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Overview

1 Recap: Eddy-Viscosity Models

2 Smagorinsky Model
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Eddy-Viscosity Models

• In Lecture 12 we said that eddy-viscosity models are of the
form:

momentum τij = −2νT S̃ij

scalars qi = −DT
∂θ̃

∂xi

where
DT =

νT
Pr
,

• S̃ij is the filtered strain rate

• νT is eddy-viscosity

• DT is eddy-diffusivity

• Pr is the SGS Prandtl number
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Eddy-Viscosity Models

• This is the LES equivalent to 1st-order RANS closure
(k-theory or gradient transport theory) and is an analogy to
molecular viscosity

• Turbulent fluxes are assumed to be proportional to the local
velocity or scalar gradients

• In LES, this is the assumption that stress is proportional to
strain: τij ∼ S̃ij

• The SGS eddy-viscosity νT must be parameterized
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Eddy-Viscosity Models

• Dimensionally

νT =

[
L2

T

]
• In almost all SGS eddy-viscosity models:

νT ∼ U`

• Different models use different U and `
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Eddy-Viscosity Models

Interpretation

• Recall that we can interpret the eddy-viscosity as adding to
the molecular viscosity.

2
∂

∂xj

[
(νT + ν) S̃ij

]
What does the model do?

• We can see it effectively lowers the Reynolds number of the
flow

• It provides all of the energy dissipation for high Re flows
(when 1/Re⇒0).
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Smagorinsky Model

• One of the first and most popular eddy-viscosity models for
LES is the Smagorinsky model (Smagorinsky 1963)

• The model was originally developed for general circulation
(large-scale atmospheric) models

• The model did not remove enough energy in this context
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Smagorinsky Model

• The Smagorinsky model was applied by Deardorff (1970) in
the first reported LES

• Deardorff used Prandtl’s mixing length idea (1925) applied at
the SGSs (see Pope Ch. 10 or Stull, 1988 for a full review of
mixing length)

8 / 24



Smagorinsky Model

Prandtl’s mixing length – for a general scalar quantity q with an
assumed linear profile:

• A turbulent eddy moves a parcel of air by an
amount z′ towards a level z where we have
no mixing or other change

• q will differ from the surrounding air by:

q′ = −
(
∂〈q〉
∂z

)
z′

i.e., the scalar will change proportional to its
local gradient
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Smagorinsky Model

Prandtl’s mixing length – likewise, for velocity u with an
assumed linear profile:

• A turbulent eddy moves a parcel of air by an
amount z′ towards a level z where we have
no mixing or other change

• u will differ from the surrounding air by:

u′ = −
(
∂〈u〉
∂z

)
z′

i.e., the velocity will change proportional to
its local gradient
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Smagorinsky Model

Prandtl’s mixing length

• In order to move up a distance z′, our air parcel must have
some vertical velocity w′

• If turbulence is such that w′ ∝ u′, then w′ = Cu′

• We have two cases:

∂u

∂z
> 0⇒ w′ = −Cu′

∂u

∂z
< 0⇒ w′ = Cu′

• Combining these, we get that:

w′ = C

∣∣∣∣∂〈u〉∂z

∣∣∣∣ z′
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Smagorinsky Model

Prandtl’s mixing length

• We now have:

q′ = −
(
∂〈q〉
∂z

)
z′

w′ = C

∣∣∣∣∂〈u〉∂z

∣∣∣∣ z′
• We can form a kinematic flux (conc. * velocity) by

multiplying the two together:

〈w′q′〉 = −C〈(z′)2〉
∣∣∣∣∂〈u〉∂z

∣∣∣∣ ∂〈q〉∂z
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Smagorinsky Model

Prandtl’s mixing length

• Prandtl assumed that the constant of proportionality is unity
and called z′ the mixing length (`)

〈w′q′〉 = −`2
∣∣∣∣∂〈u〉∂z

∣∣∣∣ ∂〈q〉∂z

• We can replace q′ with any variable in this relationship
(e.g., u′)

• You can think of (z′)2 or `2 as the variance of a parcel’s
movement
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Smagorinsky Model

Prandtl’s mixing length - what is it? Let’s ask Prandtl.

