LES of Turbulent Flows: Lecture 10

Dr. Jeremy A. Gibbs

Department of Mechanical Engineering University of Utah

Fall 2016

 Turbulence modeling (alternative strategies) Coherent Vortex Simulations (CVS) Filtered Density Functions (FDF)

Turbulence modeling (alternative strategies)

- Our discussion of turbulence modeling has centered around separating the flow into resolved and SFSs
- We have focused on using a low-pass filtering operation to accomplish this separation
- The goal of this procedure is to reduce the number of degrees of freedom in our numerical solution – *i.e.*, make them more computationally affordable
- This is not the only way to accomplish complexity reduction in a turbulent flow
- We will briefly review a couple of different methods

- See Farge and Schneider (2001) on Canvas or class website
- The idea of CVS is that the turbulent flow field is decomposed into coherent (organized) and incoherent (random) components.
- The decomposition is accomplished by using either a continuous or orthonormal wavelet filter

- CVS, like LES, is classified as a semi-deterministic turbulence simulation method
- It is called semi-deterministic because some degrees of freedom are explicitly (deterministically) computed while the influence of others is modeled.
- DNS is considered fully deterministic since all scales of motion are resolved
- RANS is a fully statistical approach since only the steady solution of the mean flow field is solved deterministically, while the impact of all fluctuations are modeled

Coherent Vortex Simulations (CVS)

Figure: Methods to compute turbulent flows. Adapted from Farge and Schneider (2001)

6 / 29

- For CVS, a nonlinear wavelet filter is applied to the N-S equations
- Coherent vortices are extracted without the need to impose an *a priori* cut-off scale – unlike, *e.g.*, LES
- The only a priori requirement is that the random (filtered-out) motions have a ~Gaussian PDF

- In principle, the CVS approach deterministically solves the evolution of coherent vortices in a wavelet basis (we will review this in a minute)
- The wavelet basis adapts to regions of strong gradients
- Thus, CVS resolves the nonlinear interactions of coherent vortices
- Nonlinear vortex interactions lead to incoherent motions these motions must be modeled

Coherent Vortex Simulations (CVS)

Figure: Total (left), coherent (center), and incoherent vorticity (right). From Farge and Schneider (2001).

Coherent Vortex Simulations (CVS)

Figure: Total (top), coherent (bottom left), and incoherent vorticity (bottom right). Adapted from Farge and Schneider (2001).

- In the original CVS formulation, the separation between coherent and random motions is assumed absolute, with the random part mimicking viscous dissipation
- Goldstein and Vasilyev (2004) introduced "stochastic coherent adaptive LES" as a variation on CVS
- GV04 use CVS wavelet decomposition, but do not assume that the wavelet filter completely eliminates all the coherent motions from the SFSs
- Thus, GV04 assumes that the SFS components themselves contain coherent and random components

- The CVS method uses wavelet decomposition
- We will cover a brief overview of wavelets. For a more detailed view see:
 - Daubechies (1992) most recent printing is 2006
 - Mallat (2009) 3rd edition
 - Farge (1992) specific to turbulence research

- With the normal Fourier transform (FT), we assume a periodic function
- The FT only tells us what wavenumber (frequency) components exist in a signal
- Space (time) and wavenumber (frequency) information cannot be seen at the same time
- We need space-wavenumber (time-frequency) representation of a signal

- Why? Real-world signals are non-stationary, meaning it is useful to know if and where some feature happens
- A stationary signal has wavenumber (frequency) content unchanged in space (time), and all wavenumber (frequency) components exist everywhere (at all times)
- A non-stationary signal changes wavenumbers (frequency) in space (time)

- One early solution is the Short Time (or space) Fourier Transform
- This technique only analyzes a small portion of signal at a time by using a space or time window thus it is often called a Windowed Fourier Transform (WFT)
- The windowed segment is assumed stationary, and is applied uniformly

• Recall, the FT is given by

$$f_k = \frac{1}{2\pi} \int f(x) e^{ikx} dx$$

• The WFT is applied as

$$f_{k,s} = \frac{1}{2\pi} \int f(s)g(s-x)e^{iks}ds$$

where \boldsymbol{s} is the position over a localized region

• The WFT is our convolution with a filter function in Fourier space

- There are drawbacks to this approach
 - The window is unchanged
 - The resolution dilemma a narrow window has poor wavenumber (frequency) resolution, and a wide window has poor spatial (time) resolution
 - Heisenberg Uncertainty Principle we cannot know what wavenumber (frequency) exists at what spatial (time) intervals

- Another approach is called wavelet decomposition
- A wavelet is just some small wave
- The general idea is to decompose a signal into series of wavelets
- This approach helps overcome the resolution dilemma of WFTs

• Wavelets offer an optimal space/frequency decomposition.

$$W_f(a,b) = |a|^{-\frac{1}{2}} \int f(x)\Psi\left(\frac{x-b}{a}\right) dx$$

where Ψ is the basis function ("Mother Wavelet"), b translates the basis function, and a scales (dilates) the basis function

• A mother wavelet is a prototype for generating the other window functions

Figure: from wavelet.org

21 / 29

Common properties of wavelets

- A wavelet transform is a set of building blocks to construct or represent a signal (function)
- A wavelet is a 2D expansion set (usually a basis) for a 1D signal
- A wavelet expansion gives a space-wavenumber (time-frequency) localization of a signal
- The calculation of coefficients can be done efficiently

Common properties of wavelets

- Wavelet systems are generated from a single scaling function (*i.e.* wavelet) by simple scaling and translation
- Most useful wavelet systems satisfy the multiresolution condition – if the basic expansion signals (the wavelets) are made half as wide and translated in steps half as wide, they will represent a larger class of signals exactly or give a better approximation of any signal
- The lower resolution coefficients can be calculated from the higher resolution coefficients by a tree-structured algorithm

Multiresolution properties of wavelets

- Analyze the signal at different frequencies with different resolutions
- Good time resolution and poor frequency resolution at high frequencies
- Good frequency resolution and poor time resolution at low frequencies
- More suitable for short duration of higher frequency; and longer duration of lower frequency components

• One example of a wavelet is the Haar wavelet (Haar, 1910)

$$\Psi = \begin{cases} 1 & \text{if } 0 \le x < 0.5 \\ -1 & \text{if } 0.5 \le x < 1 \end{cases}$$

• How does wavelet decomposition break down a signal in space and time?

- The signal is reconstructed by combining s_i and d_i at the desired level (s, ss, sss, etc).
 - 1st level s_i and d_i
 - 2nd level ss_i , dd_i , d_i
 - ...

- See Colucci et al. (1998) on Canvas or class website
- In this method, the evolution of the filtered probability density functions is solved for (*i.e.*, we solve for the evolution of the SFS general moments)
- Similar to general PDF transport methods 1st introduced by Lundgren (1969) and outlined in detail in Pope chapter 12.

- Many applications use FDF for scalars in turbulent reacting flows, while traditional equations (low-pass filtered N-S) are solved for momentum (see Fox 2012 for a more detailed discussion)
- This type of method is open employed for LES with Lagrangian particle models and for chemically reactive flows
- In Lagrangian particle models it leads to a form of the Langevin equations for SFS particle evolution
- In chemically reactive flows it has the advantage that the reactions occur in closed form
- We will return to these type of methods later in the class when we discuss combining LES with particle models

