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LES and numerical methods

• LES requires that the filtered equations of motion (see
Lectures 6 and 7) be solved on a numerical grid

• In LES we need to accurately represent high wavenumber
turbulent fluctuations (small scale turbulence)

• This means either we use high-order schemes (e.g., spectral
methods) or we use fine grids with low-order schemes (e.g.,
2nd-order central differences)
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LES and numerical methods

• High-order schemes are more expensive, but for a given mesh
they are more accurate (see Pope 571-579 for a discussion of
resolving filtered fields)

• Low-order finite difference (or volume) schemes provide
flexibility of geometry but give rise to complications when
modeling small scales motions

• For more complete reviews of LES and numerics, see Guerts
chapter 5 and Sagaut chapter 8.2, 8.3
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LES and numerical methods
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LES and numerical methods

• The filter applied in LES can be either implicit or explicit

• Implicit filtering: The grid (or numerical basis) is assumed to
be the LES low-pass filter

• Explicit filtering: A filter (typically box or Gaussian) is
applied to the numerical grid (i.e., explicitly to the discretized
N-S equations)
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LES and numerical methods

Implicit filtering

• Pros: takes full advantage of the numerical grid resolution

• Cons: for some methods it is helpful to know the shape of the
LES filter (this can be difficult to determine for some
numerical methods). Truncation error can also become an
issue.

7 / 35



LES and numerical methods

Explicit filtering

• Pros: truncation error is reduced, filter shape is well defined

• Cons: loss of resolution – the total simulation time goes up
as ∆4

g (where ∆g is the grid spacing) so maintaining the same
space resolution as an implicit filter with ∆g/∆ = 0.5 will
take 24 = 16 more grid points
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LES and numerical methods

• Truncation errors can be on the order of SGS
contributions for low-order finite-difference schemes unless
the filter width ∆ is considerably larger than the grid spacing
(see Ghosal 1996, Chow and Moin 2003)

• Ghosal and Chow suggested a filter-to-grid ratio of 4 when
using a 2nd-order centered scheme.
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LES and numerical methods

Ghosal (1996) key findings

• Consider a von Kármán spectrum, e.g.,

E(k) =
ak4

(b+ k2)17/6

The discretization error exceeds the subgrid error for
2nd-8th-order schemes. Additionally, for spectral schemes, the
aliasing error (if 3/2 rule isn’t used) will dominate subgrid
errors.

• Reducing the ratio C = ∆g/∆ to values less than 1 reduces
the error faster (by a factor of C−3/4 than increasing the
order of accuracy (a factor of 2 reduction when moving from
2nd to 8th)
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LES and numerical methods

• 2nd-order schemes may have undesirable truncation errors
(with respect to SFS model terms)

• However, even-order schemes are non-dissipative

• SFS models (on average) are purely dissipative

• Therefore, all hope is not lost!
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LES and numerical methods

• The same is not true for odd-order schemes common in
compressible flow solutions.

• Examples include upwind-biased, total variation diminishing
(TVD), or fixed least squares (FLS) schemes

• See Numerical Methods for Conservation Laws by Leveque
(1992) for a review of this numerical approach

• Using these types of schemes with LES is somewhat
controversial since their dissipative nature introduces an eddy
viscosity like term to the solution (more later)
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LES and numerical methods

• The total numerical dissipation in many cases introduced by
upwind schemes is greater than that of SFS viscosity models
(if no pre-filtering is performed) – even for 7th-order schemes
(Beaudan and Moin, 1994)

• For the Smagorinsky model (more later) Garnier et al. (1999)
found that up to 5th-order upwind schemes in decaying
isotropic turbulence are more dissipative

• For the Deardorff scheme, Gibbs and Fedorovich (2014b)
found that the same result when applied to an atmospheric
convective boundary layer (CBL)
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LES and numerical methods

Gibbs and Fedorovich (2014b) overview

• Studied two idealized convective boundary layers – one with a
mean shear of 10 m s−1 and the other with no mean shear

• Each case was run with our traditional LES code (OU-LES)
and the WRF model used in LES mode (WRF-LES) on
identical 10.24× 10.24× 2 km2 numerical grids with 20-m
spacing

• OU-LES used 2nd-order centered finite difference
approximations, WRF-LES used 5th-order upwind-biased finite
differences

• Compared turbulence spectra and other statistics
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LES and numerical methods

Figure: u-component velocity for shear-free (top) and shear-driven (bottom) from
OU-LES (left) and WRF-LES (right) at z/zi = 0.25 15 / 35



LES and numerical methods

Figure: w -component velocity for shear-free (top) and shear-driven (bottom) from
OU-LES (left) and WRF-LES (right) at z/zi = 0.25 16 / 35



