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Overview

1 One last review of turbulence (beat it into your heads)

2 Numerical simulations

3 Equations of motion
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Review: Properties of turbulent flows

• Unsteadiness: u = f(~x, t)

• Three-dimensional: ~x = f(xi) for any turbulent flow

• High vorticity: ω = ∇× ~u
• Mixing effect: turbulence acts to reduce gradients

• Continuous spectrum of scales: energy cascade described
broadly by Kolmogorov’s hypotheses
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Review: Kolmogorov’s similarity hypothesis

Kolmogorov’s 1st hypothesis

• Smallests scales receive energy at a rate proportional to the
dissipation of energy rate

• With this, he defined the Kolmogorov (dissipation) scales:
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Review: Kolmogorov’s similarity hypothesis

• Using these scales, we can define the ratios of the largest to
smallest scales:
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Review: Kolmogorov’s similarity hypothesis

Kolmogorov’s 2nd hypothesis

• In turbulent flow, a range of scales exists at very high Re
where statistics of motion in a range l (`o � `� η) have a
universal form that is determined only by ε (dissipation) and
independent of ν (kinematic viscosity).

• Kolmogorov formed his hypothesis and examined it by looking
at the PDF of velocity increments ∆u.
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Review: Kolmogorov’s similarity hypothesis

• We can examine this through E(k), where E(k)dk =TKE
contained between k and k + dk.

• What are the implications of Kolmogorov’s hypothesis for
E(k)? – K41⇒ E(k) = f(k, ε)

• By dimensional analysis, Kolmogorov showed:

E(K) = ckε
2/3k−5/3

Kolmogorov’s -5/3 power law.
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Review: Kolmogorov’s similarity hypothesis

Example energy spectrum
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Degrees of freedom and numerical simulations

• We now have a description of turbulence and the range of
energy containing scales (the dynamic range) in turbulence.

• In computational fluid dynamics (CFD), we need to discretize
the equations of motion using either difference approximations
(finite differences) or as a finite number of basis functions
(e.g., Fourier transforms).

• Essentially, a continuous solution is approximated by a finite
set of values corresponding as closely as possible with the
values of the solution on a grid of discrete positions in space.
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Degrees of freedom and numerical simulations

• To capture all of the dynamics (degrees of freedom) in a
turbulent flow, we must consider the required amount of
discrete values needed for an accurate approximation.

• We need a grid fine enough to capture the smallest and the
largest scales of motion (η and `o).
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Degrees of freedom and numerical simulations

• From K41, we know that `o/η ∼ Re3/4 and there exists a
continuous range of scales between η and `o.

• We will assume that we need n grid points per increment η.
Note that n can vary, but a value of 3 to 5 is often suggested.

• Thus, in each direction, the number of required grid points is

Ni =
`o

(η/n)
= n

`o
η
∼ n Re3/4

• Remember that turbulence is 3D, so the total number of grid
points needed to accurately estimate the flow is

N =
(
n Re3/4

)3
= n3 Re9/4
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Degrees of freedom and numerical simulations

• Let’s revisit our example of a typical atmospheric boundary
layer flow:

Uo ∼ 10 m s−1, `o ∼ 103 m, ν ∼ 10−5 m2 s−1

which gives us,

Re =
Uo`o
ν
∼ (10 m s−1)(103 m)

10−5 m2 s−1
∼ 109

• thus, the number of grid points required to fully resolve this
flow (assuming n = 3) is

N = 9× (109)9/4 ∼ 1.6× 1021!!!!!!!

Note: current capabilities of modern computing allow for grid
sizes with O(1011) points.
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Degrees of freedom and numerical simulations

• What does a simulation of a typical atmospheric boundary
layer flow using a grid with 1.6× 1021 points buy? (recall
η ∼ 0.18 mm)

li = η ∗
(
1.6× 1021

)1/3 ∼ 2 km

This means we can simulate a 2 km× 2 km× 2 km cube.
Think how big the atmosphere is and then be depressed.
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Degrees of freedom and numerical simulations

• When will we be able to directly simulate all the scales of
motion in a turbulent flow?

• A couple of studies used historical data from the literature to
build a model that predicts this question (see Voller and
Porté-Agel, 2002 and Bou-Zeid, 2014 handouts).

• VP02 derived a model based on Moore’s Law

P = A 20.6667Y

where A is the computer power at reference year Y=0.
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Degrees of freedom and numerical simulations

• VP02 used a reference year of 1980 and used A = 100 and
A = 10, 000.

• The best fit was

N(t) = 691× 20.697(year−1980)
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Degrees of freedom and numerical simulations
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Degrees of freedom and numerical simulations

• BZ14 updated VP02 using data between 2002 and 2014. It
turns out that VP02 was too optimistic. Be more depressed.
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Degrees of freedom and numerical simulations

• The Re of relevant flows are orders of magnitude too large for
current computational resources.

• Thus, DNS will not be a suitable tool for a long time
(relevant to our brief time on Earth).

• The only alternative is to simplify the description of a flow
and try to model the small scales instead of resolving them.

• This makes the problem less demanding computationally, but
harder in many aspects due to the modeling requirement.

• Before we delve into methods that accomplish this reduction
of complexity, we need to understand how we describe a flow.
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Equations of motion

• Turbulent flow (and fluid dynamics in general) can be
mathematically described by the Navier-Stokes equations (see
Bachelor, 1967 for a derivation, see also Pope chapter 2).

