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Decomposition of turbulence for real filters

• The LES filter can be used to decompose the velocity field
into resolved and subfilter scale (SFS) components:

φ(~x, t)︸ ︷︷ ︸
total

= φ̃(~x, t)︸ ︷︷ ︸
resolved

+φ′(~x, t)︸ ︷︷ ︸
subfilter

• We can use our filtered DNS fields to look at how the choice
of our filter kernel affects this separation in wavespace.
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Decomposition of turbulence for real filters

• The Gaussian (or box) filter does not have as compact of
support in wavespace as the cutoff filter.

• This results in attenuation of energy at scales larger than the
filter scale.

• The scales affected by the attenuation are referred to as
resolved SFSs.
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Deriving the incompressible equations of motion

• We want to apply the filters to the N-S equations of motion.

• First, let’s start with the fully compressible form of the
equations of motion and derive the incompressible
counterparts.

• Next, we will apply the filtering operation to the
incompressible equations of motion.

• Lastly, we will relate the final forms of the equations to the
conceptual idea of LES.

5 / 22



Conservation of mass

We start with the full equation for the conservation of mass:

∂ρ

∂t
+
∂(ρui)

∂xi
= 0

We apply the incompressibility condition – that a fluid parcel’s
density is constant (ρ = ρo):

�
�
�7

0
∂ρo
∂t

+��ρo
∂ui
∂xi

= 0

Finally, we divide by ρo to arrive at the conservation of mass
equation for incompressible flows:

∂ui
∂xi

= 0
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Conservation of momentum

We start with the full equation for the conservation of momentum:

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
=

∂

∂xj

[
2µSij −

2

3
µδij

∂ui
∂xi

]
− ∂p

∂xj
+ Fi

Apply the incompressibility condition:

ρo
∂ui
∂t

+ ρo
∂(uiuj)

∂xj
=

∂

∂xj

[
2µSij −

2

3
µδij

∂ui
∂xi

]
− ∂p

∂xj
+ Fi

Divide by ρo:

∂ui
∂t

+
∂(uiuj)

∂xj
=

µ

ρo

∂

∂xj

[
2Sij −

2

3
µδij

∂ui
∂xi

]
− 1

ρo

∂p

∂xj
+ Fi
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Conservation of momentum

Recall that

ν = µ/ρo and Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
To arrive at:

∂ui
∂t

+
∂(uiuj)

∂xj
= ν

∂

∂xj

∂ui
∂xj

+
∂uj
∂xi
− 2

3
µδij
�
�
��7

0
∂ui
∂xi

− 1

ρo

∂p

∂xj
+ Fi

And we can apply the incompressible mass conservation equation
and distribute the ∂/∂xj in the first term on the right side:

∂ui
∂t

+
∂(uiuj)

∂xj
= ν

[
∂2ui
∂x2j

+
∂2ui
∂xi∂xj

]
− 1

ρo

∂p

∂xj
+ Fi
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Conservation of momentum

We can rearrange and again apply the mass continuity equation:

∂ui
∂t

+
∂(uiuj)

∂xj
= ν

∂2ui
∂x2j

+ ν
∂

∂xj�
�
�
�>

0(
∂ui
∂xi

)
− 1

ρo

∂p

∂xj
+ Fi

and we arrive at the conservation of momentum equation for
incompressible flows:

∂ui
∂t

+
∂(uiuj)

∂xj
= − 1

ρo

∂p

∂xj
+ ν

∂2ui
∂x2j

+ Fi
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Conservation of a general scalar

We start with the full equation for the conservation of momentum:

∂(ρθ)

∂t
+
∂(ρuiθ)

∂xj
=

∂

∂xj

[
νθρ

∂θ

∂xj

]
+Q

Apply the incompressibility condition:

��ρo
∂θ

∂t
+��ρo

∂(uiθ)

