilly coefficient (CW ) (blue dashed line). The coefficients are averaged over 1 time unit interval.
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Figure 5. The coarse-grained velocity series: filtered-DNS (FDNS, top left), without any SGS model
(NSGS, top right), dynamic Smagorinsky SGS model (SMAG, bottom left), and dynamic Wong–Lilly
SGS model (WONG, bottom right), at t = 200 (for β = −3/4).

The performances of the dynamic Smagorinsky model (SMAG) and the Wong–Lilly
model (WONG) are primarily assessed by comparing the simulated statistics with that of the
filtered-DNS (FDNS) results. We use spectral cutoff filtering in offline mode to construct
the filtered-DNS fields from the simulated DNS fields. In this case only the largest 28 modes
are kept for comparison with LES with the same number of modes. A simulation without
any SGS model (NSGS) is also performed in order to highlight the need for an SGS model
in coarse-grained simulations. All the simulations start from zero-state condition, and all
the LESs use identical noise forcing. The basic numerics for the LES remain the same as
the DNS, as described in Section 2. In order to avoid temporal discretization error, the time
step �t is kept unchanged from the corresponding DNS value.

In Figure 5, we show snapshots of coarse-grained velocity series from all the simulations.
All the series qualitatively portray the complex interaction between shocks and small
scales. The simulation without any SGS model (NSGS), however, shows much higher
levels of random fluctuations. This is clearer in Figure 6. The resolved-scale kinetic energy
(KE = 0.5ũ2) level becomes much higher for the NSGS simulation. This is due to the pileup
of energy associated with the lack of SGS dissipation. This undesirable behavior becomes
more discernible for LES runs, using coarser resolutions (not shown). As mentioned before,
in this work we decided to use 28 modes to facilitate the computation of higher-order
moments.
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8 S. Basu
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10
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t

KE

Figure 6. Evolution of kinetic energy, KE (computed every 0.1 time units and averaged over one
time unit intervals). The black solid, magenta dotted, red dashed, and blue dash-dotted lines denote
FDNS, NSGS, SMAG, and WONG simulations, respectively.

Next, we compare the second-order structure functions and Haar wavelet spectra from
these simulations. The smoothness of wavelet spectra makes it easier to visually appraise the
performance of different SGS models. Following [37], the wavelet power spectral density
function E(Km) is defined as

E(Km) = 〈(W (m)[i])2〉�x

2π ln(2)
, (11)

where wavenumber Km(= 2π/2m�x) corresponds to scale Rm(= 2m�x). The scale index
m runs from 1 (finest scale) to log2(N ) (coarsest scale); W (m)[i] denotes the Haar wavelet
coefficient at scale m and location i. The DNS spectra using Fourier basis (Figure 2) and
wavelet basis (Figure 7) are very similar, as anticipated. The SMAG and WONG simulations
follow the FDNS spectra and structure function profiles fairly well. The WONG model is,
however, marginally over-dissipative. Recently, Anderson et al. [31] also reported the over-
dissipation characteristic of the WONG model in the context of atmospheric boundary layer
simulations. The spectra and second-order structure function corresponding to NSGS once
again clearly reveal lack of energy dissipation.

In Figure 8, we compare the temporal evolution of mean SGS energy dissipation (〈εSGS〉)
and mean molecular energy dissipation (〈εMOL〉). They are defined as

〈εSGS〉 = −
〈
τ

∂ũ

∂x

〉
, (12a)

〈εMOL〉 =
〈
ν

(
∂ũ

∂x

)2〉
. (12b)
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Figure 7. Second-order structure function (left) and wavelet-based energy spectra (right) computed
from LES with different SGS models (computed every 0.1 time units and averaged from t = 100
to 200). The magenta circle, red star, and blue plus symbols denote NSGS, SMAG, and WONG
simulations, respectively. The FDNS results (black square symbols) and theoretical predictions (black
dashed lines) are also shown for comparison.
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Figure 8. Comparison of temporal evolution of mean SGS (〈εSGS〉, dashed lines), molecular (〈εMOL〉,
dotted lines), and total energy dissipation (〈εSGS〉 + 〈εMOL〉, solid lines): filtered DNS (FDNS, top
left), without any SGS model (NSGS, top right), dynamic Smagorinsky SGS model (SMAG, bottom
left), and dynamic Wong–Lilly SGS model (WONG, bottom right). These statistics are computed
every 0.1 time units and averaged over 1 time unit interval.
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10 S. Basu

The evolution of total energy dissipation in the cases of SMAG and WONG simulations
are quite similar to the FDNS case. This corroborates the fact that these SGS models on
average dissipate the right amount of energy and also reproduces the second-order statistics
fairly well. Of course, there is no SGS dissipation term in the case of NSGS, and it is clear
that the molecular dissipation alone is not sufficient.

