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@® Turbulence Scales

© Fourier transforms



Website for those auditing

Materials will be cross-posted here:

http://gibbs.science/les
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Turbulence Scales

Recall that one of the properties of turbulent flows is a continuous
spectrum (range) of scales.
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Turbulence Scales

e The largest scale is the integral scale (¢,).

e The integral scale is on the order of the auto-correlation
length.

e In a boundary layer, the integral scale is comparable to the
boundary layer.



Richardson and eddy cascade

e Lewis Fry Richardson
(1881-1953)

o Pioneered the idea of predicting
weather by solving differential
equations.

o Weather Prediction by Numerical
Process (1922)




Richardson and eddy cascade

Richardson, from Weather Prediction by Numerical Process (1922)

Big whorls have little whorls

That feed on their velocity;

And little whorls have lesser whorls
And so on to viscosity.



Richardson and eddy cascade

The idea of the turbulent cascade:

e Vorticity is created on large scales by some driving mechanism
that feeds energy to the fluid.

e Shear instability causes smaller vortices to be shed, drawing
energy from the larger ones.

e This process continues on ever smaller scales.

e On the smallest scales, diffusion destroys eddies and converts
their kinetic energy to thermal energy.



Remember da Vinci?
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the smallest eddies are almost numberless,
and large things are rotated only by large eddies
and not by small ones, and small things are
turned by small eddies and large.

0

Sounds like Richardson’s turbulent cascade!



Turbulence Scales
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Kolmogorov's similarity hypothesis (1941)

e Andrey Nikolaevich Kolmogorov
(1903-1987).

e Famous Russian mathematician.

e Very influential 1941 theory of
homogeneous, isotropic,

incompressible turbulence based
on Richardson's ideas.




Kolmogorov's similarity hypothesis (1941)

Kolmogorov's theory of turbulence

e Turbulence displays universal properties independent of initial
and boundary conditions.

e Energy is added to the fluid on the inertial scale ¢, and is
dissipated as heat on the dissipative scale.

e Energy transfer between eddies on intermediate scales is
lossless.
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Kolmogorov's similarity hypothesis (1941)

Kolmogorov's first hypothesis

e Smallest scales receive energy at a rate proportional to the
dissipation of energy rate.
e Motion of the very smallest scales in a flow depend only on:
e rate of energy transfer from small scales

|5

‘|7

e kinematic viscosity
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Kolmogorov's similarity hypothesis (1941)

Using these, he defined the Kolmogorov scales (dissipation scales)

e length scale

e time scale

e velocity scale

Check units for yourself.
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Kolmogorov's similarity hypothesis (1941)

e Recall, that the Reynolds number (Re=UL/v) is the ratio of
inertia to viscous forces.

e Based on the Kolmogorov scales:

1
1/,8\4
un (V6)4 (7) 11 3 _1

Re:—:7:V464]/46 41 1:]_
1% v

Or in other words, the Kolmogorov length scale is the scale at
which Re=1
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Kolmogorov's similarity hypothesis (1941)

e From these scales, we can also form the ratios of the largest
to smallest scales in a flow.
o We will denote the largest length, time, and velocity scales as
Ly, to, and U, respectively.
e We can approximate dissipation at large scales as
0

o

16 /53



Kolmogorov's similarity hypothesis (1941)

e length scale
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Kolmogorov's similarity hypothesis (1941)

e velocity scale

3 1
Us 0
o 1
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Kolmogorov's similarity hypothesis (1941)

e time scale
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Kolmogorov's similarity hypothesis (1941)

e For very high-Re flows (e.g., Atmosphere), we have a range of
scales that is small compared to ¢, but large compared to 7.

e As Re increases, n/{, increases. This results in a larger
separation of between large and small scales.
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Kolmogorov's similarity hypothesis (1941)

o Consider typical atmospheric scales:
U, ~ 10 m s_l, 0, ~ 103 m, v~ 107° m? st
e which gives us,

Usly (10 m s71)(10% m)

9
v 1075 m? ! ~ 10

Re =

e thus,

1 ~ l,Re™1 ~ 0.00018 m
v~ UoRe*i ~0.06 m s~ !

Ly 1
~ —Re™2 ~ 0.003
T Uo (S S

You can start to see why explicitly resolving all scales in a typical @

atmosphere is expensive!
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Kolmogorov's similarity hypothesis (1941)

Kolmogorov's second hypothesis

e In turbulent flow, a range of scales exists at very high Re
where statistics of motion in a range [ (£, > ¢ > n) have a
universal form that is determined only by € (dissipation) and
independent of v (kinematic viscosity).

e Kolmogorov formed his hypothesis and examined it by looking
at the PDF of velocity increments Au.

0
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Kolmogorov's similarity hypothesis (1941)

The moments of this pdf are the structure functions
of different order (e.g., 2", 319, 4th, etc. )

~N

variance skewness kurtosis

pdf(4w)

A

Au

What are structure functions? The PDF? Let's quickly recap
statistics and how they tie in to scales.
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e The PDF is the integral of the CDF

e It gives the probability per unit distance in the sample space —
hence, the term density

e If two or more signals have the same PDF, then they are
considered to be statistically identical.