∂xj
= νθ��ρo

∂

∂xj

[
∂θ

∂xj

]
+Q

Divide by ρo and we arrive at the conservation of a general scalar
equation for incompressible flows:

∂θ

∂t
+
∂(uiθ)

∂xj
= νθ

∂2θ

∂x2j
+Q
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Non-dimensional incompressible equations of motion

Recall that we can non-dimensionalize these equations by using
representative scales, U and `:

u∗i =
ui
U

x∗i =
xi
`

p∗ =
p

ρU2

t∗ =
tU

`

θ∗ =
θ

θo

where the ∗ denotes a non-dimensionalized term.
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Non-dimensional conservation of mass

Start with the incompressible conservation of mass and apply the
non-dimensional relationships:

∂ui
∂xi

=
∂(u∗iU)

∂(x∗i `)
=
�
��
U

`

∂u∗i
∂x∗i

= 0

divide by U/` to arrive at the non-dimensional incompressible
conservation of mass:

∂u∗i
∂x∗i

= 0
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Non-dimensional conservation of momentum

Start with the incompressible conservation of momentum and
apply the non-dimensional relationships:

∂ui
∂t

+
∂(uiuj)

∂xj
= − 1

ρo

∂p

∂xj
+ ν

∂2ui
∂x2j

+ Fi

⇒ ∂(u∗iU
2)

∂t∗`
+
∂(u∗iu

∗
jU

2)

∂x∗j`
= − 1

ρo

∂(p∗ρoU
2)

∂x∗j`
+ ν

∂2(u∗iU)

∂x∗2j `
2

+ Fi

Recall that Re=U`/ν ⇒ ν = U`/Re:

�
�
�U2

`

∂u∗i
∂t∗

+
�
�
�U2

`

∂(u∗iu
∗
j )

∂x∗j
= −
�
�
�U2

`

1

��ρo

∂(p∗��ρo)

∂x∗j
+
�
�
�U2

`

1

Re

∂2u∗i
∂x∗2j

+ Fi

divide by U2/` to arrive at the non-dimensional incompressible
conservation of momentum:

∂u∗i
∂t∗

+
∂(u∗iu

∗
j )

∂x∗j
= −∂p

∗

∂x∗j
+

1

Re

∂2u∗i
∂x∗2j

+ Fi
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Non-dimensional conservation of a general scalar

Start with the incompressible conservation of a general scalar and
apply the non-dimensional relationships:

∂θ

∂t
+
∂(uiθ)

∂xj
= νθ

∂2θ

∂x2j
+Q

⇒ ∂θ∗θoU

∂t∗`
+
∂(u∗i θ

∗θo)

∂x∗j`
= νθ

∂2θ∗θo
∂x∗2j `

2
+Q

Recall that Sc= ν/νθ ⇒ νθ = ν/Sc= U`/(Sc Re):

�
��
Uθo
`

∂θ∗

∂t∗
+
�
��
Uθo
`

∂(u∗i θ
∗)

∂x∗j
=
�
��
Uθo
`

1

Sc Re

∂2θ∗

∂x∗2j
+Q

divide by Uθo/` to arrive at the non-dimensional incompressible
conservation of a general scalar:

∂θ∗

∂t∗
+
∂(u∗i θ

∗)

∂x∗j
= +

1

Sc Re

∂2θ∗

∂x∗2j
+Q
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Filtering the incompressible equations of motion

Next we apply the filter to the non-dimensional incompressible
equations of motion, recalling that the filters hold the following
properties:

ã = a

φ̃+ ζ = φ̃+ ζ̃

∂̃φ

∂x
=
∂φ̃

∂x

That is: a constant is unaffected by the filter, the filtered sum of
two variables is the sum of the filtered variables, and the filter is
commutative for differentiation.
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Filtered conservation of mass

Start with the non-dimensional incompressible conservation of
mass and apply the filter (where the ∗ notation is dropped for
convenience):

