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Overview

@ Recap of N-S equations
@® Approximating the equations of motion
© Pros and cons of each method

@ Scale separation



e The Navier-Stokes equations describe the motion of fluids,
through the conservation of mass, momentum, and energy.

e The equations are nonlinear, which complicates our ability to
analyze and simulate fluid flows.

e Why? The nonlinearity creates a continuous spectrum of
different flow features.



Recap of N-S equations

e This spectrum contains very large integral scales and very
small dissipation scales.

e The simultaneous representation of both large and small
scales makes for a very large computational problem.

e Current computational resources limit the amount of small
features that can be accurately simulated.



e The complexity of a flow can be reduced to alleviate this
computation bottleneck.

e This technique is aimed at capturing the primary features of a
flow with sufficient detail and accepting that the full turbulent
solution may not be obtained perfectly.

e This sets the stage for LES as a tool to solve for the
“reduced” flow.

e Before diving into LES, we will go over the description of the
DNS, LES, and RANS techniques.



Approximating the equations of motion

e Numerical studies require that the equations of motion for a
(compressible, incompressible, Boussinesq) fluid must be
approximated on a computational grid using discrete physical
points or basis functions.

e Three basic methodologies are prevalent in turbulence
application and research:

e Direct Numerical Simulation (DNS)
o Large-Eddy Simulation (LES)
e Reynolds-Averaged Navier-Stokes (RANS)



Approximating the equations of motion

Direct Numerical Simulation

e The DNS approach focuses on finding a numerically-accurate
solution to the N-S equations (i.e., resolve all eddies).

e As we saw last class, it is an expensive operation.



Approximating the equations of motion

Large-Eddy Simulation

e The LES approach emphasizes capturing those primary flow
features that are larger than a prescribed filter width (A) (i.e.,
resolve larger-eddies and model smaller “universal” ones).

e Since A is prescribed, one has control over the required
resolution and computational effort.

e The LES approach introduces the closure problem and reduces
the information of the resolved flow.

e Has primarily trended toward engineering applications, but its
use in atmospheric science is increasing.
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Approximating the equations of motion

Reynolds-Averaged Navier-Stokes

e The RANS approach focuses on a statistical description of the
basic fluctuation-correlations (i.e., model ensemble statistics).

e Can be used to study flows with realistic complexity.



Approximating the equations of motion

time (sec)
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Pros and cons of each method

Direct Numerical Simulation
e Pros

e Does not require the use of a turbulence model

e Accuracy is only limited by computational capabilities since
errors are generally only due to sensitivity to perturbations or
accumulated round-off errors.

o All aspects of the flow in time and space are available, which is
not possible for experiments (i.e., 3D velocity and scalar fields).

0
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Pros and cons of each method

Direct Numerical Simulation

e Cons
e Restricted to low-Re flows with relatively simple geometries.
e Very high memory and computational time costs.
e Typically the “largest possible” number of grid points is used
without proper convergence evaluation (i.e., does not allow for
systematic variation of numerical and physical parameters)

0
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Pros and cons of each method

Large-Eddy Simulation
e Pros

e Only small scales require require modeling. Since the small
scales are likely insensitive to specifics of the flow, these
models can be rather simple and “universal”.

e Much cheaper computational cost than DNS.

e Unsteady predictions of the flow are made, which implies that
information about extreme events are available over some
period of time.

o Properly designed LES should allow for Re = oco.

e In principle, we can gain as much accuracy as desired by
refining our numerical grid.
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Pros and cons of each method

Large-Eddy Simulation

e Cons

e Basic assumption (small scales are universal) requires
independence of small (unresolved) scales from boundary
conditions (especially important for flow geometry). This is a
problem for boundary layers, where proximity to the wall
defines some of the smallest scales of the flow — which
necessitates explicit modeling of the region.

e Still very costly for many practical engineering applications.

e Filtering and turbulence theory of small scales still needs
development for complex geometry and highly anisotropic
flows.
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Pros and cons of each method

Reynolds-Averaged Navier-Stokes
e Pros

e Low computational cost (can obtain mean statistics in a short
time).

e Can be used for highly complex flow geometries.

e When combined with empirical information, can be highly
useful for engineering applications and to parameterize
near-wall behavior.
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Pros and cons of each method

