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ABSTRACT

A massively parallel large-eddy simulation (LES) code for planetary boundary layers (PBLs) that utilizes

pseudospectral differencing in horizontal planes and solves an elliptic pressure equation is described. As an

application, this code is used to examine the numerical convergence of the three-dimensional time-dependent

simulations of a weakly sheared daytime convective PBL on meshes varying from 323 to 10243 grid points.

Based on the variation of the second-order statistics, energy spectra, and entrainment statistics, LES solutions

converge provided there is adequate separation between the energy-containing eddies and those near the

filter cutoff scale. For the convective PBL studied, the majority of the low-order moment statistics (means,

variances, and fluxes) become grid independent when the ratio zi/(CsDf) . 310, where zi is the boundary layer

height, Df is the filter cutoff scale, and Cs is the Smagorinsky constant. In this regime, the spectra show clear

Kolmogorov inertial subrange scaling. The bulk entrainment rate determined from the time variation of the

boundary layer height we 5 dzi/dt is a sensitive measure of the LES solution convergence; we becomes grid

independent when the vertical grid resolution is able to capture both the mean structure of the overlying

inversion and the turbulence. For all mesh resolutions used, the vertical temperature flux profile varies lin-

early over the interior of the boundary layer and the minimum temperature flux is approximately 20.2 of the

surface heat flux. Thus, these metrics are inadequate measures of solution convergence. The variation of the

vertical velocity skewness and third-order moments expose the LES’s sensitivity to grid resolution.

1. Introduction

Large-scale parallel computing has the potential to

alter the landscape of turbulence simulations in the at-

mospheric and oceanic planetary boundary layers (PBLs)

as increased computer power using O(104–105) or more

processors (National Science Foundation 2007) will

permit large-eddy simulations (LESs) of turbulent PBLs

coupling small and large scales in realistic outdoor en-

vironments. Applications include, atmosphere–land in-

teractions (Patton et al. 2005), boundary layers with

surface water wave effects (Sullivan and McWilliams

2010; Sullivan et al. 2007, 2008), weakly stable nocturnal

flows (Beare et al. 2006), flow in complex terrain

(Lundquist et al. 2010), stratocumulus clouds (Stevens

et al. 2005), tropical boundary layers beneath deep con-

vection (Moeng et al. 2009), and coupling with mesoscale

weather events (Bryan et al. 2003), to mention just a few.

Given the prominent and important role of LES in

studying boundary layer dynamics (Wyngaard 1998), it

is important to examine the quality of LES solutions,

and in particular their dependence on the grid mesh,

subgrid-scale (SGS) parameterizations, numerical dis-

cretizations, and surface boundary conditions. Assessing

the numerical convergence and the quantification of

uncertainty in LES, induced by modeling and numerical

errors, is compounded by the significant computational

expense needed to carry out meaningful grid refinement

for a three-dimensional time-dependent turbulent flow

(Pope 2000). The subgrid-scale model and numerical

discretization errors are intertwined since both depend

explicitly on the mesh spacing (Chow and Moin 2003;

Meyers et al. 2007; Geurts and Fröhlich 2002). The ef-

fective Reynolds number associated with the subgrid-

scale model can vary widely so that LES solutions can be

either deterministic or stochastic (Bryan et al. 2003;

Wyngaard 2004a). When the effective Reynolds number

is sufficiently large, resolved turbulence is supported and

LES solutions are stochastic, which requires that time-

and space-averaged statistics be examined in order to
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judge convergence. Designing metrics to assess solution

error is not obvious (Celik et al. 2006). Meyers et al. (2007)

propose a framework for LES model evaluation using

large- and small-scale metrics that are both physics and

mathematics based. They are able to extract LES dis-

cretization errors for idealized homogeneous isotropic

turbulence simulations with the Smagorinsky model but

rely on a direct numerical simulation (DNS) as ground

truth in their evaluations, which is not available for the

high-Reynolds number PBL.

Here, we investigate one aspect of assessing the quality

of LES solutions, namely the sensitivity and convergence

of LES solutions as the grid mesh is substantially varied

for a particular choice of subgrid-scale model. The phys-

ical problem investigated is a very weakly sheared day-

time convective PBL similar to that studied by Schmidt

and Schumann (1989). There have been a few previous

investigations that explored some aspects of the conver-

gence of LES solutions mainly focused on an inter-

comparison of different codes on a similar mesh [e.g., see

LES intercomparison studies by Beare et al. (2006),

Stevens et al. (2005), Bretherton et al. (1999), Andren

et al. (1994), Nieuwstadt et al. (1993) and Fedorovich et al.

(2004)]. Bryan et al. (2003) examined the resolution re-

quirements to simulate convective weather events and

found that the statistical properties of squall lines are still

not converged with a grid spacing of 125 m. Past in-

vestigations have been carried out with the intent of

clarifying the behavior of LES for different PBL flows.

Nieuwstadt et al. (1993) reports on the first inter-

comparison of simulation codes for the convective PBL

using coarse 403 meshes. Andren et al. (1994) examined

neutrally stratified PBLs, Beare et al. (2006) considered

the behavior of the stable PBL, and Bretherton et al.

(1999) studied radiatively driven entrainment in a smoke

cloud. Previous work aligned with the present study is

documented by Mason and Brown (1999). They examined

a modest range of domain size, grid resolutions, and sub-

grid-scale model constants but were particularly interested

in the influence of filter-scale CsDf ; Cs is the Smagorinsky

constant and Df is a characteristic subgrid length scale.

