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Turbulence modeling (alternative strategies)

e Our discussion of turbulence modeling has centered around
separating the flow into resolved and SFSs

e We have focused on using a low-pass filtering operation to
accomplish this separation

e The goal of this procedure is to reduce the number of degrees
of freedom in our numerical solution — i.e., make them more
computationally affordable

e This is not the only way to accomplish complexity reduction in
a turbulent flow

o We will briefly review a couple of different methods
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Coherent Vortex Simulations (CVS)

e See Farge and Schneider (2001) on Canvas or class website

e The idea of CVS is that the turbulent flow field is decomposed
into coherent (organized) and incoherent (random)
components.

e The decomposition is accomplished by using either a
continuous or orthonormal wavelet filter



Coherent Vortex Simulations (CVS)

e CVS, like LES, is classified as a semi-deterministic turbulence
simulation method

e It is called semi-deterministic because some degrees of
freedom are explicitly (deterministically) computed while the
influence of others is modeled.

e DNS is considered fully deterministic since all scales of motion
are resolved
e RANS is a fully statistical approach since only the steady

solution of the mean flow field is solved deterministically,
while the impact of all fluctuations are modeled



Coherent Vortex Simulations (CVS)
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Figure: Methods to compute turbulent flows. Adapted from Farge and
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Coherent Vortex Simulations (CVS)

e For CVS, a nonlinear wavelet filter is applied to the N-S
equations

e Coherent vortices are extracted without the need to impose an
a priori cut-off scale — unlike, e.g., LES

e The only a priori requirement is that the random (filtered-out)
motions have a ~Gaussian PDF
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Coherent Vortex Simulations (

e In principle, the CVS approach deterministically solves the
evolution of coherent vortices in a wavelet basis (we will
review this in a minute)

e The wavelet basis adapts to regions of strong gradients

e Thus, CVS resolves the nonlinear interactions of coherent
vortices

e Nonlinear vortex interactions lead to incoherent motions —
these motions must be modeled



Figure: Total (left), coherent (center), and incoherent vorticity (right).
From Farge and Schneider (2001).

0



Coherent Vortex Simulations (CVS)

Figure: Total (top), coherent (bottom left), and incoherent vorticity @
(bottom right). Adapted from Farge and Schneider (2001).
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Coherent Vortex Simulations (CVS)

e In the original CVS formulation, the separation between
coherent and random motions is assumed absolute, with the
random part mimicking viscous dissipation

e Goldstein and Vasilyev (2004) introduced “stochastic coherent
adaptive LES" as a variation on CVS

e GV04 use CVS wavelet decomposition, but do not assume
that the wavelet filter completely eliminates all the coherent
motions from the SFSs

e Thus, GV04 assumes that the SFS components themselves
contain coherent and random components
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A brief overview of wavelet decomposition

e The CVS method uses wavelet decomposition

e We will cover a brief overview of wavelets. For a more
detailed view see:

e Daubechies (1992) — most recent printing is 2006
e Mallat (2009) — 3rd edition
o Farge (1992) — specific to turbulence research
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A brief overview of wavelet decomposition

e With the normal Fourier transform (FT), we assume a
periodic function

e The FT only tells us what wavenumber (frequency)
components exist in a signal

e Space (time) and wavenumber (frequency) information cannot
be seen at the same time

e We need space-wavenumber (time-frequency) representation
of a signal
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A brief overview of wavelet decomposition

e Why? Real-world signals are non-stationary, meaning it is
useful to know if and where some feature happens

e A stationary signal has wavenumber (frequency) content
unchanged in space (time), and all wavenumber (frequency)
components exist everywhere (at all times)

e A non-stationary signal changes wavenumbers (frequency) in
space (time)
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A brief overview of wavelet decomposition

e One early solution is the Short Time (or space) Fourier
Transform

e This technique only analyzes a small portion of signal at a
time by using a space or time window — thus it is often called
a Windowed Fourier Transform (WFT)

e The windowed segment is assumed stationary, and is applied
uniformly
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A brief overview of wavelet decomposition

e Recall, the FT is given by

= ;Tr/f(x)eikxda:

e The WFT is applied as

,s /f zksds

where s is the position over a localized region
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A brief overview of wavelet decomposition

