LES of Turbulent Flows: Lecture 18

Dr. Jeremy A. Gibbs

Department of Mechanical Engineering University of Utah

Fall 2016

1 Evaluating Simulations and SGS Models

2/34

- How do we go about testing our models?
- How should models be validated and compared to each other?

Pope (2004) gives 5 criteria for evaluating SGS models

- Level of description in the SGS model
- Completeness of the model
- The cost and ease of use of the model
- The range and applicability of the model
- The accuracy of the model

Most of these criteria are related to the accuracy of simulation results

Accuracy

• Ability of the model to reproduce DNS, experimental, or theoretical statistical features of a given test flow (or the ability to converge to these values with increasing resolution)

Accuracy

- An important aspect of this is grid convergence of simulation statistics.
- This is not always done, but is an important aspect of simulation validation.
- Note that this convergence (especially in high-Re flows) may not be exact, we may only see approximate convergence.

Cost

- When examining the above, it is important to include the cost of each model (and comparisons between alternative models)
- One model may give better results at a lower grid resolution (larger $\Delta)$ but include costs that are excessive

Cost

- Example: Scale-dependent Lagrangian dynamic model (Stoll and Porté-Agel, 2006)
- 38% increase in cost over constant Smagorinsky model
- 15% increase over plane averaged scale-dependent model
- How much of a resolution increase can we get in each direction for a 30% cost increase?? Only a little more than 3% in each direction!

Completeness

- A "complete" LES and SGS model would be one that can handle different flows with simply different specification of BCs, initial conditions, and forcings
- In general LES models are not complete due to grid requirements and (possibly) ad hoc tuning for different flows

Completeness

- Example from RANS: mixing length models are incomplete (different flow different ℓ)
- Meanwhile, the $k\text{-}\epsilon$ model can be thought of as complete for RANS since it can be applied to any flow

Test Case: Turbulent Boundary Layers

An example from Guerts (2004) of the effect of different SGS models on boundary layer development

Fig. 8.15. Snapshot of the spanwise vorticity component: (a) DNS prediction, (b) LES with Smagorinsky's model and van Driest damping, (c) LES with dynamic eddy-viscosity model.

11/34

Test Case: Stable Boundary Layers

An example from GABLS3 (Gibbs, unpublished)

Near-surface vertical velocity fluctuations as produced by OULES with the Smagorinsky (top) and Deardorff (bottom) SGS models

An example from Cabot and Moin (1999)

Figure 4. Sketch of the simulation domain for flow over a step of height h with an expansion ratio of 4 to 5. Wall stress models were used in the hatched region.

Test Case: Backward Facing Step

An example from Cabot and Moin (1999)

Figure 6. Friction coefficient on the bottom wall behind a step for the wall-resolved LES [2], wall stress models using stress balance and TBLE with a dynamic κ from Equation (12), and a global RANS $v^2 f$ model [18].

Test Case: Backward Facing Step

An example from Cabot and Moin (1999)

Figure 7. Mean streamwise velocity at different stations behind a step for the wall-resolved LES [2], and stress-balance and TBLE wall stress models. The dashed line is the height of the first computational cell, about 60 wall units near the exit.

Name	Model for $ au_i j$	Plot legend	
M0	No model	_	
M1	Smagorinsky	*	
M2	Similarity	×	
M3	Nonlinear	+	
M4	Dynamic Smagorinsky	/	
M5	Dynamic Mixed		
M6	Dynamic Nonlinear	·	

Test Case: Mixing Layer

Fig. 8.5. Comparison of the total kinetic energy E obtained from the filtered DNS (marker o) and from LES using M0-6 (see table 8.2 for labels). From [221].

Test Case: Mixing Layer

Fig. 8.6. Comparison of the streamwise energy spectrum E(k) at t = 80 obtained from the filtered DNS (marker o) and from LES using M0-6 (see table 8.2 for labels). From [221].

Test Case: Mixing Layer

Fig. 8.7. Contours of spanwise vorticity for the plane $x_3 = 3\ell/4$ at t=80 obtained from (a) the filtered DNS, restricted to the 32^3 -grid, and from LES using (b) M0, (c) M1 and (d) M4. Solid and dotted contours indicate negative and positive vorticity respectively. The contour increment is 0.05. From [221].

Accuracy of LES Models

- An example of the accuracy of LES models to predict flow statistics (from Porté-Agel et al 2000 and Andren et al. 1994)
- Φ is non-dimensional velocity gradient
- In panel (a), Dashed line: traditional Smagorinsky model with $C_0 = 0.1$ and n = 2; dot-dashed line: traditional Smagorinsky model with $C_0 = 0.17$ and n = 1; solid line: standard dynamic model

Accuracy of LES Models

An example of the accuracy of LES models to predict flow statistics (from Porté-Agel et al 2000)

Non-dimensional velocity gradient

An example of the accuracy of LES models to predict flow statistics (from Porté-Agel et al 2000)

left: Streamwise velocity spectra from Perry et al (1986) right: Streamwise velocity spectra at two different resolutions

An example from Lu et al (2008)

left: velocity spectra from DNS right: velocity spectra from filtered DNS and LES

Test Case: Isotropic Turbulence LES

An example from Lu et al (2008)

energy decay

An example from Wan et al (2007)

Test Case: Flow Over a 2D Hill

An example from Wan et al (2007)

Velocity comparison with data and different models

Test Case: Flow Over a 2D Hill

An example from Wan et al (2007)