The outline of the paper is as follows: section 2 is

a brief introduction to the LES equations appropriate

for a high-Reynolds number PBL; section 3 describes the

LES grid refinement experiments; results are presented

in section 4; section 5 provides a summary of the findings;

and the appendix provides technical details about the

LES code parallelization and performance.

2. LES equations

Typical LES model equations for a dry atmo-

spheric planetary boundary layer under the Boussinesq

approximation include (a) transport equations for mo-

mentum, (b) a transport equation for a conserved buoy-

ancy variable (e.g., virtual potential temperature u), and

(c) a discrete Poisson equation for a pressure variable p

to enforce incompressibility, as well as closure expres-

sions for subgrid-scale variables [e.g., an SGS equation

for turbulent kinetic energy (TKE) e]. Formally, the LES

equations are derived by applying a low-pass spatial fil-

ter to the equations of motion that leads to the decom-

position of the total velocity u 5 u 1 u9 and total virtual

potential temperature u 5 u 1 u9, where (�) and (�)9 de-

note resolved and subgrid fields, respectively. The LES

model equations used are (Moeng 1984; Moeng and

Sullivan 2002)

›u

›t
1 u � $u 5 2f 3 (u 2 Ug) 2 $p 1 k̂bu 2 $ � T,

(1a)

›u

›t
1 u � $u 5 2$ � B, (1b)

›e

›t
1 u � $e 5P 1 B 1D2 E. (1c)

The pressure needed to make the flow divergence free is

the solution of the Poisson equation

$ � u 5 00=2p 5 r. (2)

Equation (2) is formed by applying the discrete di-

vergence operator to (1a) and collecting all terms except

the pressure in the source term r [see Sullivan et al.

(1996) for details].

In (1), f 5 f k̂, where f is the Coriolis parameter and k̂

is the unit vector in the z direction, Ug is the geostrophic

wind with x, y components (Ug, Vg), and b 5 g/u0 is the

buoyancy parameter with (g, u0) denoting gravity and

a reference virtual potential temperature, respectively.

The SGS momentum and scalar fluxes and SGS energy

are

T 5 uiuj 2 ui uj, (3a)

B 5 uiu 2 ui u, (3b)

e 5 (uiui 2 ui ui)/2. (3c)

In the SGS TKE equation (1c) terms on the right side are

subgrid-scale production and buoyancy (P, B), diffusion

D, and dissipation E. The modeling of these terms and the

SGS fluxes in terms of an eddy viscosity nt and diffusivity

nH are fully described in Deardorff (1980), Moeng (1984),

Moeng and Wyngaard (1988), and Sullivan et al. (1994).
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An excellent and insightful discussion of the subgrid-scale

dynamics contained in (1c) is given by Moeng and

Wyngaard (1988, 3581–3585). We are aware that the

specification of the subgrid-scale fluxes using a TKE eddy

viscosity model is one of many proposals available in the

literature (see, e.g., Meneveau and Katz 2000; Geurts

2001; Sullivan et al. 2003; Wyngaard 2004b). However,

the objective here is not to focus on the impact of dif-

ferent SGS prescriptions but rather to examine the so-

lution mesh dependence given a particular choice of SGS.

An important difference between smooth and rough

wall LES is the specification of surface boundary con-

ditions. As is common practice with geophysical flows,

we impose rough wall boundary conditions based on

a drag rule where the surface transfer coefficients are

determined from Monin–Obukhov similarity functions

(Moeng 1984; Moeng and Sullivan 1994). A high Rey-

nolds number model for viscous dissipation is used in

(1c) [see discussion near (6)]. Thus, molecular viscosity

and diffusivity do not appear in the LES equation set.

The sidewall (x, y) boundary conditions are periodic and

a radiation boundary condition (Klemp and Durran

1983) is used at the top of the domain.

In our LES code, (1) are integrated in time using a

fractional step method. The spatial discretization is

second-order finite difference in the vertical direction

and pseudospectral in the horizontal planes. The re-

solved vertical flux wu in (1b) receives special treatment.

It is determined using a second-order near monotone

scheme described by Beets and Koren (1996) (see also

Koren 1993). This upwind scheme prevents unrealizable

oscillations in regions of strong vertical scalar gradients.

Dynamic time stepping utilizing a third-order Runge–

Kutta scheme with a fixed Courant–Fredrichs–Lewy (CFL)

number (Sullivan et al. 1996; Spalart et al. 1991) is em-

ployed. Evaluating horizontal derivatives with fast Four-

ier transforms (FFTs) and solving the elliptic pressure

equation are nonlocal operations that impact the code

parallelization (see the appendix).