/ 1(5)g(s),

—>

Jx)
X v

\

e The WFT is our convolution with a filter function in Fourier
space
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A brief overview of wavelet decomposition

e There are drawbacks to this approach
e The window is unchanged
e The resolution dilemma — a narrow window has poor

wavenumber (frequency) resolution, and a wide window has
poor spatial (time) resolution

e Heisenberg Uncertainty Principle — we cannot know what
wavenumber (frequency) exists at what spatial (time) intervals

0

18 /29



A brief overview of wavelet decomposition

Another approach is called wavelet decomposition

A wavelet is just some small wave

e The general idea is to decompose a signal into series of
wavelets

This approach helps overcome the resolution dilemma of
WFTs
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A brief overview of wavelet decomposition

e Wavelets offer an optimal space/frequency decomposition.

1(a,b) = |a|” /f (x_b>d:v

where W is the basis function (“Mother Wavelet”), b
translates the basis function, and a scales (dilates) the basis
function

e A mother wavelet is a prototype for generating the other
window functions
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A brief overview of wavelet decomposition
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A brief overview of wavelet decomposition

Common properties of wavelets

e A wavelet transform is a set of building blocks to construct or
represent a signal (function)

e A wavelet is a 2D expansion set (usually a basis) for a 1D
signal

e A wavelet expansion gives a space-wavenumber
(time-frequency) localization of a signal

e The calculation of coefficients can be done efficiently
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A brief overview of wavelet decomposition

Common properties of wavelets

e Wavelet systems are generated from a single scaling function
(i.e. wavelet) by simple scaling and translation

e Most useful wavelet systems satisfy the multiresolution
condition — if the basic expansion signals (the wavelets) are
made half as wide and translated in steps half as wide, they
will represent a larger class of signals exactly or give a better
approximation of any signal

e The lower resolution coefficients can be calculated from the
higher resolution coefficients by a tree-structured algorithm
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A brief overview of wavelet decomposition

Multiresolution properties of wavelets

e Analyze the signal at different frequencies with different
resolutions

e Good time resolution and poor frequency resolution at high
frequencies

e Good frequency resolution and poor time resolution at low
frequencies

e More suitable for short duration of higher frequency; and
longer duration of lower frequency components
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A brief overview of wavelet decomposition
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e One example of a wavelet is the Haar wavelet (Haar, 1910)

1 if0<z<0.5
-1 if05<zr<1
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A brief overview of wavelet decomposition

e How does wavelet decomposition break down a signal in space
and time?

real space Fourier basis
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A brief overview of wavelet decomposition

e The signal is reconstructed by combining s; and d; at the
desired level (s, ss, sss, etc).
e 1st level — s; and d;
e 2nd level — ss;, dd;, d;

Wavelet “tree” decomposition| Wavelet “tree” decomposition
Xy X X3 Xq Xs Xg X7 Xg | Xq X X3 X5 Xg Xg X; Xg
W \({ \ ({ W

S1 S, S3 Sq 1 2 dy d,
‘W4 \ ({
sS, ss, dd, dd,
5554 ddd,
For the Haar wavelet For the Haar wavelet
s,=(x,+x,)/2% d,=(x,x,)/2%
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Filtered Density Functions (FDF)

e See Colucci et al. (1998) on Canvas or class website

e In this method, the evolution of the filtered probability density
functions is solved for (i.e., we solve for the evolution of the
SFS general moments)

e Similar to general PDF transport methods 1st introduced by
Lundgren (1969) and outlined in detail in Pope chapter 12.
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Filtered Density Functions (FDF)

e Many applications use FDF for scalars in turbulent reacting
flows, while traditional equations (low-pass filtered N-S) are
solved for momentum (see Fox 2012 for a more detailed
discussion)

e This type of method is open employed for LES with
Lagrangian particle models and for chemically reactive flows

e In Lagrangian particle models it leads to a form of the
Langevin equations for SFS particle evolution

e In chemically reactive flows it has the advantage that the
reactions occur in closed form

e We will return to these type of methods later in the class
when we discuss combining LES with particle models
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