• The primary goal of CFD (and LES) is to solve the discretized
equations of motion.

• We use the continuum hypothesis (i.e., η � mean free path
of molecules) so that

ui = ui(xj , t) and ρ = ρ(xj , t)
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Equations of motion: conservation of mass

• Conservation of mass

dm

dt

∣∣∣∣
sys

= 0

• We can use Reynolds Transport Theorem (RTT, see any fluids
book)

dm

dt

∣∣∣∣
sys

=
∂

∂t

∫
CV

ρdV︸ ︷︷ ︸
rate of increase in CV

+

∫
CS

ρ~V · d ~A︸ ︷︷ ︸
net flux leaving CV

= 0

Another way of saying that:
Production + Input = Change (in time) + Output (PICO).
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Equations of motion: conservation of mass

• We can use Gauss’s theorem and shrink the control volume to
an infinitesimal size:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0

This is the differential form of the conservation of mass.
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Equations of motion: conservation of momentum

• Conservation of momentum (Newton’s 2nd law)

∑
~F =

d(m~V )

dt

∣∣∣∣∣
sys

We can again apply RTT and Gauss’s theorem

∂(ρui)

∂t
+
∂(ρuiρuj)

∂xj
=

∂

∂xj

(
2µSij −

2

3
µδij

∂ui
∂xi

)
− ∂P

∂xi
+ρgi

where

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
is the rate of strain (deformation) tensor.

This is the differential form of the conservation of momentum.
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Equations of motion: conservation of energy

• Conservation of energy (1st law of thermodynamics)

Q̇− Ẇ =
dE

dt

∣∣∣∣
sys

If we use e = cvT (specific internal energy and
qi = −K∂T/∂xi (where cv is the specific heat, T is
temperature, and qi is the thermal flux), then we arrive at

∂(ρE)

∂t
+

∂

∂xi
[ui(P + E)] =

ρq̇ +
∂qi
∂xi

+
∂

∂xi

[
uj

(
2µSij −

2

3
µδij

∂ui
∂xi

)]
This is the differential form of the conservation of energy.
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Equations of motion: incompressible flow

Let’s consider incompressible flow (i.e., the density of a fluid
element does not change during its motion)

• Conservation of mass
∂ui
∂xi

= 0

i.e., divergence of the flow velocity is zero.

• Conservation of momentum

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂P

∂xi
+ ν

∂2ui
∂x2j

+ Fi
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Equations of motion: incompressible flow

Let’s consider incompressible flow (i.e., the density of a fluid
element does not change during its motion)

• Conservation of scalar (temperature, species, etc)

∂θ

∂t
+
∂uiθ

∂xj
= νθ

∂2θ

∂x2j
+Q

where
νθ =

ν

Sc
=

ν

Pr

and Sc is the Schmidt number (used for scalars) and Pr is the
Prandtl number (used for temperature).
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Equations of motion: incompressible flow

• Recall that

Sc =
ν

D
=

viscous diffusion rate

molecular diffusion rate

and

Pr =
ν

α
=

viscous diffusion rate

thermal diffusion rate
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Equations of motion: non-dimensional

• We can non-dimensionalize these equations by using a velocity
scale (Uo) and length (`o) scale. For example, the free-stream
velocity and the boundary layer depth.

• Conservation of mass
∂u∗i
∂x∗i

= 0

• Conservation of momentum:

∂u∗i
∂t∗

+
∂u∗iu

∗
j

∂x∗j
= −∂P

∗

∂x∗i
+

1

Re

∂2u∗i
∂x∗j

2 + F ∗
i

where Re is based on our velocity and length scales.
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Equations of motion: non-dimensional

• For any general scalar

∂θ∗

∂t∗
+
∂u∗i θ

∗

∂x∗j
=

1

Sc Re

∂2θ∗

∂x∗j
2 +Q∗

generally, Sc ∼ 1 and Pr ∼ 0.72 (for air).
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Properties of Navier-Stokes equations

• Reynolds number similarity - for a range of Re, the equations
of motion can be considered invariant to transformations of
scale.

• Time and space invariance - The equations are invariant to
shifts in time or space, i.e., we can define the shifted space
variable

x̂ = x̄/L,where x̄ = x−X

• Rotational and reflection invariance - The equations are
invariant to rotations and reflections about a fixed axis.

• Invariance to time reflections - The equations are invariant to
reflections in time. They are the same going backward or
forward in time.

• Galilean invariance - The equations are invariant to constant
velocity translations

x̂ = x− V t
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Reynolds number similarity

• As an example of using Reynolds number similarity to make
DNS available.

• Recall our example of atmospheric scales that gave a Re of
109? We cannot afford this, but if we change the viscosity ν
from 10−5 to 1, then Re = 104 - which is doable.

• In fact, all dimensional scales match those of a typical
laboratory experiment.

• We can use Reynolds number similarity to apply findings of
our flow using the modified Re to that of a typical
atmosphere.
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Reynolds number similarity

Figure: Velocity from DNS of a low-level jet. (a) and (b) have different
slope angles.
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Reynolds number similarity

Figure: TKE from DNS of a low-level jet. (a) and (b) have different slope
angles.
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Reynolds number similarity

• You see that by changing the scaling, we still get results that
seem to match the behavior of a flow with a larger Re.

• This is an example of using Reynolds number similarity.
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