3. Design of LES experiments

A suite of simulations on a fixed computational do-

main with varying grid resolutions is performed to ex-

amine the convergence of the LES equations given in

section 2 using the parallel algorithm described in the

appendix. A canonical daytime convective PBL is sim-

ulated in a computational domain (Lx, Ly, Lz) 5 (5120,

5120, 2048) m. Six simulations are performed with grid

meshes of 323, 643, 1283, 2563, 5123, and 10243, and for

each mesh the spacing is held constant in the three (x, y,

z) directions (see Table 1). The PBL is driven by a con-

stant surface buoyancy flux Q
*

5 0.24 K m s21 and

weak geostrophic winds (Ug, Vg) 5 (1, 0) m s21. Other

external inputs are surface roughness z0 5 0.1 m, Cori-

olis parameter f 5 1 3 1024 s21, and initial inversion

height zi ;1024 m. In terms of the initial PBL height, the

computational domain is (Lx, Ly, Lz)/zi 5 (5, 5, 2), which

is sufficient to allow fully turbulent flow fields to develop

independently of the periodic sidewall boundary con-

ditions (e.g., Schmidt and Schumann 1989). At long time

scales (t $ 8 h) the horizontal domain should be ex-

panded to accommodate the very large structures that

can develop under persistent forcing, as discovered by

Jonker et al. (1999) and de Roode et al. (2004).

The initial sounding of virtual potential temperature

(to streamline the text, hereafter virtual potential tem-

perature u is simply referred to as ‘‘temperature’’) has

a three-layer structure:

u(z) 5

300 K : 0 , z , 974 m

300 K 1 (z 2 974 m) 0:08 K m21 : 974 , z , 1074 m

308 K 1 (z 2 1074 m) 0:003 K m21 : z , 1074 m

.

8><
>:

(4)

Thus, a sharp jump in temperature of 8 K is imposed

over a depth of 100 m near the top of the PBL. For this

combination of geostrophic wind and surface buoyancy

flux the Monin–Obukhov length scale L ’ 21.5 m and

thus the PBL is dominated by convective forcing since

2zi/L 5 O(500). All simulations are started from small

random seed perturbations in temperature near the

surface. The simulations are carried forward for about

25 large eddy turnover times T 5 zi/w*
, where the

Deardorff convective velocity scale w
*

5 (gQ
*
zi/u0)1/3.

At each time step, the boundary layer top zi is diagnosed

using the ‘‘maximum gradient method’’ (Sullivan et al.

1998). Statistics are generated by averaging in horizontal

x–y planes and over the time interval 10T–25T; these

TABLE 1. Simulation grid spacings.

Run Grid points (Dx, Dy, Dz) (m) Df (m)

A 323 (160, 160, 64) 154

B 643 (80, 80, 32) 77.2

C 1283 (40, 40, 16) 38.6

D 2563 (20, 20, 8) 19.3

E 5123 (10, 10, 4) 9.6

F 10243 (5, 5, 2) 4.8
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averages, which approximate the ensemble average, are

indicated by h�i. Also, we often compute statistics of

a resolved turbulence fluctuation f 0 5 f 2 h f i. In the

case of vertical velocity, w [ w0, since horizontal peri-

odic boundary conditions and no flow through the bot-

tom boundary require hwi(z) 5 0 in order to satisfy (2).

Grid resolution tests with LES are demanding since

the resolved turbulent motions are always 3D and time

dependent. For rough-wall LES of a given domain

size, the number of mesh points in a single direction N ;

(Lx/Dx) and hence N3 ; (Lx/Dx)3, assuming equal spac-

ing in all three directions. However, refining the mesh

also lowers the acceptable time step owing to the limits

imposed by a CFL constraint; that is, CFL 5 jujmax Dt/Dx.

Thus, as the grid spacing decreases, the number of time

steps needed to advance the solutions to the same time

further increases by the factor M ; Lx/Dx (see, e.g.,

Pope 2000, p. 348). The total computational work for

a complete simulation is then M � N3 ; (Lx/Dx)4. As

an example of the steep climb in work with increasing

resolution, the computational effort on a mesh with

10243 grid points is approximately 4096 times greater

than the work required on a mesh with 1283 grid points.

This underestimates the effort by a factor of 2 since our

computations are dominated by FFT work, which scales

as NlogN in both x and y.

4. Results

In the analysis of the LES solutions we discuss the

variation of statistics and vertical profiles as a function of

the mesh resolution ratio zi/Df or zi/Dz; here zi is the

PBL depth and Df is the LES filter width, which is related

to the mesh spacings Dxi, as discussed below. In the in-

terior of the PBL, away from the surface layer and en-

trainment zone, numerous observational and LES studies

find that zi is a characteristic scale of the energy con-

taining eddies in the convective PBL (e.g., Deardorff

1972a; Lenschow et al. 1980; Lothon et al. 2009; Jonker

et al. 1999). Thus, the nondimensional ratio zi/Df can be

interpreted as a measure of the scale separation between

the energy-containing eddies and those near the filter

cutoff. When the SGS closure is the Smagorinsky model,

Mason and Brown (1999) and Pope (2000) prefer to

interpret the LES set of equations as a numerical system

with the degrees of freedom limited by a low-pass

‘‘Smagorinsky filter.’’ The cutoff scale of the filter is

CsDf, with Cs equal to the Smagorinsky constant.

Muschinski (1996) builds on this interpretation and

discusses the properties of a non-Newtonian LES fluid

with a Smagorinsky viscosity. To place our simulations

in the context of this alternate interpretation, we also

present the results as a function of the resolution ratio

zi/(CsDf). In either interpretation, when zi/Df � 1 LES

solutions have a wide separation between the energy-

containing eddies and those near the filter cutoff scale.