¢ Practically speaking, we find the PDF of a time (or space)
series by:

e Create a histogram of the series(group values into bins)
e Normalize the bin weights by the total # of points
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Autocovariance measures how a variable changes with different
lags, s.
R(s) = (u(t)u(t + s))

or the autocorrelation function

Or for the discrete form

N—j—1
] Zk:o] (UkUkJrj)
p(s;) N—1, 2
k=0 (uk)
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Notes on autocovariance and autocorrelation

e These are very similar to the covariance and correlation
coefficient

e The difference is that we are now looking at the linear
correlation of a signal with itself but at two different times (or
spatial points), i.e. we lag the series.

e We could also look at the cross correlations in the same
manner (between two different variables with a lag).

e p(0) = 1 and |p(s)| < 1
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e In turbulent flows, we expect the correlation to diminish with
increasing time (or distance) between points

e We can use this to define an integral time (or space) scale. It
is defined as the time lag where the integral [ p(s)ds
converges.

e |t can also be used to define the largest scales of motion
(statistically).

p(s)

Practically a statistical significance
level is usually chosen

...................................... S, A

Integral s @
time scale
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The structure function is another important two-point statistic.

Dn(T) = ([Ul(.fl} +r, t) — Ul(.il?, t)]n>

e This gives us the average difference between two points
separated by a distance r raised to a power n.

e In some sense it is a measure of the moments of the velocity
increment PDF.

e Note the difference between this and the autocorrelation
which is statistical linear correlation (i.e., multiplication) of
the two points.

0
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Fourier transforms

Alternatively, we can also look at turbulence in wave (frequency)
space. Fourier transforms are a common tool in fluid dynamics
(see Pope, Appendix D-G, Stull handouts online).

Some uses:
e Analysis of turbulent flow
e Numerical simulations of N-S equations

e Analysis of numerical schemes (modified wavenumbers)
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Fourier transforms

o Consider a periodic functioon f(z) (could also be f(t)) on a
domain of length 2.

e The Fourier representation of this function (or a general
signal) is:

where k is the wavenumber (frequency if f(t)), and f}, are the
Fourier coefficients which in general are complex.

0
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Fourier transforms

Why pick e**?
e Orthogonality

2m : !
/ ei(k_k/)xdzn _ 0, if k& % k
0 2 ifk=Fk

e a big advantage of orthogonality is independence between
Fourier modes

T independent of ei2r, just like we have with Cartesian
coordinates — where i, j, k are all independent of each other

0
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Fourier transforms

What are we doing?
e Recall from Euler's formula that e = cos(z) — i sin(x)

e The Fourier transform decomposes a signal (space or time)
into sine and cosine wave components of different amplitudes
and wave numbers (or frequencies).
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Fourier transforms

Fourier transform example (from Stull, see FourierTransDemo.m)

o frm forket
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Fourier transforms

e The Fourier representation below is a representaion of a series
as a function of sine and cosine waves. It takes f(z) and
transforms it into wave space.

e Fourier transform pair: consider a periodic function on a
domain of 27

2m
fe=F{f(x)} = QL f(z)e"™*2dy  — forward transform
T Jo
A~ k:m ~ .
fl@)=F{fi} ' = Z fre™® — backward transform
k=—00

e The forward transform moves us into Fourier (or wave) space
and the backward transform moves us from wave space back

to real space. @
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Fourier transforms

An alternative form of the Fourier transform (using Euler’s) is:

k=oc0

f(z) =aop+ Z ay, cos(kx) — by sin kz

k=—oc0

where a; and by are the real and imaginary components of f,
respectively.
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Fourier transform properties

e if f(z) is real, then: o
fre = frA”
e Parseval's Theorem:
1 [2r
o

f(z) E: fli

k=—o00

e The Fourier representation is the best possible representation
for f(x) in the sense that the error:

2m N )
e :/ flz— Z cpe’t®
0 k=—N
is a minimum when ¢, = fi @
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Discrete Fourier transform

o Consider the periodic function f; on the domain 0 <x < L
(periodicity implies that f(0) = f(NNV))

—+—+—+--------------- b withx=jhand h = L/N
=0 =1 J= i=
e Discrete Fourier representation:

N/2-1
A .27 . .
fi= Z fre! T 7% = backward (inverse) transform
k=—N/2

We know f; at N pts, don't know f at k values (N of them).
e Using discrete orthogonality:

N-1
1 2 e
E fje "1 ¥ = forward transform

5> -
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Discrete Fourier transform

e Discrete Fourier Transform (DFT) example and more
explanation found on the website/Canvas (Stull, Chapter
8.4-8.6., Pope appendix F, FourierTransDemo.m).

e Implementation of DFT by brute force — O(N?) operations.

e In practice, we almost always use a Fast Fourier Transform
(FFT) — O(N logy N) operations.
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Discrete Fourier transform

e Almost all FFT routines (e.g., Matlab, FFTW, Intel,
Numerical Recipes, etc.) save their data with the following

format:
positions x;

wavenumbers

X X X

k=0 k=1 k=2

x% x—‘/2+1 xr‘/1+2 Xy Xy
k=1 k=-2 k=-1
k=¥%-1 Ak=-%+1
Nyquist
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Fourier transform applications: autocorrelation

