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Overview

1 Statistical Conditions for a SGS Model

2 Computing SGS Quantities
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Statistical Conditions for a SGS Model

a posteriori

• Project #1 is based on a posteriori model testing – one
particular way to test for a model’s correctness

• The idea there is to use the model in a simulation and
compare the output data with experimental data

• A downside to this testing approach is that it is hard to
understand what physics are important for a model to work
(or to fail)

• Another downside is the difficulty in separating the model
from other influences, such as model numerics
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Statistical Conditions for a SGS Model

a priori

• Project #2 will be based on a priori model testing – a way to
test for a model’s physical robustness

• The idea there is to use some fully-resolved “truth” dataset
(DNS, experiments) and filter them to some chosen scale

• The filtered data is used to compute the actual and modeled
stresses, which are then compared
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Statistical Conditions for a SGS Model

a priori

• A downside to a priori model testing is that instantaneous
comparison between real and modeled stresses often show
poor correlation

• However, this does not necessarily translate into a “bad”
result when performing a posteriori tests

• In other words, a priori tests can present an overly negative
outlook for a model

• Thus, the use of both testing procedures is often required to
make a fully-formed assessment of a model
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Statistical Conditions for a SGS Model

What do we mean? See this from Stoll and Porté-Agel (2009)

Offline testing of schemes led to wrong sign of surface flux! But
when coupled in a system, it can produce reasonable results.
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Statistical Conditions for a SGS Model

• Can we get around these issues related to a priori tests?

• Yes! We can apply weaker conditions on our model that are
ususal expected for a priori tests

• The truth is that for many applications we simply do not care
about a single realization of an LES

• Why? Well, we expect the flow to evolve chaotically – so to
expect perfect instantaneous relationships is not realistic

• Rather, we really care about whether the LES produces
correct statistical features of a flow

7 / 28



Statistical Conditions for a SGS Model

• Switching to a statistical a priori framework leads to an
obvious question - what conditions should a SGS model
satisfy?

• Specifically we are interested in answering the question what
statistical properties should τij and τMij share?

• In other words, what specific properties must the model
satisfy such that the real and LES low-order velocity statistics
match in a reasonable way?
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Statistical Conditions for a SGS Model

We know a “good” model should adhere to our equations of
motion

• Invariance to translation, rotation, and reflection (in the
absence of boundaries)

• Hopefully, invariance to Re

• Ideally, invariant to ∆

To get more specific than this, we need to talk about statistics of
SGS models (Meneveau 1994)

We want to know what properties τij and τMij should share to
produce reasonably accurate ensemble statistics of the velocity field
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Statistical Conditions for a SGS Model

• To obtain correct 1st- and 2nd-order moments of our
resolved field, our model must at least be able to produce
average modeled stresses that match the “real” stresses

• This doesn’t guarantee that our 2nd-order moments are
correct – it is only a necessary condition everywhere
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Statistical Conditions for a SGS Model

• To produce 2nd-order moments, we need to have our model
reproduce 2nd- and 3rd-order SGS stats including stresses and
correlations (e.g. stress with velocity or stress with
rate-of-strain tensor) that match the “real” values– This
includes matching 〈Π〉 everywhere (recall that Π is the SFS
dissipation rate)

• For even higher order moments we need to match higher order
SGS stats
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Computing SGS Quantities

• Procedurally, how do we compute these SGS stats from
data (DNS or experiments)?