Reynolds-Averaged Navier-Stokes
e Cons

e Only steady flow phenomena can be explored with full
advantage of computational reduction.

e Models are not universal since dynamic consequences of all
scales must be represented. Usually a pragmatic “tuning” of
model parameters is required for specific applications.

e Most accurate turbulence models give rise to highly complex
equations sets, which can lead to numerical formulation and
convergence issues.
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Relationship between each method

e DNS delivers the most accurate data (in general).

e DNS can be used to validate and analyze aspects of LES,
such as numerical methods and subgrid model.

e LES provides a more complete picture of turbulent flow than
RANS.

e RANS can be validated against LES data (where LES is used
to obtain statistical information about the flow).

0
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Relationship between each method
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Scale separation

e So far, we have discussed LES very generically:
o Resolve only the largest energy-containing scales.
e Model the small “universal” scales.
e We will now formalize the idea of scale separation
mathematically to show how to deal with the equations of
motion and derive subgrid models.
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Scale separation

e How do we accomplish scale separation?
o A low-pass filter
e What is meant by low-pass?

o A low-pass filter passes over signals with a frequency
(wavenumber) lower than a certain cutoff frequency
(wavenumber) and only smooths signals with a frequency
(wavenumber) higher than the cutoff value.

e Our goal for the low-pass filter:

o Attenuate (smooth) high frequency (high wavenumber/small
scale) turbulence features that are smaller than a prescribed
characteristic scale A while leaving low-frequency (low
wavenumber/large scale) motions unchanged.

0
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Filtering (Sagaut Chapter 2, Pope Chapter 13.2)

e The formal (mathematical) LES filter is a convolution filter
defined for a quantity ¢(&,t) in physical space as:

/ o(@ - C,0G(Odl
e (G = the convolution kernel of the chosen filter.

e (G is associated with the characteristic cutoff scale A (also
called the filter width).
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Convolution

e So, we have the convolution filter

0= [ oli-incda
e Here we will use Pope’s notation for the Fourier transform:

Flo) = [ " ik (a)da
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Convolution

e Take the Fourier transform of ¢(Z) (dropping t for simplicity):
PO@) = [ [ o@ - oo
e We can define a new variable ¥ = ¥ — C:
Fo@) = [0 [T smaacar
-/ / 06

Note: di = d because { # f(&) and we changed the order of

integration
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Convolution

e We left off with:

—

PO@) = [ e amadadar

e Recall that e?t? = e“e?
Fia@) = [ Z | e Fe Ramare i
= [ o [ e

= F{o(@)}F{G({)}

where we changed the order for integration
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Convolution

e We found this convolution relationship:

F{4(&)} = F{o(@)}F{G()}

e Segaut writes this as:

~ —

$(k,w) = p(k, )G (kw)

where (") denotes a Fourier coefficient.
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Convolution

F{a(3)} = F{o(@)}F{G(O)} or $(F,w) = (F,w)C(Fw)

G is the transfer function associated with the filter kernel G.

Recall, that a transfer function is the wavespace (Fourier)
relationship between the input and output of a linear system.

A convolution is an integral that expresses the amount of
overlap of one function G as it is shifted over another function
¢ (i.e., it blends one function with another).

0
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Decomposition into resolved and subfilter components

e Just as G is associated with a filter scale A (filter width), G
is associated with a cutoff wavenumber k..

e In a similar manner to Reynolds decomposition, we can use
the filter function to decompose the velocity field into resolved
and unresolved (or subfilter) components:

¢(fa t) = QE(:L_", t) + Qf)l(f, t)
—— ——

total resolved subfilter
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Fundamental properties of “proper” LES filters

e The filter should not change the value of a constant a
o
/ Gi)di=1=d=a
—0o0
e Linearity
P+(=90+¢
(this is automatically satisfied for a convolution filter)

e Commutation with differentiation

99 _ 9%

oF  OF
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LES and Reynolds Operators

e In the general case, LES filters that verify these properties are
not Reynolds operators.
e Recall for a Reynolds operator (average) defined by ( )

 (a6) = alg)
. (#) =0
« (9+0) = (@) +(0)
« (o)) = (0)
L (29 _ )
or  ox
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LES and Reynolds Operators

e For our LES filter, in general using Sagaut's shorthand
25 ()G ()dC = G x ¢
¢ d=GxCGrp=Gx¢£d=Cx¢
« @ =Gx(¢p—Gxg)#0
e For an LES filter, a twice filtered variable is not equal to a
single filtered variable — unlike it is for a Reynolds average.

o Likewise, the filtered subfilter scale component is not equal to
zero as it is for a Reynolds average.

