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Recap: Eddy-Viscosity Models

• In Lecture 12 we said that eddy-viscosity models are of the
form:

momentum τij = −2νT S̃ij

scalars qi = −DT
∂θ̃

∂xi

where
DT =

νT
Pr
,

• S̃ij is the filtered strain rate

• νT is eddy-viscosity

• DT is eddy-diffusivity

• Pr is the SGS Prandtl number
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Recap: Smagorinsky Model

νT = (CS∆)2|S̃|

• ∆ = (∆x∆y∆z)
1
3 is the effective grid scale (see Deardorff

1970 or Scotti et al, 1993)

• CS∆ is the length scale – squared for dimensional consistency

• |S̃| =
√

2S̃ijS̃ij is the magnitude of the filtered strain rate

tensor with units of [T−1]. It serves as part of the velocity
scale – think ∂〈u〉/∂z in Prandtl’s theory
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Recap: Smagorinsky Model

• The final model is

τij −
1

3
τkkδij = −2νT S̃ij = −2(CS∆)2|S̃|S̃ij

• In order to close the model, we need a value of CS (usually
called the Smagorinsky or Smagorinsky-Lilly coefficient)

• In Lecture 13 we derived an expression for the Smagorinsky
coefficient and showed that CS ≈ 0.17 (for a spectral cutoff
filter)
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Recap: Smagorinsky Model

• Recall that dimensionally,

νT =

[
L2

T

]
∼ U`

• Smagorinsky model prescribed both U and `

• Subsequent models attempted to improve adaptation of the
eddy-viscosity approach to local flow properties

• One-equation models prescribe `, while U is predicted by the
flow

• In two-equation models, both ` and U are predicted by the
flow
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Two-Equation Eddy-Viscosity Models

• Deardorff (1973): model the evolution of τij (Sagaut pg. 243)

∂τij
∂t

= −∂(ūkτij)

∂xk
− τik

∂ūj
∂xk
− τjk

∂ūi
∂xk

−
∂(u′iu

′
ju
′
k)

∂xk︸ ︷︷ ︸
I

+ p′
(
∂u′i
∂xj

+
∂u′j
∂xi

)
︸ ︷︷ ︸

II

−∂(u′ip
′)

∂xj︸ ︷︷ ︸
III

−
∂(u′jp

′)

∂xi︸ ︷︷ ︸
IV

− 2ν

(
∂u′i
∂xk

∂u′j
∂xk

)
︸ ︷︷ ︸

V

• where subgrid kinetic energy kr = τkk/2

• The terms in this equation have to be modeled.
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Two-Equation Eddy-Viscosity Models

• I (tripple correlation)

u′iu
′
ju
′
k = −C3mf(kr, τij)

• II (pressure-strain correlation)

p′
(
∂u′i
∂xj

+
∂u′j
∂xi

)
= −Cmf(kr, τij)

• III, IV (pressure-velocity correlations) were ignored

• V (dissipation)

2ν

(
∂u′i
∂xk

∂u′j
∂xk

)
= Cef(kr)

• where Cm = 4.13, Ce = 0.7, and C3m = 0.2
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Two-Equation Eddy-Viscosity Models

• To close the model, a separate equation for subgrid turbulence
kinetic energy (kr) is required.

• This model is similar to the a 2nd-order RANS closure (see
Speziale 1991 for a review of RANS closures including
2nd-order models)

• The need for these additional equations add significantly to
the complexity and computational cost of the simulation

• Despite the added complexity, the models are still subject to
the limitations of the basic eddy-viscosity approach
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One-Equation Eddy-Viscosity Models

• Deardorff (1980) suggested a simpler 1-equation approach to
avoid the need to solve prognostic equations for τij (in
addition to N-S equations)

• This model is equivalent to a k-` 1-equation RANS model
(see Speziale, 1991)

• This was also proposed earlier for the isotropic part of a 2-part
eddy-viscosity model by Schumann (1975).
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One-Equation Eddy-Viscosity Models

• However, the model is usually credited to Deardorff (especially
in the atmospheric community)

• Models based on D80 are popular in the atmospheric
boundary layer due to the ability to include SGS transport or
energy drain effects as extra parameters in the SGS TKE
equation (e.g. for SGS canopy drag, buoyancy forces, etc.)
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One-Equation Eddy-Viscosity Models

• In this model, ` is prescribed and U is predicted by the flow

• Assume that U ∼
√
kr

• Thus, eddy-viscosity is modeled as

νT = C1`d
√
kr

• Here, C1(∼ 0.1) is the “Deardorff coefficient”