Observations of subgrid-scale turbulence in the atmo-

spheric surface layer demonstrate that a similar ratio of

scales Lw/Df, where Lw is the scale of the peak in the

vertical velocity spectrum, is a useful dimensionless

parameter that collapses the variation of subgrid-scale

turbulence over a range of stratification and filter widths

(Sullivan et al. 2003).

A summary of bulk PBL properties generated from

the various simulations is provided in Table 2. Entries in

this table are PBL depth zi, convective velocity scale w
*
,

normalized entrainment rate ratio we/w*
, large-eddy

Reynolds number at mid-PBL Re‘, friction velocity ra-

tio u
*
/w

*
, bottom and top of the entrainment zone (db,

dt)/zi, and the ratio of PBL depth to filter width and

vertical resolution zi/(Df, CsDf, Dz). Note that db and dt

are the endpoints of the entrainment zone defined as the

region where the total vertical temperature flux is neg-

ative. A broad look at the tabulated results shows that w
*

is almost invariant with the mesh resolution, while the

friction velocity shows a slight downward trend of ;10%

as the mesh varies. Our values of u
*
/w

*
; 0.08 for zi/z0 ;

104 are close to those predicted by Schmidt and Schumann

(1989). Meanwhile, the entrainment rate and entrainment

zone depth vary substantially on the coarser meshes. The

variations of the bulk properties and the vertical profiles

of selected flow variables are discussed below.

a. Inertial subrange scaling

A fundamental basis of high Reynolds number LES is

that the resolved (large-eddy) turbulence is independent

TABLE 2. Bulk simulation properties.

Run zi (m) zi/Df zi/CsDf w
*

(m s21) we/w*
(3103) Re‘ u

*
/w

*
(db, dt)/zi

A 1132 7.2 40 2.07 9.56 238 0.084 (0.74, 1.22)

B 1118 14.5 80 2.06 8.45 554 0.091 (0.75, 1.18)

C 1099 28.5 158 2.05 6.84 1300 0.090 (0.77, 1.12)

D 1092 56.6 314 2.05 5.23 3178 0.087 (0.80, 1.09)

E 1088 113.3 630 2.04 5.27 8050 0.084 (0.80, 1.07)

F 1099 229.0 1272 2.05 5.16 20 600 0.079 (0.80, 1.05)
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of subgrid-scale influences, namely the SGS viscosity nt

and scalar diffusivity nH. In other words, the large-eddy

Reynolds number Re‘ in LES solutions must be suffi-

ciently large that the resolved flow is in a regime of so-

called ‘‘Reynolds number similarity’’ (Townsend 1976;

Wyngaard 2010). We follow Moeng and Wyngaard

(1988) and define Re‘ for an LES of a convective PBL

based on the SGS viscosity nt and characteristic velocity

and length scales (u, ‘) 5 (w
*
, zi). Thus,

Re‘ 5
u‘

nt

[
w*zi

CkDf

ffiffiffi
e
p , (5)

where we adopt the definition of SGS viscosity nt 5

CkDf

ffiffiffi
e
p

. Here Ck 5 0.1 is a modeling constant that

follows from matching with an inertial subrange spec-

trum (Moeng and Wyngaard 1988). In our pseudo-

spectral code, the filter width is the characteristic

length scale of the cell averaging volume D3
f 5fDxfDy Dz,

where the grid spacings are Dxi and (fDxfDy) 5 3(Dx, Dy)/2

are increased by a factor of 3/2 to account for dealiasing of

the upper 1/3 wavenumbers. Inserting the definition of

w
*

into (5) and adopting the high Reynolds number

inertial subrange dissipation model (Lilly 1967; Moeng

and Wyngaard 1988)

E5 CE
e3/2

Df

(6)

leads to

Re‘ 5
zi

Df

 !
4/3 CE

C3
k

g

u0

Q*
E

 !
1/3

[
zi

CsDf

 !
4/3

g

u0

Q*
E

� �
1/3

.

(7)

In (6) the modeling constant CE ; 0.93 and for a

production–dissipation balance in (1c) the Smagorinsky

constant Cs 5 C3/4
k /C1/4

E ; 0:18. Equation (7) exposes the

dependence on the Smagorinsky filter scale CsDf. Moeng

and Wyngaard (1988) further argue that if the filter cut-

off lies in the inertial subrange, then the net dissipation

E should be constant, which leads to the scaling Re‘ ;

(zi/Df)
4/3. This is similar to how the large-scale Reynolds

number varies in direct numerical simulation (see Pope

2000, p. 347). For our LES experiments with different

meshes we estimate based on (5) that at mid-PBL Re‘
varies by almost two orders of magnitude, Re‘ 5 [240,

20600] (see Table 2). To test the LES scaling suggested

by (7) we show the product Re‘ (Df /zi)
4/3 at three heights

z/zi 5 (0.1, 0.5, 0.9) for varying mesh resolution in Fig. 1.

Note that Re‘ is largest in the upper part of the PBL and

smallest near the surface, which is a consequence of the

SGS e dependence in (5); he(z)i has a maximum near the

surface and decreases monotonically toward the top of

the PBL. Also, in the PBL interior the inertial range

scaling suggested by (7) is indeed obeyed when zi/Df .

60 or zi/(CsDf) . 310; this corresponds to meshes greater

than 2563 (Table 2). Moeng and Wyngaard (1988)

comment that their 963 computations with Re‘ 5 1000

fall within the inertial subrange but are likely somewhat

close in scale to the energy-containing eddies, which is

confirmed by the present calculations. Of course, below

z/zi , 0.1, Re‘ is even smaller because of the high levels

of SGS e and thus meshes finer than 2563 are needed

close to the wall before simulations will be able to ade-

quately reproduce an inertial subrange (see section 4d).

