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Turbulence modeling (alternative strategies)

• Our discussion of turbulence modeling has centered around
separating the flow into resolved and SFSs

• We have focused on using a low-pass filtering operation to
accomplish this separation

• The goal of this procedure is to reduce the number of degrees
of freedom in our numerical solution – i.e., make them more
computationally affordable

• This is not the only way to accomplish complexity reduction in
a turbulent flow

• We will briefly review a couple of different methods
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Coherent Vortex Simulations (CVS)

• See Farge and Schneider (2001) on Canvas or class website

• The idea of CVS is that the turbulent flow field is decomposed
into coherent (organized) and incoherent (random)
components.

• The decomposition is accomplished by using either a
continuous or orthonormal wavelet filter
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Coherent Vortex Simulations (CVS)

• CVS, like LES, is classified as a semi-deterministic turbulence
simulation method

• It is called semi-deterministic because some degrees of
freedom are explicitly (deterministically) computed while the
influence of others is modeled.

• DNS is considered fully deterministic since all scales of motion
are resolved

• RANS is a fully statistical approach since only the steady
solution of the mean flow field is solved deterministically,
while the impact of all fluctuations are modeled
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Coherent Vortex Simulations (CVS)

Figure: Methods to compute turbulent flows. Adapted from Farge and
Schneider (2001).
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Coherent Vortex Simulations (CVS)

• For CVS, a nonlinear wavelet filter is applied to the N-S
equations

• Coherent vortices are extracted without the need to impose an
a priori cut-off scale – unlike, e.g., LES

• The only a priori requirement is that the random (filtered-out)
motions have a ∼Gaussian PDF
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Coherent Vortex Simulations (CVS)

• In principle, the CVS approach deterministically solves the
evolution of coherent vortices in a wavelet basis (we will
review this in a minute)

• The wavelet basis adapts to regions of strong gradients

• Thus, CVS resolves the nonlinear interactions of coherent
vortices

• Nonlinear vortex interactions lead to incoherent motions –
these motions must be modeled
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Coherent Vortex Simulations (CVS)

Figure: Total (left), coherent (center), and incoherent vorticity (right).
From Farge and Schneider (2001).
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Coherent Vortex Simulations (CVS)

Figure: Total (top), coherent (bottom left), and incoherent vorticity
(bottom right). Adapted from Farge and Schneider (2001).
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Coherent Vortex Simulations (CVS)

• In the original CVS formulation, the separation between
coherent and random motions is assumed absolute, with the
random part mimicking viscous dissipation

• Goldstein and Vasilyev (2004) introduced “stochastic coherent
adaptive LES” as a variation on CVS

• GV04 use CVS wavelet decomposition, but do not assume
that the wavelet filter completely eliminates all the coherent
motions from the SFSs

• Thus, GV04 assumes that the SFS components themselves
contain coherent and random components
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A brief overview of wavelet decomposition

• The CVS method uses wavelet decomposition

• We will cover a brief overview of wavelets. For a more
detailed view see:

• Daubechies (1992) – most recent printing is 2006
• Mallat (2009) – 3rd edition
• Farge (1992) – specific to turbulence research
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A brief overview of wavelet decomposition

• With the normal Fourier transform (FT), we assume a
periodic function

• The FT only tells us what wavenumber (frequency)
components exist in a signal

• Space (time) and wavenumber (frequency) information cannot
be seen at the same time

• We need space-wavenumber (time-frequency) representation
of a signal
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A brief overview of wavelet decomposition

• Why? Real-world signals are non-stationary, meaning it is
useful to know if and where some feature happens

• A stationary signal has wavenumber (frequency) content
unchanged in space (time), and all wavenumber (frequency)
components exist everywhere (at all times)

• A non-stationary signal changes wavenumbers (frequency) in
space (time)
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A brief overview of wavelet decomposition

• One early solution is the Short Time (or space) Fourier
Transform

• This technique only analyzes a small portion of signal at a
time by using a space or time window – thus it is often called
a Windowed Fourier Transform (WFT)

• The windowed segment is assumed stationary, and is applied
uniformly
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A brief overview of wavelet decomposition