“may be considered as the diameter of the
masses of fluid moving as a whole in each indi-
vidual case; or again, as the distance traversed
by a mass of this type before it becomes blended
in with neighbouring masses
. . .
somewhat similar, as regards effect, to the
mean free path in the kinetic theory of gases
. . .
only a rough approximation ”In other words, the mixing length according to Prandtl is the

average distance that a fluid mass will travel before it is changed
by the new environment
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Smagorinsky Model

Back to the Smagorinsky model
Recall:

• Dimensionally

νT =

[
L2

T

]
• In almost all SGS eddy-viscosity models:

νT ∼ `U

• Different models use different ` and U

• Use Prandtl’s mixing length applied at the SGSs

νT = (CS∆)2|S̃|︸ ︷︷ ︸
``T−1 = `U
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Smagorinsky Model

νT = (CS∆)2|S̃|

• ∆ = (∆x∆y∆z)
1
3 is the effective grid scale (see Deardorff

1970 or Scotti et al, 1993)

• CS∆ is the length scale – squared for dimensional consistency

• |S̃| =
√

2S̃ijS̃ij is the magnitude of the filtered strain rate

tensor with units of [T−1]. It serves as part of the velocity
scale – think ∂〈u〉/∂z in Prandtl’s theory
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Smagorinsky Model

• The final model is

τij −
1

3
τkkδij = −2νT S̃ij = −2(CS∆)2|S̃|S̃ij

• In order to close the model, we need a value of CS (usually
called the Smagorinsky or Smagorinsky-Lilly coefficient)
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Smagorinsky Model

• Lilly (1967) proposed a method to determine CS (see also
Pope pg 587)

• We assume that we have a high-Re flow such that ∆ can be
taken to be in the inertial subrange of turbulence

• The mean energy transfer across ∆ must be balanced, on
average, by viscous dissipation (note: for ∆ in the inertial
subrange this is not an assumption)

ε = 〈Π〉

recall: Π = −τijS̃ij
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Smagorinsky Model

• Using an eddy-viscosity model, we get

Π = −τijS̃ij = 2νT S̃ijS̃ij = νT |S̃|2

• We can use the Smagorinsky model

νT = (CS∆)2|S̃|

to arrive at:
Π = (CS∆)2|S̃|3
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Smagorinsky Model

• The square of |S̃| can be written as (see Liily 1967 and Pope
pg 579):

|S̃|2 = 2

∫ ∞
0

k2Ĝ(k)2E(k)dk

where (̂G)(k) is the filter transfer function and E(k) is the
energy spectrum

• Recall that for a Kolmogorov spectrum in the inertial
subrange:

E(k) ∼ Ckε
2
3k−

5
3
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Smagorinsky Model

• Substitution of the Kolmogorov E(k) yields

|S̃|2 = 2

∫ ∞
0

k2Ĝ(k)2E(k)dk ≈ 2

∫ ∞
0

k2Ĝ(k)2Ckε
2
3k−

5
3dk

≈ afCkε
2
3 ∆−

4
3

where

af = 2

∫ ∞
0

(k∆)
1
3 Ĝ(k)2∆dk

Note that af depends on the filter, but is independent of ∆
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Smagorinsky Model

• We can rearrange |S̃|2 = afCkε
2
3 ∆−

4
3 to get:

ε =

[
〈|S̃|2〉

afCk∆−
4
3

] 3
2

• Recall that we are equating viscous dissipation and the
average Smagorinsky SGS dissipation:

ε = 〈Π〉

where
Π = (CS∆)2|S̃|3
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Smagorinsky Model

• Combining these expression yields:

(CS∆)2〈|S̃|3〉 =

[
〈|S̃|2〉

afCk∆−
4
3

] 3
2

Algebra then gives us:

CS =
1

(afCk)3/4

(
〈|S̃ij |3〉
〈|S̃ij |2〉3/2

)− 1
2
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Smagorinsky Model

• We can approximate that 〈|S̃ij |2〉3/2 ≈ 〈|S̃ij |3〉
• We can also make use of af = (3/2π)4/3 for a sharp cutoff

filter (see Pope)

• Substitution yields

CS =
1

π

(
2

3Ck

) 3
4

• Ck is the Kolmogorov “constant” and is generally taken as
Ck ≈ 1.5-1.6. Using this values leads to

CS ≈ 0.17
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