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Overview

@ Recap of LES filtered equations for incompressible flows

@ The filtered kinetic energy equation for incompressible equations
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LES filtered equations for incompressible flows
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Up next, turbulence kinetic energy

e We've talked about variance (or energy) when discussing
turbulence and filtering.

e When we examined the application of the LES filter at scale
A we saw the effect of the filter on the distribution of energy
with scale.

e A natural way to extend our examination of scale separation
and energy is to look at the evolution of the filtered variance
or turbulence kinetic energy.



The filtered kinetic energy equation

e We can define the total filtered kinetic energy as
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e Next we decompose this in the standard way as:

E: Ef +kr
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e The SFS kinetic energy (residual kinetic energy) is defined as:
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The filtered kinetic energy equation

e Putting them together yields:
Suit; = By + 5 (670 — i)

Thus the resolved (filtered) kinetic energy is then given by:
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The filtered kinetic energy equation

e We can develop an equation for E‘f by multiplying the filtered
LES momentum equation by ;:
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e The gist: we want to write the equation in terms of Ef First
we focus on terms (1)-(3) by applying the product rule, i.e.
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e Recall that the filtered rate of strain tensor is given by
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The filtered kinetic energy equation
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The filtered kinetic energy equation

Term 2:
0 via continuity
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The filtered kinetic energy equation

Term 3: i L
0 via continuity
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The filtered kinetic energy equation
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The filtered kinetic energy equation

Term 4a:
10 [y 0] _ 1 o [ 0u . ou 0
Re 6$j 7’8:1;j N Re 8l‘j Zawj l&xi la.%'i
_ 10QuSy) 1 0 - 0
N Re 833']' Re 833']' laxi
~ 0 via continuity
_ 1 0QuSy) 1005 & 0%
B Re 3.%']' Re 3.217]' 8&121 Re ja.m
~10QwS;) 1 du; 01y
N Re 895]- Re 895]- &vl

0

12/28



The filtered kinetic energy equation

Combine terms 4a and 4b:

@ 0%t 1| 0(2u:Sy;)  0u; 06, O O
Re 8:E]2. " Re Ox; Oxj Ox;  Oxj Ox;

This looks crazy. How do we reduce it further?

13/28



The filtered kinetic energy equation

Tensors:

e Recall that any arbitrary 2"9-order tensor can be written as
the sum of a symmetric and an antisymmetric tensor:

Bij = S,L] + Az’j
~— ~—

arbitrary symmetric  antisymmetric

e Symmetric
Sij = Sji

e Antisymmetric
Aij = —Aj
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The filtered kinetic energy equation

Tensors:

e Proof:

1 1
Bij = 5Bij + 5Bij =

1
5 5 (Bij + Bji) + 5 (Bij — Bji)

N

Sij Aij

1 1
Sij = 5 (Bij + Bji) = 5 (Bji + Bij) = Sji

1 1

Aij = 5 (Bij — Bji) = —5 (Bji — Bij) = —4;i
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The filtered kinetic energy equation

Tensors:
e Let's apply this tensor idea
0,

81,‘]'

= gij + Aij and = Sji + Aji
e Using this
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e Whoa, this is getting out of hand. Can we reduce these

expressions? @
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The filtered kinetic energy equation

Tensors:

e Let's look at a general property of symmetric/antisymmetric
tensors:
Siinj = —SUA]Z

Rename dummy variables and use symmetry
—SijAji = =S Aij = =8 Aij
Thus
SijAi; = =SijAij = 25;jA;; =0 = S;;A4;; =0

The product of a symmetric and antisymmetric tensor is 0.

0
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The filtered kinetic energy equation

Tensors:

e Back to our definitions
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Let's plug these expressions back into Term 4.
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The filtered kinetic energy equation

Term 4:

i; % 1 [a(zaiéﬁ) ot Oy O aai]

Rie 8.%'? N Rie 8$j 6.%'j 6951 8:1,‘]' 8acj
1 | 9(2;S;) L
= Re [6%] = 8ijSij — AijAij — SijSji — AijAji

Note Sji = Dij and fL‘jA]‘Z‘ = _Aiinj

1 | 9(2a;S;j) e O
:Re[arj] —SijSij—A' l'j—SijSij+A~ ij

_ 20(WSy) 25 ¢
" Re Oz, Re

19/28



The filtered kinetic energy equation

e Term b5: Oamis) 5 iy
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Now, let's put terms (1)-(5) back together. @
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The filtered kinetic energy equation

The dimensionless filtered TKE equation
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| “storage” of Ef
[l advection of Ef
[l pressure transport
IV transport of SFS stress 7;;
V transport of viscous stress

VI dissipation by viscous stress

VIl SFS dissipation @
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The filtered kinetic energy equation

The dimensional filtered TKE equation
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where € = 21/5’1‘]‘5'1']‘-
| “storage” of Ef
[l advection of Ef
[l pressure transport
IV transport of SFS stress 7;;
V transport of viscous stress

VI dissipation by viscous stress

VIl SFS dissipation @
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Transfer of energy between resolved and SFSs

e The SFS dissipation IT in the resolved kinetic energy equation
is a sink of resolved kinetic energy (it is a source in the k,
equation) and represents the transfer of energy from resolved
SFSs. It is equal to: .

II = —TijSij

e |t is referred to as the SFS dissipation as an analogy to
viscous dissipation (and in the inertial subrange II = viscous
dissipation).

0
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Transfer of energy between resolved and SFSs

Spectral cutoff filter
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e On average, 11 drains energy (transfers energy down to
smaller scales) from the resolved scales.
e Instantaneously (locally) II can be positive or negative. @
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Transfer of energy between resolved and SFSs

Spectral cutoff filter
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e When II is negative (transfer from SFS = resolved scales) it
is typically termed backscatter
e When II is positive (transfer from resolved scales = SFS) it is @

sometimes referred to as forward scatter.
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Transfer of energy between resolved and SFSs

e |t is informative to compare our resolved kinetic energy
equation to the mean kinetic energy equation (derived in a
similar manner, see Pope pg. 124; Stull 1988 ch. 5)
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where P is shear production and (¢) is mean dissipation.
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Transfer of energy between resolved and SFSs
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e For high-Re flow, with our filter in the inertial subrange:
(Ey) = (E) N

e The dominant sink for (E) is (II) while for (E) it is (e) (rate
of dissipation of energy). For high-Re flow we therefore have:

(I) = (e)

0
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Transfer of energy between resolved and SFSs
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e Recall from K41 that (€) is proportional to the transfer of
energy in the inertial subrange. Thus, II will have a strong
impact on energy transfer and the shape of the energy
spectrum in LES.

e Calculating the correct average II is another necessary (but
not sufficient) condition for an LES SFS model (to go with

our N-S invariance properties). @
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