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e Recall that many of the LES SGS models we have covered are
variants of the eddy-viscosity assumption

1 ~
Tij — 3Tkkdij = 2075

where v is the eddy-viscosity term that must be modeled and
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is the strain rate (deformation) tensor of the resolved flow field
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e In the case of the Smagorinsky model, we showed that
vr = (CsA)?5]

where A = (AmAyAz)% is the effective grid scale, Cg is the
Smagorinsky coefficient, and

|S] = /2855

is the magnitude of the filtered strain rate tensor
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e Finally, we showed that if:

@ we used a spectral cutoff filter,

@® assume the cutoff wavenumber is in the inertial subrange of a
Kolmogorov-type spectrum,

© and equate viscous dissipation with the ensemble-average SGS
dissipation (e = (II)), then
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where if we assume Ck ~ 1.4 we get
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e Nicoud and Ducros (1999) challenged the underlying
assumption of the Smagorinsky model — that the local strain
rate of the flow defines the velocity scale at the filter width

e ND99 also investigated how such a model should behave near
the lower boundary (wall)

o Additionally, the topic of complex geometry and numerical
methods were discussed
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e Recall that v acts to represent the transfer of energy from
resolved to subgrid scales through subgrid dissipation (o< vr)

e Accordingly, using the Smagorinsky-style model, the subgrid
dissipation is described by the strain rate of the smallest
resolved scales

e However, Wray and Hunt (1989) showed from DNS of
isotropic turbulence that energy is actually concentrated
around zones of vorticity and strain

e Thus, using only the strain rate is inadequate
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e ND99 suggested a better SGS model would account for both
strain rate and rotational rate

e One example is an eddy-viscosity model based on the
structure function

vr = BC AN R,

where F} is the second-order velocity structure function of the
filtered field

Fy(Z,A) = (|i(T + 7, t) — 4(Z, 1)[?)

and [ is a constant (Lesieur and Metais 1999 suggested
B = 0.105 for isotropic turbulence) :::
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e Another issue beyond the physical description of the model is
how it behaves near the wall

e The Smagorinsky model will give non-zero values of v
provided gradients exist — however in the reality turbulent
fluctuations are damped near the wall so that v should be
zero

e One way to correct this in the past was the Van Driest
exponential damping function

1 —exp(—yT/AT) where AT = 25

e Recall from Lecture 14 that Deardorff also implemented an
enhancement of dissipation near the wall to prevent unnatural

build-up of energy @
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e While these damping methods improve results, they are ad
hoc and are difficult to apply to complex geometries

e ND99 notes that there are ways to try and force near-zero vr,
which includes limiting the distance over which F5 is
computed, or computing Cg dynamically (as in Germano)

e Recall, however, that the dynamic procedure may result in a
large fraction of negative C's values, which can lead to
numerical instability

e While spatial averaging can alleviate this problem, the
required size of the stencil is not really known a priori, it is ad
hoc, and it is limited to simple flow geometries
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e The general form of these models can be given by
vr = Cn A’OP(Z, 1)

where C), is the model coefficient and OP is an operator
defined from the resolved scales
e ND99 proposed a new operator with the following properties

invariant to coordinate rotation or translation
easily assessed on any computational grid
function of both strain and rotation rates
goes naturally to 0 at the wall

e Called the Wall-Adapting Local Eddy-viscosity (WALE) model
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e OP must be based on invariants of a tensor 7;;, which
represents turbulence

e Velocity gradient tensor (g;; = 0u;/0x;) is a good candidate

e Smagorinsky was based on second invariant of the symmetric
part of §ij of this tensor (see Lecture 7)

e Two drawbacks with Smagorinsky approach:
1.) only considers strain rate of structures, not rotational rate
2.) leads to unphysical v = O(1) at the surface

0
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e ND99 constructed a new proposed (and hopefully better)
operator by considering the traceless symmetric part of the
square of the velocity gradient tensor

1
(95 + 95) — 56i590n

St = 2

DN |

where @?J = @kﬁk]
e Note: the antisymmetric part of g is given by

- 10w ou
=5 <8$]~ * axi>
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o After some math (see ND99 on Canvas or website), the
WALE model is given by

(s558)"
— (CyA)?
vr = (CwA) 5.5 5/2+(Sfj5%) /
where
~ ~\3/
o)

- . 3/2 [ /1~ ~ \5/2 5/4\ ~1
For Cg ~ 0.18, expect 0.55 < C,, < 0.60 @
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e The WALE model formulation accounts for rotational rate,
naturally goes to 0 at the wall without the need for any ad
hoc methods, and can be generalized for any grid and
complex geometries
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e One first test was to see how well the WALE model produced
spectra for decaying isotropic turbulence
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Figure 1: Time evolution of energy spectra for freely decaying isotropic turbulence with the

WALE model. The grid contains 32° points. Symbols are experimental mesurements. Times

are 42. 98 and 171 M/U. @
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e In the next test ND99 examined the WALE model in a
turbulent pipe flow using a hybrid grid
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Figure 2 The hybrid grid used for the LES of a turbulent pipe flow.
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e Results from turbulent pipe flow tests
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Figure 3 Time evolution of kinetic energy (bottom) and of maximum of vorticity (top) with @
both the filtered-Smagorinsky (- - -) and the WALE (— ) models. Time unit is R/U,
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e Results from turbulent pipe flow tests
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Figure 5: Mean velocity profile vs. the distance to the wall (semi-log coordinates). Comparison

between the filtered-Smagorinsky model (- - -) and the WALE formulation (——). The law-

of-the-wall is denoted by the dot-dashed line. @
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e Results from turbulent pipe flow tests
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Figure 6: Root-mean-square streamwise velocity and normal velocity vs. the distance to the
wall. Comparison between the filtered-Smagorinsky model (— - —) and the WALE formulation

(——). The experimental data from Eggels et al. for By = 5450 is denoted by symbol. @
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