Velocity comparison with data and different models

- Re-examined a typical flow used in atmospheric simulations as an analog for daytime conditions (high-Re, weakly sheared convection)
- Goal: understand mesh dependence of a particular SGS model (Deardorff 1980 type, 1-equation)

An example from Sullivan and Patton (2011)

• Domain: $5120 \times 5120 \times 2048 \text{ m}^3(x, y, z)$

Run	Grid points	$(\Delta x, \Delta y, \Delta z)[m]$	$\Delta_f[m]$
A	32^{3}	(160, 160, 64)	154
В	64^{3}	(80,80,32)	77.2
С	128^{3}	(40,40,16)	38.6
D	256^{3}	(20,20,8)	19.3
Е	51263	(10, 10, 4)	9.6
F	1024^{3}	(5,5,2)	4.8

Example: Grid Resolution

FIG. 2. Vertical profile of virtual potential temperature $\langle \vec{\theta} \rangle$ for varying mesh resolution. Note all simulations are started with the same three-layer structure for virtual potential temperature θ_n indicated by the dotted line.

FIG. 3. Vertical profile of total temperature flux $\langle \overline{w}' \overline{\partial}'' + \mathbf{B} \cdot \hat{\mathbf{k}} \rangle / Q_*$ for varying mesh resolution.

Example: Grid Resolution

FIG. 9. Effect of mesh resolution on resolved vertical velocity skewness $S_{\overline{w}}$. The lines legend indicates the mesh size of the various simulations. The skewness is computed using the resolved (or filtered) vertical velocity field $\overline{w} = \overline{w}^n$. The observations are taken from the results provided in Moeng and Rotuno (1990).

Example: Grid Resolution

FIG. 12. Effect of mesh resolution on resolved third-order moments (left) $\gamma_a = \langle \overline{w}^{\prime 2} \overline{\partial}^{\prime \prime} \rangle$ and (right) $\gamma_b = \langle \overline{w}^{\prime \prime} \overline{\partial}^{\prime \prime 2} \rangle$.

Example: Grid Size

An example from Gibbs, Fedorovich, van Heerwarden (unpublished)

Mean-flow (a) and variance (b) profiles of along-slope velocity and buoyancy in the katabatic flow with $B_i = -0.5 \text{ m}^{2-3}$, $\nu = \kappa = 10^{-4} \text{ m}^{2-1}$, $N = 1 \text{ rad s}^{-1}$, and 60° slope. Solid lines correspond to the lower-axis variable and dashed lines correspond to the upper-axis variables.

 $\begin{array}{l} \textbf{Red: } X \times Y \times Z = 0.32 \times 0.32 \times 1.5 \ m^3; \ n_x \times n_y \times n_y = 128 \times 128 \times 600 \, . \\ \textbf{Black: } X \times Y \times Z = 0.64 \times 0.64 \times 1.5 \ m^3; \ n_x \times n_y \times n_z = 256 \times 256 \times 600 \, . \\ \textbf{Blue: } X \times Y \times Z = 0.64 \times 0.32 \times 1.5 \ m^3; \ n_x \times n_y \times n_z = 256 \times 128 \times 600 \, . \\ \textbf{Green: } X \times Y \times Z = 0.32 \times 0.64 \times 1.5 \ m^3; \ n_x \times n_y \times n_z = 128 \times 256 \times 600 \, . \\ \textbf{Gray: } X \times Y \times Z = 1.28 \times 0.64 \times 1.5 \ m^3; \ n_x \times n_y \times n_z = 512 \times 256 \times 600 \, . \\ \textbf{Gyan: } X \times Y \times Z = 0.64 \times 1.28 \times 1.5 \ m^3; \ n_x \times n_x \times n_z = 256 \times 512 \times 600 \, . \\ \end{array}$

Example: Grid Size

An example from Gibbs, Fedorovich, van Heerwarden (unpublished)

Slope-normal and cross-flow velocity variances (a) and kinematic slope-normal turbulent fluxes of momentum and buoyancy (b) in the katabatic flow with $B_i = -0.5 \text{ m}^2\text{s}^{-1}$, $v = \kappa = 10^{-4} \text{ m}^2\text{s}^{-1}$, $N = 1 \text{ rad s}^{-1}$, and 60° slope. Solid lines correspond to the lower-axis variable and dashed lines correspond to the upper-axis variables.

 $\begin{array}{l} \textbf{Red: } X \times Y \times Z = 0.32 \times 0.32 \times 1.5 \ m^3; \ n_x \times n_y \times n_y = 128 \times 128 \times 600 \, , \\ \textbf{Black: } X \times Y \times Z = 0.64 \times 0.64 \times 1.5 \ m^3; \ n_x \times n_y \times n_z = 256 \times 235 \times 600 \, . \\ \textbf{Blue: } X \times Y \times Z = 0.64 \times 0.32 \times 1.5 \ m^3; \ n_x \times n_y \times n_z = 256 \times 128 \times 600 \, . \\ \textbf{Green: } X \times Y \times Z = 0.32 \times 0.64 \times 1.5 \ m^3; \ n_x \times n_y \times n_z = 128 \times 256 \times 600 \, . \\ \textbf{Gray: } X \times Y \times Z = 1.28 \times 0.64 \times 1.5 \ m^3; \ n_x \times n_y \times n_z = 512 \times 256 \times 600 \, . \\ \textbf{Gyan: } X \times Y \times Z = 0.64 \times 1.28 \times 1.5 \ m^3; \ n_x \times n_x \times n_z \times n_z = 256 \times 512 \times 600 \, . \\ \end{array}$

34 / 34