An SGS model should also dissipate the right amount of resolved scale enstrophy in
order to correctly model the third-order moment of velocity increments. This is a sufficient
condition as shown by Meneveau [38]. The balance between the production of enstro-
phy (P = (∂ũ/∂x)3) and its dissipation by the SGS stress (HSGS = −(∂3ũ/∂x3)τ ) and
molecular viscosity (HMOL = ν( ∂2ũ

∂x2 )2) could be written as:

〈(
∂ũ

∂x

)3〉
= −

〈
∂3ũ

∂x3
τ

〉
+

〈
ν

(
∂2ũ

∂x2

)2〉
. (13)

From Figure 9, it is difficult to judge the performance of the SGS models. Both the
SGS models (SMAG and WONG) as well as the FDNS more or less balance the enstrophy
production and dissipation, given the assumptions made in the derivation of Equation (13)
and also the uncertainty involved in the estimation of the covariances between the third-order
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Figure 9. Comparison of temporal evolution of mean enstrophy production (〈P〉, solid lines), SGS
enstrophy dissipation (〈HSGS〉, dashed lines), and molecular enstrophy dissipation (〈HMOL〉, dotted
lines): filtered DNS (FDNS, top left), without any SGS model (NSGS, top right), dynamic Smagorin-
sky SGS model (SMAG, bottom left), and dynamic Wong–Lilly SGS model (WONG, bottom right).
These statistics are computed every 0.1 time units and averaged over 1 time unit interval.
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Figure 10. Skewness (left) and flatness (right) factors computed from LES with different SGS
models (computed every 0.1 time units and averaged from t = 100 to 200). The magenta circle, red
star, and blue plus symbols denote NSGS, SMAG, and WONG simulations, respectively. The FDNS
results (black squares) are also shown for comparison.

derivatives and the SGS stresses. By definition, the molecular enstrophy dissipation is
always positive. On the other hand, because of shock formations in the Burgers equation,
the enstrophy production on average is negative. Hence, the magnitude of SGS enstrophy
dissipation should be larger than the enstrophy production, which is always the case. In
the case of NSGS the enstrophy balance is of course not feasible, and its consequence is
reflected in the third-order statistics (see Figure 10).

From Figure 10, it is very clear that in the inertial range the dynamic Smagorinsky-
model-predicted skewness and flatness factors are slightly more ‘precise’ than the dynamic
Wong–Lilly model, when compared to the corresponding FDNS values. The NSGS case
definitely does not preserve any small-scale characteristics. This implies that the inertial-
range properties of Burgers turbulence are strongly dependent on the mode of SGS energy
dissipation.

Next, we utilize the one-point magnitude cumulant analysis approach [39, 40] to test
whether the SGS models have captured the underlying multifractality of the SBE. One-point
cumulants are computed as

C1(r) = 〈ln |δru|〉 ∼ −c1 ln(r) (14a)

C2(r) = 〈ln2 |δru|〉 − 〈ln |δru|〉2 ∼ −c2 ln(r), (14b)

C3(r) = 〈ln3 |δru|〉 − 3〈ln2 |δru|〉〈ln |δru|〉 + 2〈ln |δru|〉3 ∼ −c3 ln(r). (14c)

It can be shown that the cumulant coefficients (cn) are directly related to the scaling
exponents [39–41], as follows:

ζq = −
∞∑

n=1

cn

qn

n!
. (15)

In Figure 11, the cumulants (Cn, n = 1, 2, and 32) are plotted against r/L (please note the
logarithmic abscissa scale). Interestingly, a continuous crossover is observed in the case of
C1(r), as earlier reported by Delour et al. [39] in the case of various turbulent flow signals.
In the present study, C2(r) and C3(r) are quite ‘erratic’ in contrast to Delour et al. [39]
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Figure 11. One-point cumulants C1(r) (top), C2(r) (middle), and C3(r) (bottom) are computed from
DNS (left panel) and LES (right panel) with different SGS models (computed every 0.1 time units
and averaged from t = 100 to 200). In the right panel, the magenta dotted, red dashed, and blue
dash-dotted lines denote NSGS, SMAG, and WONG simulations, respectively. The FDNS results
(black solid lines) are also shown in the right panel figures for comparison.

and Basu et al. [41]. Nevertheless, it was important to detemine if the value of ζ2 predicted
using estimated cn and Equation (15) matched the theoretical value of ζ2 = 0.5. From DNS
results (see Figure 2), it is quite clear that ζ2 is approximately equal to 0.5 over a narrow
scaling region of 7 × 10−3 ≤ r/L ≤ 1.56 × 10−2. We estimate the slopes of the cumulant
plots over this scaling range and list them in Table 1. In the last column of Table 1, we also
report ζ

pred

2 = −2c1 − 2c2 − ( 8
6 )c3. The ζ

pred

2 values from DNS and FDNS simulations
are reasonably close to the theoretical value of ζ2 = 0.5. On the other hand, ζ

pred

2 values
from SMAG and WONG simulations are higher than 0.5. These slopes, steeper than 0.5,
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Table 1. Cumulant analysis.