• Recall, the FT is given by

fk =
1

2π

∫
f(x)eikxdx

• The WFT is applied as

fk,s =
1

2π

∫
f(s)g(s− x)eiksds

where s is the position over a localized region
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A brief overview of wavelet decomposition

• The WFT is our convolution with a filter function in Fourier
space
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A brief overview of wavelet decomposition

• There are drawbacks to this approach
• The window is unchanged
• The resolution dilemma – a narrow window has poor

wavenumber (frequency) resolution, and a wide window has
poor spatial (time) resolution

• Heisenberg Uncertainty Principle – we cannot know what
wavenumber (frequency) exists at what spatial (time) intervals
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A brief overview of wavelet decomposition

• Another approach is called wavelet decomposition

• A wavelet is just some small wave

• The general idea is to decompose a signal into series of
wavelets

• This approach helps overcome the resolution dilemma of
WFTs
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A brief overview of wavelet decomposition

• Wavelets offer an optimal space/frequency decomposition.

Wf (a, b) = |a|−
1
2

∫
f(x)Ψ

(
x− b
a

)
dx

where Ψ is the basis function (“Mother Wavelet”), b
translates the basis function, and a scales (dilates) the basis
function

• A mother wavelet is a prototype for generating the other
window functions
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A brief overview of wavelet decomposition

Figure: from wavelet.org
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A brief overview of wavelet decomposition

Common properties of wavelets

• A wavelet transform is a set of building blocks to construct or
represent a signal (function)

• A wavelet is a 2D expansion set (usually a basis) for a 1D
signal

• A wavelet expansion gives a space-wavenumber
(time-frequency) localization of a signal

• The calculation of coefficients can be done efficiently
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A brief overview of wavelet decomposition

Common properties of wavelets

• Wavelet systems are generated from a single scaling function
(i.e. wavelet) by simple scaling and translation

• Most useful wavelet systems satisfy the multiresolution
condition – if the basic expansion signals (the wavelets) are
made half as wide and translated in steps half as wide, they
will represent a larger class of signals exactly or give a better
approximation of any signal

• The lower resolution coefficients can be calculated from the
higher resolution coefficients by a tree-structured algorithm
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A brief overview of wavelet decomposition

Multiresolution properties of wavelets

• Analyze the signal at different frequencies with different
resolutions

• Good time resolution and poor frequency resolution at high
frequencies

• Good frequency resolution and poor time resolution at low
frequencies

• More suitable for short duration of higher frequency; and
longer duration of lower frequency components
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A brief overview of wavelet decomposition

• One example of a wavelet is the Haar wavelet (Haar, 1910)

Ψ =

{
1 if 0 ≤ x < 0.5

−1 if 0.5 ≤ x < 1
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A brief overview of wavelet decomposition

• How does wavelet decomposition break down a signal in space
and time?
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A brief overview of wavelet decomposition

• The signal is reconstructed by combining si and di at the
desired level (s, ss, sss, etc).

• 1st level – si and di
• 2nd level – ssi, ddi, di
• . . .
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Filtered Density Functions (FDF)

• See Colucci et al. (1998) on Canvas or class website

• In this method, the evolution of the filtered probability density
functions is solved for (i.e., we solve for the evolution of the
SFS general moments)

• Similar to general PDF transport methods 1st introduced by
Lundgren (1969) and outlined in detail in Pope chapter 12.
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Filtered Density Functions (FDF)

• Many applications use FDF for scalars in turbulent reacting
flows, while traditional equations (low-pass filtered N-S) are
solved for momentum (see Fox 2012 for a more detailed
discussion)

• This type of method is open employed for LES with
Lagrangian particle models and for chemically reactive flows

• In Lagrangian particle models it leads to a form of the
Langevin equations for SFS particle evolution

• In chemically reactive flows it has the advantage that the
reactions occur in closed form

• We will return to these type of methods later in the class
when we discuss combining LES with particle models

29 / 29


	Turbulence modeling (alternative strategies) 
	Coherent Vortex Simulations (CVS)
	Filtered Density Functions (FDF)