Autocorrelation

e We can use the discrete Fourier Transform to speed up the
autocorrelation calculation (or in general any cross-correlation
with a lag). Discretely,

N-1
Ryr(s)) = f(x)f(x;+s1) = O(N?)operations
§=0

e If we express Ry; as a Fourier series
Ryg(si) Z Rype™t = Ry f(0) ZRff
and we can show that

Rps(0) =3 Nl

magnitude of
Fourier Coefficients
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Fourier transform applications: autocorrelation

How can we interpret this?

e In physical space

N-1
R (0) = fj2 (i.e., the mean variance)
=0
N-1 N/2—1
2
=D 7= ) NPy
J=0 k=—N/2 energy

spectral density
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Fourier transform applications: spectrum

Energy Spectrum: (power spectrum, energy spectral density)

o If we look at specific k£ values from we can define:
E(k) = N|ful?

where E(k) is the energy spectral density

e The square of the Fourier coefficients is the contribution to
the variance by fluctuations of scale k& (wavenumber or
equivalently frequency)

e Typically (when written as) E(k) we mean the contribution to
the turbulent kinetic energy (TKE) = 0.5(u? + v? + w?) and
we would say that E(k) is the contribution to TKE for
motions of the scale (or size) k . For a single velocity
component in one direction we would write E1;(ky). @
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Fourier transform applications: spectrum

Example energy spectrum

A
E(k) Example energy spectrum
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Spectrum: sampling theorem

o Band-Limited function: a function where f; = 0 for |k| > k..

E(®)%
1 ]
< t T >
- i !
k 13 Tk
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Spectrum: sampling theorem

e Theorem: if f(x) is band-limited, then f(z) is completely
represented by its values on a discrete grid, x,, = n7/ke,
where n is an integer (0o < n < 00) and k. is called the
Nyquist frequency.

E(®)?

<€ f —>
-k ! 1
-k, k k
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Spectrum: sampling theorem

e Implication: if we have x; = jn/k. = jh (h = 7/k.) with a
domain of 27, then h =27 /N = 7 /k. = k. = N/2

e If the number of points is > 2k, then the discrete Fourier
transform is the exact solution. For example, if
f(z) = cos(6x), then we need N > 12 points to represent the
function exactly.

E(®)?
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Spectrum: sampling theorem

e What if f(x) is not band-limited?

e What if f(z) is band-limited, but sampled at a rate < k.
(e.g., f(z) = cos(6z) with 8 points)?

E(k)1 e (e.g.,a Gaussian distribution)

/

=
>

k

e The result is aliasing — contamination of resolved energy by
energy outside of the resolved scales.

0
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Spectrum: aliasing

e Consider %175 and e*%2%i and let k; = ko + 2mk,., where k.
is the Nyquist frequency, m = =+ any integer, and x; = jm /k.:
eiklxj — ei(kg-ﬁ-?mkc)xj
— eikga:j 62mkcmj
— eikzaxj ekacjﬂ/kc
_ eikng ei27rmj
=1, integer fn of 27

eikl T _ eikng

The result is that we cannot distinguish between ks and
k1 = ko + 2mk. on a discrete grid. kq is aliased onto ks.

0
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Spectrum: aliasing

e What does this mean for spectra?

Efk) aliased
exact
k
e What is actually happening?
E(k)
< . L4 >
-k AN it k
kc Negative wavenumbers kc @
folded to here
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Spectrum: aliasing

Consider a function: f(x) = cos(z) + 0.5 cos(3z) + 0.25 cos(6x)

e Fourier coefficients (all real)

............
||||||||||||

-k 65432414 123456 Fk

e Consider N =8 = k. =4

Aliased points

FANS NS = e BN

e Aliasing, if m =1, = k1 = ko + 2mk. = ko + 8m = —06 gets
aliased to 2. If m = —1,k; = ko — 8 = 6 gets aliased to —2.
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Spectrum: aliasing

e Aliasing decreases if N (sampling rate) increases.

e For more on Fourier Transforms see Pope Ch. 6, online
handout from Stull, or Press et al., Ch 12-13.
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Spectrum and Kolmogorov

Back to Kolmogorov

e Another way to look at this (equivalent to structure functions)
is to examine what it means for E(k) where E(k)dk =TKE
contained between k and k + dk.

e What are the implications of Kolmogorov's hypothesis for
E(k)? - K4l= E(k) = f(k,¢)
e By dimensional analysis we can find that:

E(K) = c,?/3 k03

Kolmogorov's 5/3 power law.

e This expression is valid for the range of length scales £ where
Lo > € > n and is usually called the inertial subrange of

turbulence. @
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Spectrum and Kolmogorov

Example energy spectrum

A
log(E(k))
Energy
containing range |
(Production Dissipation range
subrange) i Inertial (viscous subrange)
i subrange
t : ——t
k~1/1,, log(k) k~1/M

Integral scale Kolmolgorov scale @
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