Simulation c1 c2 c3 ζ
pred

2

DNS −0.297 0.019 0.032 0.514
FDNS −0.316 0.021 0.035 0.544
SMAG −0.344 0.032 0.014 0.605
WONG −0.372 0.036 0.049 0.607

are also evident in Figure 7. Thus, our results are self-consistent. From Figure 11 and Table
1, it is also clear that the dynamic eddy-viscosity SGS models more or less capture the
observed multifractality of SBE. Once more, the performance of the dynamic Smagorinsky
model is found to be marginally superior than that of the dynamic Wong–Lilly model.

Recently, in the context of three-dimensional homogeneous isotropic turbulence, He
et al. [42] found that the LES fields are more coherent than the DNS fields and decorrelate
much more slowly. This means that the SGS have the potential to significantly modify
the dynamical properties (such as predictability) of the resolved scales through nonlinear
interactions. A reliable SGS modeling scheme should address this issue appropriately. He
et al. [42] also speculated that in the case of Burgulence, since the velocity modes become
phase-locked as shocks develop, the opposite scenario might be true (i.e., the LES fields
decorrelate faster than the DNS field). In this study, we attempt to test the validity of
this speculation by comparing the performance of different SGS models in simulating the
temporal decorrelation property of SBE. Following He et al. [42], the normalized temporal

10
0

10
1

10
2

10
1

10
2

k

τ e

Figure 12. Decorrelation time (τe) of DNS and different LES models plotted against wavenumber (k).
The magenta circle, red star, and blue plus symbols denote NSGS, SMAG, and WONG simulations,
respectively. The black solid line represents DNS results, whereas the black dashed line represents
k−1.
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correlation is defined as

CDNS(k, τ ) = 〈u(k, t + τ )u(k, t)〉
〈u(k, t)u(−k, t)〉 , (16a)

CLES(k, τ ) = 〈ũ(k, t + τ )ũ(k, t)〉
〈ũ(k, t)ũ(−k, t)〉 . (16b)

In Figure 12, we report the decorrelation time (τe) of the simulated fields as a function of
wavenumber. Here, τe denotes the time lag when the normalized temporal correlation (i.e.,
CDNS or CLES) drops less than 1/e for a particular wavenumber. As would be intuitively
expected, the larger modes have longer decorrelation times, and vice versa. The surprising
behavior is the k−1 falloff of the temporal correlation. This behavior was also observed in
He et al. [42] (where they used microscale and integral scale instead of τe) and could be
explained by the ‘sweeping hypothesis’ for Eulerian time correlations [42, 43]. However,
unlike He et al. [42], the coarse-grained simulations also closely follow the temporal decay
behavior of the DNS; no significant faster or slower decay was observed. In other words, in
this study we did not observe the plausible scenario (i.e., the LES fields being less coherent
than the DNS fields) surmised by He et al. [42] to hold in the case of SBE.

4. Concluding remarks

In this study, the SBE equation which portrays multifractality is used as a toy model to
explore the performance of two dynamic eddy-viscosity-type SGS models: the dynamic
Smagorinsky model and the dynamic Wong–Lilly model. In terms of simulating the inertial-
range properties of Burgulence, the performance of both the dynamic SGS models is
satisfactory. However, the dynamic Smagorinsky model performed slightly better than the
dynamic Wong–Lilly model in some cases. The simulation without any SGS model fails
to preserve the essential small-scale properties. These results essentially signify that the
inertial-range statistics strongly depend on the mode of SGS energy dissipation and that the
dynamic eddy-viscosity-type SGS models have the potential to capture them accurately.
Of course, it is not prudent to deduce generalized conclusions for the three-dimensional
Navier–Stokes equations based on our study of the one-dimensional Burgers equation.
The energy cascade mechanism is quite different in these two cases. With increasing
computational capabilities, we might be able to perform DNS of high-Reynolds-number
turbulence in the near future and revisit the intriguing issue explored in this paper.
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Notes
1. These SGS models are widely used by the atmospheric boundary layer turbulence community

(see [31] and the references therein).
2. Estimation of Cn for n > 3 typically requires extremely large sample size for achieving statistical

convergence, and thus is not attempted in the present study.
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