• Select your data (after quality control) and identify missing
velocity or gradient terms

• Separate the data into resolved and SGS scales by calculating
ũi and ũiuj with an appropriate LES filter (see lecture 5 for
the most common examples)
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Computing SGS Quantities

• At this point, a decision must be made: to down-sample or
not (see Liu et al. 1994)

• Down-sampling means removing points from the field that are
separated (spatially) by less than our filter scale ∆ (denoted
by the ∼)

• Effectively this means we keep less points than we started
with (e.g. from 1283 to 323) after filtering
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Computing SGS Quantities

Figure 6 from Liu et al. (1994)
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Computing SGS Quantities

Downsampling

• Pros: we get a “true” representation of the effect of gradient
estimates on our SGS models and avoid enhanced correlations
due to filter overlap

• Cons: we lose data points (important if we have limited data)
and we now need to consider the above gradient estimation
errors!
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Computing SGS Quantities

• Calculate local values of all the components of

τ∆
ij = ũiuj − ũiũj

and

Sij =

(
∂ũi
∂xj

+
∂ũj
∂xi

)
• You may need approximations here based on your data!

• For some models you may need to calculate other parameters
(e.g., mixed and nonlinear models) but the general procedure
is the same
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Computing SGS Quantities

• Homework #2 implemented different types of filters

• Once you have these basic quantities calculated you can
calculate model values of τ∆,M

ij and statistics of the actual
(from data) and modeled SGS stresses including average
values, correlation coefficients, and variances

• We can also calculate other SGS statistics like
〈Π∆〉 = −〈τ∆

ij S̃ij〉 and 〈Π∆,M 〉 – or any model coefficients of
interest

• The following pages give some examples of SGS statistics and
model coefficients calculated from various references
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SGS Dissipation Π = −τijS̃ij

Π from experiments in the Utah desert (Carper & Porté-Agel 2004)

Experimental setup

Example time series of Π from the ABL (late afternoon)

Example PDF of Π from the ABL (late afternoon)
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SGS Dissipation Π = −τijS̃ij
Π from wind tunnel experiments in a round jet (Liu et al. 1994)

Top-hat filtered PIV field

Average Π from the wind tunnel experiment compared to
molecular dissipation

Spatial distribution of Π from PIV
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SGS Dissipation Π = −τijS̃ij

Π DNS of turbulent channel flow Re=3300 (Uc) (Piomelli et al.
1991)

Π normalized by the total dissipation
− average; −− rms and · · · backscatter

Fraction of points in channel flow with backscatter for
3 different filter widths

• backscatter increases with Re

• fraction of backscatter points
decrease for a Gaussian filter
(cutoff results shown) to
about 30%.
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SGS SGS Model Correlation Coefficients

Correlation coefficients from Clark et al (1979) for different models

• Eddy-viscosity - τij = −2νT S̃ij

• Smagorinsky - νT = (Cs∆)2|S̃ij |
• Deardorff - νT = (C1∆)2k̃

1/2
r

• Vorticity - νT = (C∆)2(ωiωi)
1/2
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SGS SGS Model Correlation Coefficients

Correlation coefficients from Clark et al (1979) for different models

Correlation coefficients from Lu et al (2007) for Smagorinsky and Similarity models

Measured (left) and modeled (right) with the similarity model τ11 from Lu et al (2007)
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SGS SGS Model Coefficient Estimation

Model coefficients evaluated by matching Π from ABL study of
Sullivan et al (2003)

Experimental setup in Colorado
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SGS SGS Model Coefficient Estimation

Smagorinsky coefficients with stability (Kleissl et al 2004)
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SGS SGS Model Coefficient Estimation

Smagorinsky coefficients with stability (Bou-Zeid et al. 2010)
qmodel
i = −kSGS∂θ̃/∂xi = −Pr−1

SGS(CS∆)2|S̃|∂θ̃/∂xi
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SGS SGS Model Coefficient Estimation

Smagorinsky coefficients with stability (Bou-Zeid et al. 2010)
qmodel
i = −kSGS∂θ̃/∂xi = −Pr−1

SGS(CS∆)2|S̃|∂θ̃/∂xi
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Geometric Tensor Alignment

Higgins et al (2003)

Definition of the 3 angles needed to characterize the
alignment of 2 tensors (τij and Sij
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Geometric Tensor Alignment

SGS and coherent structures in the Utah desert (Carper and
Porté-Agel 2004)
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