˜∂ui
∂xi

= 0

∂̃ui
∂xi

= 0̃

∂ũi
∂xi

= 0

This is the non-dimensional form of the filtered conservation of
mass equation for incompressible flows.
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Filtered conservation of momentum

Start with the non-dimensional incompressible conservation of
momentum and apply the filter (where the ∗ notation is dropped
for convenience):

˜∂ui
∂t

+
∂(uiuj)

∂xj
= − ∂p

∂xj
+

1

Re

∂2ui
∂x2j

+ Fi

∂̃ui
∂t

+
∂̃(uiuj)

∂xj
=

˜
− ∂p

∂xj
+

1̃

Re

∂2ui
∂x2j

+ Fi

∂ũi
∂t

+
∂(ũiuj)

∂xj
= − ∂p̃

∂xj
+

1

Re

∂2ũi
∂x2j

+ Fi

We have a problem because ũiuj is the filtered product of two
non-filtered variables. We do not have knowledge of these variables
and thus the term cannot be solved a priori.
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Filtered conservation of momentum

Following Leonard (1974), we can decompose the unknown term as

ũiuj = ũiũj + τ rij

where τ rij is the subfilter scale (SFS) stress tensor.

We can substitute this back into the previous equation to arrive at
the non-dimensional form of the filtered conservation of
momentum equation for incompressible flows:

∂ũi
∂t

+
∂(ũiũj)

∂xj
= − ∂p̃

∂xj
+

1

Re

∂2ũi
∂x2j

−
∂τ rij
∂xj

+ Fi

Welcome to the closure problem because τ rij is unknown – thus the
equation is not closed. The SFS stress tensor must be modeled.
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Filtered conservation of a general scalar

Start with the non-dimensional incompressible conservation of a
general scalar and apply the filter (where the ∗ notation is dropped
for convenience):

˜∂θ

∂t
+
∂(uiθ)

∂xj
= +

1

Sc Re

∂2θ

∂x2j
+Q

∂̃θ

∂t
+
∂̃(uiθ)

∂xj
= +

1̃

Sc Re

∂2θ

∂x2j
+Q

∂θ̃

∂t
+
∂(ũiθ)

∂xj
=

1

Sc Re

∂2θ̃

∂x2j
+Q

Again, we have a problem because ũiθ is the filtered product of
two non-filtered variables. We do not have knowledge of these
variables and thus the term cannot be solved a priori.
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Filtered conservation of a general scalar

We again decompose the unknown term as

ũiθ = ũiθ̃ + qri

where qri is the SFS flux.

We can substitute this back into the previous equation to arrive at
the non-dimensional form of the filtered conservation of
momentum equation for incompressible flows:

∂θ̃

∂t
+
∂(ũiθ̃)

∂xj
=

1

Sc Re

∂2θ̃

∂x2j
− ∂qri
∂xj

+Q

Similarly, qri is unknown – thus the equation is not closed. The
SFS flux must be modeled.
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LES filtered equations for incompressible flows

Mass

• ∂ũi
∂xi

= 0

Momentum

• ∂ũi
∂t +

∂(ũiũj)
∂xj

= − ∂p̃
∂xj

+ 1
Re

∂2ũi
∂x2j
− ∂τrij

∂xj
+ Fi

Scalar

• ∂θ̃
∂t + ∂(ũiθ̃)

∂xj
= 1

Sc Re
∂2θ̃
∂x2j
− ∂qri

∂xj
+Q

SFS stress

• τ rij = ũiuj − ũiũj
SFS flux

• qri = ũiθ − ũiθ̃
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Up next, turbulence kinetic energy

• We’ve talked about variance (or energy) when discussing
turbulence and filtering.

• When we examined the application of the LES filter at scale
∆ we saw the effect of the filter on the distribution of energy
with scale.

• A natural way to extend our examination of scale separation
and energy is to look at the evolution of the filtered variance
or turbulence kinetic energy.
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