An alternate but equivalent statement of the high

Reynolds number scaling Re‘ ; (zi/Df)
4/3 is that the

dissipation E is independent of the grid mesh. As a con-

sistency check, we computed the time and horizontally

averaged dissipation hE(z)i from (6) at heights z/zi 5 0.1,

0.5, and 0.9 from the different simulations. We find that

hE(z)i also tends to a constant grid-independent value

in the interior of the PBL when the mesh is 2563 or

greater. This shows that high Reynolds number LES

obeys one of its fundamental assumptions as the mesh

is refined.

b. Temperature profiles and entrainment statistics

The vertical structure of the mean temperature hui
and its turbulent flux profile hw0u0 1 B � k̂i are de-

pendent on the grid resolution as shown in Figs. 2 and 3.

Figure 2 compares the temperature profiles at time t 5

15T, which is well beyond the initial spinup period for

the turbulence and is representative of the late-time

quasi-steady behavior of hu(z)i. All profiles display

a similar well-mixed structure over the interior of the

FIG. 1. Variation of large-eddy Reynolds number Re‘ with mesh

resolution at heights z/zi 5 0.1, 0.5, and 0.9 denoted by symbols u,

), and s, respectively; Re‘ is computed from (6). Inertial subrange

scaling is obeyed when the solid line becomes flat. Note the bottom

and top x axes show the resolution ratios of zi to Df and to CsDf,

respectively.
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boundary layer 0.1 , z/zi , 0.9. The profile of hu(z)i near

the surface and in particular near zi exhibits a grid reso-

lution sensitivity that impacts the interior temperatures.

Since the surface heating is constant in time across the

simulations, the increased warming observed in the mid-

PBL with the lower-resolution simulations must result

from an increase in entrainment, as discussed below.

Recall that all simulations are initiated with the same

three-layer temperature sounding (4); however, on the

coarse meshes the temperature profile reaches a quasi-

equilibrium state with a much weaker inversion.

The response of the temperature flux profiles to the

varying mean u profiles, shown in Fig. 3, is interesting.

Despite the radical changes to the overlying tempera-

ture structure with varying mesh, all the temperature

flux profiles decrease linearly over the boundary layer,

reaching a minimum (negative) value near and below

zi. Note that Fig. 3 shows the total temperature flux

(i.e., the sum of resolved plus subgrid-scale fluxes where

the latter is retrieved from the SGS eddy viscosity

model B � k̂ 5 2nH›u/›z). The minimum temperature

flux hw0u0 1 B � k̂imin/Q* ’ 20:2 is weakly dependent on

the mesh resolution; it becomes slightly less negative as

Df decreases. However, the depth of the entrainment

zone, defined as the layer where the temperature flux is

less than zero, expands considerably as the mesh is

coarsened. This is consistent with the observed changes

in the mean temperature profiles.

The temporal variation of the boundary layer in-

version height zi(t), shown in Fig. 4, is a strong measure

of solution convergence. Here zi is determined using the

maximum vertical gradient in temperature; that is, for

each x, y gridpoint we search along a vertical column to

find the location of the maximum in ›u/›z and then

horizontally average all those positions to define zi at

a particular t. This technique closely tracks local changes

in the inversion (Sullivan et al. 1998; Davis et al. 2000).

We notice immediately that the boundary layer in the

low-resolution simulations entrains fluid much more

rapidly than in the fine-mesh simulations, which reflects

the weakened inversions discussed previously. A critical

parameter, the entrainment rate we 5 dzi/dt, is then

a function of the mesh resolution; we determined from

a linear least squares curve fit to the variation of zi(t)

over the interval 10T–25T is listed in Table 2. In the

coarse 323 simulation the nondimensional entrainment

rate we/w*
; 9.2 3 1023, which is more than 85% larger

than the finest 10243 resolution run. Notice in Table 2

that the entrainment rate does not change appreciably

once the mesh resolution exceeds 2563, while the en-

trainment rate from the 1283 simulation is about 30%

larger than the average of the fine-mesh runs (runs D, E,

and F).

To further expose the coupling between the mean

temperature field and turbulence in the entrainment

zone we examine the average budget equations for the

resolved vertical temperature flux and temperature

variance (e.g., see Mironov et al. 2000):

FIG. 2. Vertical profile of virtual potential temperature hui for

varying mesh resolution. Note all simulations are started with the

same three-layer structure for virtual potential temperature ui,

indicated by the dotted line.