LES and numerical methods
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Figure: normalized 1D u-component spectra (left: x-dir, right: y -dir) for shear-free
(top) and shear-driven (bottom) from OU-LES (left) and WRF-LES (right) at
z/zi = 0.25
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LES and numerical methods
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Figure: normalized 1D w -component spectra (left: x-dir, right: y -dir) for shear-free
(top) and shear-driven (bottom) from OU-LES and WRF-LES at z/zi = 0.25 18 / 35



LES and numerical methods

Figure: normalized 2D u-component spectra for shear-free (top) and shear-driven
(bottom) from OU-LES (left) and WRF-LES (right) at z/zi = 0.25 19 / 35



LES and numerical methods

Figure: normalized 2D w -component spectra for shear-free (top) and shear-driven
(bottom) from OU-LES (left) and WRF-LES (right) at z/zi = 0.25 20 / 35



LES and numerical methods

Figure: Amplification factor for 2nd-order centered scheme with RK3 time scheme.
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LES and numerical methods

Figure: Amplification factor for 5th-order upwind scheme with RK3 time scheme.
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LES and numerical methods

• Gibbs and Fedorovich (2014a) looked at the effect of time
integration schemes on turbulence spectra and moments

• You can see how many things complicate the understanding of
LES results – the model itself, the choice of cutoff scale, the
model numerics, etc.

• These items can also act to determine the spectral resolution
of the simulation – meaning what minimum scale of features
is trustworthy from a theoretical and statistical standpoint
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Subgrid-Scale Modeling

• One of the major hurdles to making LES a reliable tool for
engineering and environmental applications is the formulation
of SGS models and the specification of model coefficients
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Subgrid-Scale Modeling

• Recall: we can define 3 different
“scale regions” in LES
– resolved scales
– resolved SFS
– SGSs

• We can also decompose a general
variable as

φ = φ̃+ φ′

25 / 35



Subgrid-Scale Modeling

• When we talk about SGS models
we are specifically talking about
the scales below ∆ and NOTthe
resolved SFS

• We will specifically discuss the
resolved SFSs when we talk about
filter reconstruction later on (time
permitting)
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Subgrid-Scale Modeling

• We will focus on LES with explicit
SGS models

• A class of LES referred to as
Implicit LES (ILES) also exists

• Note: these terms are different
than implicit/explicit filtering
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Subgrid-Scale Modeling

• ILES was first developed for
compressible flow

• ILES methods are numerical
methods that capture the
energy-containing and inertial
ranges of turbulent flows, while
relying on their own intrinsic
dissipation to act as a subgrid
model
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Subgrid-Scale Modeling

• ILES assumes the SGSs are purely
dissipative and act in a similar way
to dissipative numerical schemes

• In general, ILES uses
monotinicity-preserving numerical
schemes

• See Grinstein et al. (2007) on
Canvas and website
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Modeling τij

• Our discussion of modeling τij will follow Sagaut (pages
49-50, 59-60) and Pope (pages 582-583)

• We can decompose the nonlinear term as follows by using
φ = φ̃+ φ′

ũiuj =
(
ũi + u′i

) (
ũj + u′j

)∼
= ˜̃uiũj + ˜̃uiu′j + ˜̃uju′i + ũ′iu

′
j
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Modeling τij

ũiuj =
(
ũi + u′i

) (
ũj + u′j

)∼
= ˜̃uiũj + ˜̃uiu′j + ˜̃uju′i + ũ′iu

′
j

• We now have the nonlinear term as a function of ũi and ũ′i
• Two different basic forms of the decomposition (based on the

above equation) are prevalent
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Modeling τij

• The first one is based on the idea that all terms appearing in
the evolution of a filtered quantity should be filtered

τij = Cij +Rij = ũiuj − ˜̃uiũj
where Cij = ˜̃uiu′j + ˜̃uju′i ⇒interaction between resolved and

SFSs

and Rij = ũ′iu
′
j ⇒SFS “Reynold’s” stress
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Modeling τij

• A second definition can be obtained by further decomposition
of ˜̃uiũj ˜̃uiũj =

( ˜̃uiũj − ũiũj)︸ ︷︷ ︸
Lij

+ũiũj

where Lij ⇒
Leonard stress – the interaction among the
smallest resolved scales)

Our total decomposition is now

τij = Lij + Cij +Rij = ũiuj − ũiũj

• See Leonard (1974)
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Modeling τij

τij = Lij + Cij +Rij

• If our filter is a Reynold’s operator, the Cij and Lij vanish

• Note: while τij and Rij are invariant to Galilean
transformations, Lij and Cij are not (see Speziale 1985)

• As a result, the decomposition given above (for the most
part) is not used anymore

• However, we will see similar terms again in our SGS models
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Modeling τij

• Germano purposed a more rigorous decomposition into
generalized filtered moments

• Under this framework, the generalized moments look just like
“Reynolds” moments, our original τij

• See Germano (1992) on Canvas and website

• This is also recommended reading for a discussion of filtering
and the relationship between LES filters and Reynolds
operators
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