• C1`d is ` (similar to Smagorinsky) and
√
kr is U

• Thus, the model is given by

τij = −2C1`d
√
krS̃ij

• In order to close this model, we must prescribe `d and
determine kr from a separate transport equation.
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One-Equation Eddy-Viscosity Models

• The parameterized dimensional form of the kr transport
equation according to D80 is given by:

∂kr
∂t

= −∂ũjkr
∂xj

+ 2νTSijSij −DT
∂b̃

∂z
+

∂

∂xj
2νT

∂kr
∂xj
− ε

where, b̃ = (g/θo)θ̃ is buoyancy, θo is a constant reference
potential temperature, and θ̃ is potential temperature

• To complete this transport equation and close the model, we
need expressions for νT , DT , and ε
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One-Equation Eddy-Viscosity Models

• According to D80

νT = C1`d
√
kr

DT =

(
1 + 2

`d
∆

)
νT

ε = Ce
k
3/2
r

`d

where

Ce = fc

(
0.19 + 0.51

`d

∆

)
and

fc = 1 +
2(

zw

∆zw
+ 1.5

)2

− 3.3
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One-Equation Eddy-Viscosity Models

• A note from D80 about fc, which is used to enhance near-wall
dissipation (in our notation):

“Close to the surface, however, Ce was in-
creased by a ‘wall-effect’ factor of up to
3.9 to prevent kr from becoming unduly
large there ”• Some later studies (e.g. Moeng 1984) merely set Ce = 3.9 at

the first model level.

• Others follow that of Nieuwstadt (1990) by using fc

• Your instructor believes the latter is more physically
meaningful and in the spirit of Deardorff’s comment.
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One-Equation Eddy-Viscosity Models

• Finally, we have to prescribe `d

`d =


∆

∂b̃

∂z
≤ 0

min

[
∆,

1

2

√
kr

N

]
∂b̃

∂z
> 0

where N =
√
∂b̃/∂z is the Brunt-Väisälä frequency

• D80 tied the notion of the grid scale to static stability (i.e., as
static stability increases, the characteristic length scale should
reduce to less than the effective grid spacing)
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One-Equation Eddy-Viscosity Models

• The complete D80 model in dimensional form:

τij = −2C1`d
√
krS̃ij

∂kr
∂t

= −∂ũjkr
∂xj

+ 2νTSijSij −DT
∂b̃

∂z
+

∂

∂xj
2νT

∂kr
∂xj
− ε

νT = C1`d
√
kr

DT =

(
1 + 2

`d
∆

)
νT

ε = Ce
k
3/2
r

`d

`d = ∆(∂b̃/∂x3 ≤ 0),min
[
∆, 0.5

√
kr/N

]
(∂b̃/∂x3 > 0)
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One-Equation Eddy-Viscosity Models

• Another form of the transport equation is given in
dimensionless form (see Geurts pg 227, Debliquy 2001)

∂kr
∂t

= −∂ũjkr
∂xj

+
∂

∂xj

(
C2

C1
∆
√
kr
∂kr
∂xj

)
+

1

Re

∂2kr
∂x2j

+ Π− ε

• viscous dissipation is typically modeled based on isotropy

assumption ε = (Ck/∆)k
3/2
r

• C2 is a constant on the order of unity and Ck ≈ 1.7 is the
Kolmogorov “constant”

• Note: the transport terms for pressure and SGS kinetic energy
have been modeled by the 2nd-term on the RHS of the
equation
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One-Equation Eddy-Viscosity Models

Gibbs and Fedorovich (2016) addressed issues w/ D80

• Does the closure require the stability-dependent turbulence
length-scale?

• The Prandtl number formulation can lead to stability
patchiness

• Is there a need for near-wall enhancement of dissipation
anymore?
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One-Equation Eddy-Viscosity Models

• To address the first point, GF16 eliminates the stability
dependence of the length scale assuming that the grid spacing
is small enough to match, at least approximately, the reduced
turbulence length-scale?

`d = ∆

20 / 33



One-Equation Eddy-Viscosity Models

• To address the second point, GF16 creates a new formulation
of the Prandtl number (Pr = νT /DT )

• Using the D80 formulations

Pr =

(
1 + 2

`d
∆

)−1
which means based on the stability criteria

Pr =

{
1/3 ∂b̃

∂z ≤ 0

→ 1 as `d → 0 ∂b̃
∂z > 0

• This means that under stable conditions, with `d < ∆, νT is
persistently smaller than DT , while most studies (e.g., Ohya
2001, Grachev et al. 2007, Zilitinkevich et al. 2012) show
that at least with moderate stability Pr≈ 1.
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One-Equation Eddy-Viscosity Models

• In addition, GF16 reported that the use of the D80 approach
sometimes led to problematic patchiness of the resolved fields
when adjoining cells were of opposite stability.

