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Surface/Wall Boundary Conditions

e In many flows of interest, a solid wall (or surface) is present in
some way

e It can be very costly to fully resolve the effects of the wall and
implement “natural” no-slip BCs

e Chapman (1979) performed the first analysis of grid-resolution
requirements for LES of wall-bounded flows
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Surface/Wall Boundary Conditions

We can divide the flow into 2 regions:

e Quter layer: viscosity isn't as important and grid resolution
requirements are more or less (not including SGS model
errors) independent of Re

e Inner layer: near wall region where viscosity plays an
important role



Surface/Wall Boundary Conditions

Inner layer:

e Structures (“eddies”) in the inner-layer are approximately
constant when non-dimensionalized with viscous length scales

e To resolve these motions we need grid spacing of

Azt ~100 (27 = zu, /v)
Azt ~ 20

|-
where u, = [ — is the friction velocity
P



Requirements to Resolve the Wall

Using these Azt and Az scales, we can show that

Ny x Ny x N, RelL'8

where Rey, is the integral scale Reynolds number — that is the
Reynolds number that is based on the integral length scale of
turbulence

e The integral length scale is the characteristic length scale of
the larger eddies in a turbulent flow
e In order to resolve the viscous sublayer (to enforce the use of
the no-slip condition), the number of required grid points
scales as Re}®
e Conversely, Chapman (1979) showed that the number of grid
points required to resolve the outer layer scales as Re%4 @
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uire ts to Resolve the Wall

e For a BL with Rey, = 10% (moderate-low Re), 99% of our
grid points must be in the near wall region
e This region is only 10% of the entire boundary layer!
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Figure 1 Number of grid points required to resolve a boundary layer. The “Present capa-
bilities” line represents calculations performed on a Pentium IIT 933MHz workstation with
1Gbyte of memory.
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Approximate Wall-Boundary Conditions

e How do we handle this problem for high-Re boundary layers?
e Answer: with approximate wall-boundary conditions

o We pick our first grid-point to be sufficiently far from the wall
so it lies in the outer layer

e This has the potential to make our simulations only
weakly dependent on Re and grid resolution (if we don't
consider model errors!)

e The goal is to create a model that calculates the wall shear
stress as a function of the resolved velocity at the lowest
grid level

o All of the dynamics of the inner layer must be accounted
for with the wall model
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Approximate Wall-Boundary Conditions
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Figure 2 Sketch illustrating the wall-layer modeling philosophy. (a) Inner layer

resolved. () Inner layer modeled.

From Piomelli and Balaras (2002)
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Approximate Wall-Boundary Conditions

Typical high-Re wall models
e Many wall models use RANS-like approximations

e In high-Re BLs, the most common models are 0t"-order RANS
(i.e. similarity theory)

e u; and 7, are assumed to be related by the well known log-law

e For a rough-wall:

-2 b))

where U(z) is the mean velocity, u; = \/—7, is friction
velocity, z is the height of the first model level, z, is the
surface roughness, and W, is the stability correction function

0
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Approximate Wall-Boundary Conditions

Typical high-Re wall models

e Schumann (1975) introduced the
of this class of models where:

uz(f, t)
U(z)

713,w(1',y,t) = <Tw> for i = 172($7y)

e (7,) was calculated from the mean pressure gradient
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Approximate Wall-Boundary Conditions

Typical high-Re wall models

e Grotzbach (1987) modified this by using the log-law to
calculate the average shear stress resulting in the flowing
model

m’w(w,t):_[ U(z)k Hln(ai(f,tm ]

In(z/z) — Vs 2/z0) — Wr
e This model has the advantage over Schumann’s because it

allows the total mass flux to change in time during a
simulation

e Both models assume that 7, ~ 4;
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Accounting for Flow Average Flow Structures

o Piomelli et al. (1989) altered the models of Schumann and
Grotzbach (SG) in an attempt to account for the structure of
the flow field

e Experimental and numerical studies have demonstrated that
coherent structures exist in the BL and that they are inclined
at oblique angles to the wall (e.g. Brown and Thomas 1977)
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Accounting for Flow Average Flow Structures

e The inclination of these structures can be measured by looking
at the correlation between shear stress and velocity in a BL

e With the average inclination given by the lag to max
correlation with height

From Marusic et al (2001) @
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Accounting for Flow Average Flow Structures

e Another example taken from an idealized LLJ simulation
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Accounting for Flow Average Flow Structures

e Piomelli et al. (1989) took this into account by shifting the
SG model downstream

Ui(x + 04, y, 2,
Ti3,w (.T, yat) = <Tw> ( U(dZ) )

where § = z cot(vy) is the displacement and v =~ 13° for
high-Re flows
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Approximate Wall-Boundary Conditions
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Approximate Wall-Boundary Conditions

a priori analysis
e Based on their analysis, Marusic et al (2001) proposed a new
model

Ti3,w(x7y7t) = <Tw>—04u7— [al(x + A,.% th) - <'&Z($ + A7y7 Zat)>]

e Basic motivation: low frequency filtered velocity spectra will
collapse under outer-flow scaling and that the filtered shear
stress spectra should follow the filtered velocity spectra

e Based on this, « should be a constant under a variety of
conditions
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Approximate Wall-Boundary Conditions

a priori analysis

e Following Stoll and Porté-Agel (2006) we can compare this to

the SG model

az(w + A? Y, z, t)

Ui(2)
(Tw)
Ui(2)
= <Tw> — QegqlUr [ﬂ’z(x + A? Y, z, t) - UZ(Z)]

Ti3,w (2, Y, 1) = (Tw)

= (Tw) + [@i(z + Ay, 2,1) — Ui(2)]

where

urUi(z)  In(z/2)
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Approximate Wall-Boundary Conditions

a priori analysis
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Local and Higher-order RANS Approximations

The local log-law for ABL flows

e In the ABL or general flows where no directions of
homogeneity exist for determining (7,,), the log-law is often
used directly to calculate the local shear stress by

] ]

Gy = \J@2 + a2

e The formulation assumes 7, ~ %2 and does not preserve (7,,)

TiS,w(x7y7t) = - |:

where

0
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Local and Higher-order RANS Approximations

2-layer models (higher-order RANS):

e Balaras et al., (AIAA, 1996) used a higher order RANS
closure based on the thin-BL equations

0t o ,. . D 0 0t
ot " gn W) = gt o {(” M.
where i = 1,2, u, is the wall normal component found from

continuity and vp is an eddy-viscosity parameterized with an
algebraic model. The equations are solved to the wall.
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Local and Higher-order RANS Approximations

2-layer models (higher-order RANS):

*——— *———— *————
Outer mesh
~——— ~—— *———
= Inner mesh
Figure 4 Inner-and outer-layer grids for the two-layer model.
From Piomelli and Balaras (2002) @
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Even more variations

The filtered local log-law for ABL flows:

e Bou-Zeid et al. proposed to use the filtered velocity to find
the surface stress

@iz + A, y, z,t)m} 2 i(x+ Ay, 2, 1)

13w 9 at - =
Ti30(@,9, ) [ og(z/2) | (e + By, 2)

o Poimelli et al. (1989) — and others — suggested using the wall
normal velocity

Ti3,w(x7 Y, t) = <T’w> - C<TIU>1/21D(‘£ + A? Y, t)

e Hultmark et al. (2013) suggested using velocity variance
scaling to develop a local correction for the problem that the
instantaneous log-law above won't preserve the mean shear
stress value
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