FIG. 3. Vertical profile of total temperature flux hw0u0 1 B � k̂i/Q*
for varying mesh resolution.
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›

›t
hw0u0i5 2

›

›z
hw02u0i

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
T

2 hw02i›hui
›z|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
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In these equations T is turbulent transport, M is mean-

gradient production, B is buoyant production, P is pressure

destruction, and S is a subgrid-scale term (i.e., a correlation

between resolved and SGS variables). Temperature flux

(8a) and temperature variance (8b) are coupled with each

other and both depend on the mean temperature through

its vertical gradient ›hui/›z. There is of course feedback to

the mean temperature through the vertical divergence of

temperature flux. In (8a), the resolved vertical flux hw0u0i
depends on the mean-gradient production term M, which

acts as both source and sink since the mean temperature

gradient has both positive and negative slopes in the

convective PBL. In (8b), resolved temperature variance

reflects the balance between flux mean-gradient pro-

duction and the subgrid-scale term. On the coarse meshes

the internal balance within the LES leads to weaker

temperature gradients near zi, but the region where

›hui/dz . 0 is spread over a greater extent of the PBL

(see Fig. 2). As a result, the production of temperature

variance by term M in (8b) on the coarse meshes is sig-

nificantly lower since the minimum value of the tem-

perature flux changes only slightly with resolution. At

the same time, the mean-gradient term M in (8a) acts as

a sink for temperature flux over a larger depth near the

PBL inversion and hence the entrainment zone—that is,

the layer where hw0u0i, 0—expands on the coarse

meshes, as observed in Fig. 3 (see also Table 2).

The couplings among mean temperature, temperature

flux, and temperature variance in (8) are subtle and

complex and apparently depend critically on the mean

temperature gradient. This in turn impacts the overall

entrainment predicted by LES. To illustrate the in-

fluence of ›hui/›z on the LES solutions we perform two

additional simulations. Simulation D1 uses a 2563 mesh

but sets the filter width Df equal to the value for the 643

mesh with all other parameters held constant. Thus D1

has fine vertical resolution Dz 5 8 m but sets Df 5

77.2 m. Simulation B1 uses a 643 mesh but turns off the

monotone computation of the vertical temperature flux

in (1b). Figure 4 shows the entrainment rate D1 ’ D and

B1 ’ B. These results indicate that the weakening of the

inversion in the coarse-mesh simulations is a conse-

quence of sparse vertical resolution of the mean tem-

perature gradient and its internal couplings with the

turbulence and is not a result of monotone numerics

and/or SGS effects. We note that LES studies of

stratocumulus-topped PBLs by Stevens et al. (2005),

which have very sharp inversions, find that the best

comparison between LES and observations occurs when

the vertical resolution within the LES is very fine. The

meshes used in those simulations are, however, very

anisotropic, with (Dx, Dy)� Dz.

Based on our LES experiments we conclude that to

generate grid-independent solutions the mesh needs to

have sufficiently fine vertical resolution to capture both

the mean temperature gradients in the overlying inver-

sion and the turbulence. However, vertical refinement

requires a comparable refinement of the horizontal grid

in order to maintain reasonable aspect ratio grids; grid

isotropy impacts inertial range SGS constants (e.g.,

Scotti et al. 1993). Generally, the impact of grid anisot-

ropy Dx 6¼ Dy 6¼ Dz on LES solutions is not well un-

derstood (e.g., Kaltenbach 1997; Silva Lopes and Palma

2002). We note, however, that in all our computations

Dx 5 Dy and hence the explicit (dealiasing) filtering used

FIG. 4. Variation of the boundary layer height zi with non-

dimensional time t/T; the large-eddy time scale T 5 zi/w*
. The

labels A–F correspond to the grid resolutions 323, 643, 1283, 2563,

5123, and 10243, respectively. The high-resolution runs (D–F)

overlap. The simulation marked with an open square uses a mesh of

643 but with no monotone vertical temperature flux; that marked

with an open circle uses a mesh of 2563 and is identical to simulation

D but uses a filter width Df equal to simulation B.
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in horizontal x–y planes is isotropic. Tong et al. (1998)

shows that 2D (isotropic) filtering, as used here, is nearly

equivalent to 3D filtering.

These mesh resolution experiments have implications

for LES studies of entrainment. There is a subtle in-

terplay among mesh resolution, the overlying inversion,

the minimum temperature flux, and the entrainment

rate. Insufficient vertical resolution weakens the in-

version and increases the entrainment rate while main-

taining nearly the same minimum temperature flux. A

first-order entrainment jump model (Betts 1974) shows

how a finite inversion thickness contributes to the en-

trainment rate (see Sullivan et al. 1998). Linearity of the

temperature (or heat) flux profile and minimum tem-

perature flux approximately equal to 20.2Q
*

are rela-

tively insensitive to the mesh resolution and thus are

insufficient to judge the convergence of LES solutions

for the convective boundary layer. The variation of the

entrainment rate we 5 dzi/dt is a much more sensitive

indicator of LES solution convergence.

c. Convergence of variances statistics

One of the main attributes of LES is its ability to ac-

curately compute turbulence. To judge whether the

turbulence statistics generated by LES are mesh in-

variant, we need to account for both the resolved and

SGS contributions to the variances. Figure 5 compares

vertical profiles of the normalized total TKE

E(z) 5
hu0iu0i/2 1 ei

w2
*

(9)

for varying mesh resolutions. Ideally, with small sam-

pling errors all profiles should collapse onto the same

curve independent of Df. Overall there is broad agree-

ment among the profile shapes for varying Df, but the

TKE profile displays more sampling variability than the

total temperature flux, especially in mid-PBL. Despite

this variability, the shape of the TKE profile near zi is

clearly mesh dependent, which is an indirect conse-

quence of the changes to the temperature structure in

the entrainment zone discussed in section 4b. Also, there

is a persistent trend where the total TKE in the lower

PBL z/zi , 0.5 on the coarse meshes is reduced com-

pared to the fine mesh calculations. Near the surface the

total TKE profiles on the coarse meshes show noticeable

departures from their fine mesh counterparts. This is

likely due to a combination of effects such as inaccurate

modeling of SGS fluxes near a rough boundary (e.g.,

Sullivan et al. 2003; Brasseur and Wei 2010) and in-

teractions with an outer flow that varies with mesh res-

olution. The large entrainment rates on the coarse

meshes imply that the turbulence in those PBLs is only

quasi-stationary in time.