0
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Common (or classic) LES filters

e Box or “top-hat” filter (equivalent to a local average):

Loifr<s R sin (kA /2)
Gr)y=<{2 -2 Gk)=————F"—
(r) {O otherwise (k) kA/2

filter Furnction transfer function

e Gaussian filter (7 typically 6):

G(r) = (WZQ)é exp <—7A!§I2> G (k) = exp (—i§k2>

e Spectral or sharp-cutoff filter:

Gr) = sin(ker) k) = {1 if |k < ke

ker 0 otherwise

recall that k. is the characteristic wavenumber cutoff. @
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Common (or classic) LES filters

Real Space Filters

Filter Transfer Function

— Gaussian filter| 14 — Gaussian filter
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12 — box fiter — box fiter
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Only the Gaussian filter is local in both real and wave space.
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Filters: local vs non-local

e Where we apply a filter is important.

e The Fourier transform of a box filter is a wave, and the
inverse transform of a spectral cutoff filter is a wave.

e This means we will get different results for these two filters
depending on where they are applied.
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Filters: local vs non-local

e Thus, we say a box filter is local in physical space and
non-local in wavespace.

e Conversely, a cutoff filter is local in wavespace and non-local
in physical space.

e When a filter is non-local, think about it in terms of adding
“wiggles” everywhere.

e As opposed to the box and cutoff filters, the Gaussian filter is
(semi) local in both physical space and wavespace (semi
because it differs by constants).

e This is because the Fourier transform of a Gaussian is also a
Gaussian.

0
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Spectral resolution

e We can tie the notion of filters and local/non-local behavior
to numerical models and resolution.

e The notion of “spectral” or “effective” resolution arises
because the spectra from LES often does not fall at A, but
rather at some larger scale that is a multiple of A.

e For instance, a finite difference scheme (perhaps 2"-order
central difference) is local in physical space, but non-local in
wavespace.

e This impacts smaller wavenumbers (larger scales).
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Spectral resolution
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From Gibbs and Fedorovich (2014).
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Spectral resolution
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Convolution example

e We defined the convolution of two functions as:
/ o(7 — &, 0)G(E)dE

e How can we interpret this relation? G, our filter kernel,
‘moves’ along our other function ¢ and smooths it out
(provided it is a low-pass filter).
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Convolution example

e One example is using a box filter applied in real space.

e See convolution_example.m (and associated iso_vel128.mat
data file) on Canvas or website.
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Filtering turbulence (real space, cutoff filter)

DNS velocny

Note: here (and throughout the Y 1.,\
presentation) we are using DNS \s
data from Lu et al. (International v e

Journal of Modern Physics C, 2008).

cutoff flter at A

i
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Filtering turbulence (real space, Gaussian filter)

Note: here (and throughout the 6
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Filtering turbulence (real space, box filter)

Note: here (and throughout the

presentation) we are using DNS

data from Lu et al.
(International Journal of

Modern Physics C, 2008).
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Filtering turbulence (real space, box filter)

Another example (Fedorovich and Gibbs, submitted)
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Filtering turbulence (real space)
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Filtering turbulence (wave space)

Spectral cutof fter
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Filtering turbulence (wave space)

Filter comparison at A
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Decomposition of turbulence for real filters

e The LES filter can be used to decompose the velocity field
into resolved and subfilter scale (SFS) components:

(ﬁ(f, t) = (;S(f, t) + ¢/(fv t)
——

N .
total resolved subfilter

e We can use our filtered DNS fields to look at how the choice
of our filter kernel affects this separation in wavespace.

0
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Decomposition of turbulence for real filters

Spectral cutoff filter gaussian filter
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e The Gaussian (or box) filter does not have as compact of
support in wavespace as the cutoff filter.

e This results in attenuation of energy at scales larger than the
filter scale.

e The scales affected by the attenuation are referred to as @
resolved SFSs.
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