• The new formulation is:

Pr =


(

3− 2e−Ri2
)−1

∂b̃
∂z ≤ 0

1 ∂b̃
∂z > 0

where Ri is the gradient Richardson number

Ri =

∂b̃

∂z(
∂ũ

∂z

)2

+

(
∂ṽ

∂z

)2
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One-Equation Eddy-Viscosity Models

• C1 is D80, C2 is GF16

• The outcome is that the
relative effect of
mechanical mixing is
enhanced with stable
stratification compared
to the original
formulation of D80
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One-Equation Eddy-Viscosity Models

• Finally, GF16 suggests
that near-wall
enhancement of
dissipation is
unnecessary, provided
that the grid spacing is
adequately small.

• This argument follows
the findings in Moeng et
al (2007), which
effectively corresponds to
setting fc = 1
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One-Equation Eddy-Viscosity Models

• The GF16 modifications to D80 are summarized here

νT = C1∆
√
kr ,

DT =

{(
3− 2e−Ri2

)
νT

∂b̃
∂z ≤ 0

νT
∂b̃
∂z > 0

,

ε = 0.7
E

3
2

∆
.
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One-Equation Eddy-Viscosity Models
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• New formulation seems to better capture near-surface TKE
until flow becomes really stable (t ≈ 8h)

• Both formulations seem to overpredict u∗ under moderate
stability and overpredict when the flow becomes more stable.
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One-Equation Eddy-Viscosity Models
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• New formulation seems to better capture near-surface stability
of the flow

• New formulation seems to better capture the near-surface
sensible heat flux
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One-Equation Eddy-Viscosity Models

Gibbs and Fedorovich (2016) has weak points

• Run for a single case

• Grid spacing of 10 m might be too coarse to meet the
assumptions of the modifications

• The LES code used was driven (initialized and nudged in
time) by a large-scale weather model (WRF), which means
the formulations may be sensitive to model bias

• The LES code uses low-order advection schemes
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Two-Point Eddy-Viscosity Models

• Based on Metais and Lesieur, 1992

• See Sagaut pg 124 or Lesieur et al., 2005 “Large-Eddy
Simulation of Turbulence”

• This model is an attempt to go beyond the Smagorinsky
model while keeping, in physical space, the same scaling as
the spectral eddy-viscosity model of Kriachnan (1976)
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Two-Point Eddy-Viscosity Models

• Idea: in physical space build an eddy-viscosity normalized by√
E~x(kc)

kc
with kc =

π

∆

and where E~x is the local kinetic energy spectrum at point ~x
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Two-Point Eddy-Viscosity Models

• E~x must be evaluated in terms of physical space quantities.
The best candidate for this is the 2nd-order structure function:

F iso(r) =
〈

[~u(~x, t)− ~u(~x+ ~r, t)]2
〉

• Note: the isotropic 2nd-order structure function spectrum
(Fourier transform) is equivalent to the the Kolmogorov k−5/3

energy spectrum

• See Pope sections 6.2 and 6.4, Wyngaard (2010), Gibbs and
Fedorovich (2016b) for the relationship between structure
functions and energy spectrum

31 / 33



Two-Point Eddy-Viscosity Models

• For the two-point eddy-viscosity model, the local structure
function is used

F2(~x,∆) =

〈[
~̃u(~x, t)− ~̃u(~x+ ~r, t)

]2〉
||~r||

where we now have a local statistical average over the nearest
6 points (or 4 points in a boundary layer).

• Assuming a k−5/3 energy spectrum from 0 to kc, we get

νT (~x,∆, t) = 0.0105C
−3/2
k ∆

√
F2(~x,∆)

where Ck is the Kolmogorov ”constant”
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Two-Point Eddy-Viscosity Models

• If we replace the velocity increments by 1st-order spatial
derivatives, we can show that

νT ≈ 0.777(CS∆)2
√

2S̃ijS̃ij − ω̃iω̃i

where ω̃ = ~∇× ~̃u is the filtered vorticity.

• We can imagine that the two-point (or structure function)
model is the Smagorinsky model in a strain/vorticity
formulation
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