Inspection of the vertical profiles of total vertical

variance hw2itot 5 hw02 1 2e/3i and total horizontal ve-

locity variance hu2
hitot

5 hu02 1 y02 1 4e/3i (see Fig. 6)

FIG. 5. Effect of mesh resolution on the (left) total turbulent kinetic energy (TKE) and

(right) total temperature variance Q2. TKE is normalized by w2
* and the temperature variance

is normalized by Q
*

5 Q
*

/w
*

.
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provides additional insight as to how the TKE varies

with zi /Df. The value 2e/3 is an estimate of the contri-

bution from the SGS velocity variance for an isotropic

SGS model and thus 2w2
*E 5 hw2 1 u2

hitot
. All the profiles

of the total w variance display the same smooth slightly

asymmetric shape over the PBL. There is a remarkably

good collapse among the profiles when the mesh is 2563

[i.e., zi/(CsDf) . 310]. The variability in the TKE profile

observed in Fig. 5 clearly arises from the horizontal

variances. The hu2
hi variance has peaks near the ground

and zi; the upper maximum shifts its vertical location

and shape depending on the structure of the overlying

inversion. Generally, we do not see the same high de-

gree of convergence of the horizontal variance with

mesh resolution as observed for the vertical velocity

variance. A possible cause of this variability is the pres-

ence of abrupt wind reversals that occur sporadically over

long time intervals in thermal convection as observed by

Sreenivasan et al. (2002).

Our SGS closure prescription for temperature flux is

based on an eddy viscosity and a turbulent Prandtl

number assumption: we do not carry a prognostic equa-

tion for the subgrid-scale temperature variance. The total

temperature variance is

Q2(z) 5
hu02 1 ui

u2
*

(10)

and we diagnose the SGS variance contribution from

u ;2
2‘f B � k̂
C

u

ffiffiffi
e
p ›u

›z
. (11)

Equation (11) is a truncated balance between variance

destruction and variance production by the vertical

temperature gradient. Here B � k̂ is the SGS vertical

temperature flux in (3b), u
*

5 Q
*

/w
*

, Cu 5 2.02

(Schmidt and Schumann 1989; Deardorff 1972b), and ‘f

is a stability-corrected length scale (Moeng 1984;

Deardorff 1980). We find that u ; O(u02) only very near

the surface. In the inversion ‘f is small because of the

stable stratification that damps the SGS temperature

variance in (11). Figure 5 shows the total temperature

variance Q2(z) over the entire PBL. In the interior 0.1 ,

z/zi , 0.9, the temperature variance on all meshes is

small and appears converged. At the upper edge of the

PBL the temperature variance has a pronounced maxi-

mum that varies with mesh resolution. The peak total

variance on the 10243 mesh is nearly 5 times as large as

on the 643 mesh and furthermore is concentrated over

a thinner vertical extent. The weaker temperature gra-

dient that develops on the coarse mesh, discussed in

section 4b, greatly reduces the temperature variance.

Temperature variance generated by LES converges in

the interior of the PBL but becomes mesh dependent in

FIG. 6. Total variance (resolved plus SGS contributions) of the (left) vertical and (right)

horizontal velocities. The horizontal variance uh is the sum of the u and y components; see

definition below (9).
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the entrainment zone and very near the surface because

of the variation of the mean temperature gradient and

a mesh-dependent triple-moment term hw0u02i shown in

section 4e. SGS models based on rate equations that

include a prognostic conservation equation for SGS

variance should improve the convergence of the LES

solutions for temperature variance in these regions

(Wyngaard 2004b; Hatlee and Wyngaard 2007).

d. Spectral analysis

Figure 7 shows two-dimensional spectra of the vertical

and horizontal velocity at nondimensional heights z/zi 5

(0.9, 0.5, 0.1) for varying mesh resolutions. These spectra

are functions of the horizontal wavenumber vector

k
h

5 (k
x
î, k

y
ĵ) and are smoothed by averaging in circular

rings at constant kh 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

x 1 k2
y

q
and over time. These

two-dimensional spectra vanish at zero wavenumber

and are more representative of the spatial eddy scale

than their one-dimensional counterparts, which are

contaminated by aliasing from averaging in either x or y

directions (see Wyngaard 2010, p. 351).

In the upper boundary layer, z/zi 5 0.9, all the meshes

capture the peak in the vertical velocity spectrum rea-

sonably well and also display a k25/3
h slope, which is es-

pecially clear in the fine 10243 resolution run. There is

a small departure from k25/3
h at the highest wavenumbers

in the spectrum of the horizontal velocity. Similar be-

havior occurs at mid-PBL z/zi 5 0.5, as shown in Fig. 7.

Near the outer edge of the surface layer (z/zi 5 0.1), we

notice a pronounced broadening of the peak in the

vertical velocity spectrum with a clear shift to higher

wavenumbers; this is due to inviscid blocking by the

presence of the wall. The coarser-resolution runs with

meshes of 1283 and less are just barely able to resolve the

peak in the vertical velocity spectrum at this height. It is

encouraging that all runs display a similar variation at

low wavenumbers khzi # 10.

The spectrum of horizontal velocity displays an in-

triguing behavior at z/zi 5 0.1, and to a lesser extent at

z/zi 5 0.9, Its peak energy is clearly at a lower wave-

number compared to the vertical velocity, and the finest-

resolution run hints at a two-slope character (i.e., it

displays a slope transition near khzi ; 25). This behavior

reflects the redistribution of energy near the lower sur-

face because of the wall presence. This is exposed more

clearly in Fig. 8 where we show the z variation of the

spectra from the 10243 simulation as the lower boundary

is approached. We notice a smooth gradual decrease in

the magnitude of the vertical velocity spectrum at low

wavenumbers accompanied by a gradual shift in the

FIG. 7. Two-dimensional energy spectra of (left) vertical velocity w and (right) horizontal

velocity u in the PBL for varying meshes. The spectra are functions of the magnitude of the

horizontal wavenumber vector kh 5 jkj. The groups of spectra at the top, middle, and bottom in

each plot correspond to the heights z/zi 5 0.9, 0.5, and 0.1, respectively. For clarity, the spectral

amplitudes in each group are multiplied by the numerical factor on the left-hand side of the

plot. The dashed line has slope k25/3
h .
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peak toward higher wavenumbers as z/zi decreases. A

slope of k25/3
h is always maintained as z/zi decreases as

predicted by Wyngaard (2010, p. 355). The spectrum of

the horizontal velocity, however, displays an opposite

trend that reflects the amplification of the u variance as z

decreases. We notice that the increases in u variance occur

at low wavenumbers with the peak in its spectrum growing

by almost a factor of 10 at wavenumber khzi ; 3, with

almost no change to the spectral components khzi $ 40.

These changes are barely captured by the 1283 simulation.

Near the lower boundary, the spectral distribution of en-

ergy reflects the enhancement of the (u, y) variances

caused by descending downdrafts that transfer energy into

horizontal motions. Pope (2000, p. 433) discusses a num-

ber of different effects induced by the presence of a wall.

e. High-order moments

Velocity and scalar moments higher than second or-

der appear in ensemble average TKE and flux budgets

and are used in the interpretation of PBL dynamics (e.g.,

Mironov 2009). Often LES flow fields are used to com-

pute high-order moments, but it is unknown how grid

resolution impacts these estimates. Moeng and Rotunno

(1990) identify the vertical velocity skewness Sw as

a critical parameter in boundary layer dynamics. In

convective PBLs, Sw is an indicator of the updraft–

downdraft distribution, provides clues about vertical

transport, and is utilized in dispersion studies (Weil

1988, 1990). Further, Moeng and Rotunno (1990) find

that vertical velocity skewness is sensitive to the type of

surface boundary conditions and also varies with Rey-

nolds number in direct numerical simulations.

The definition of vertical velocity skewness is

Sw 5
hw3i
hw2i3/2

, (12)

where w is the total velocity. To examine the impact of

grid resolution on Sw, the solutions from the different

simulations are analyzed with the caveat that we use the

resolved or filtered vertical velocity w 5 w0. Hence we

compute the resolved skewness

Sw 5
hwwwi
hwwi3/2

. (13)

Since typical LES uses Smagorinsky closures with SGS

fluxes parameterized at the second moment level, SGS

triple moments are unknown and thus there is not a clear

definition of ‘‘subgrid-scale skewness’’ in an LES.

Vertical profiles of S
w

are shown in Fig. 9. These

profiles exhibit a clear and striking dependence on grid

resolution; near the surface (z/zi , 0.15) Sw decreases

and eventually becomes (unrealistically) negative on the

coarse meshes. Meanwhile as z/zi / 1 an opposite trend

FIG. 8. Two-dimensional energy spectrum of (left) vertical velocity w and (right) horizontal

velocity u near the lower boundary at various heights z/zi 5 0.1, 0.2, 0.3, and 0.5 for a simula-

tions with 10243 grid points. The dashed line has slope k25/3
h .
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is observed. With decreasing grid resolution S
w

becomes

larger and shows a pronounced maximum below the in-

version. In the PBL interior (0.1 , z/zi , 0.9), the

skewness estimates appear to converge when zi/(CsDf) .

310 or greater (i.e., when the mesh is greater than or equal

to 2563). Near the lower boundary (z/zi , 0.4) the

skewness estimates on the 2563, 5123, and 10243 meshes

are in good agreement with the few available observa-

tions. Above z/zi . 0.75, we have no compelling expla-

nation for the differences between the fine-mesh LES

predictions and the few observations but note that the

presence of wind shear reduces vertical velocity skewness

(Fedorovich et al. 2001, 2004; Lothon et al. 2010). Also,

the temporal averaging needed to obtain reliable skew-

ness estimates increases with z (Lenschow et al. 1994),

which adds uncertainty to the observations of Sw in the

upper PBL. Recently, Lenschow et al. (2011) analyzed

vertical velocity collected from a ground-based lidar, over

a wider range of shear and convective forcing, and find

that their measurements of Sw bracket our LES results.

Our interpretation of Fig. 9 hinges on the behavior

and modeling of the subgrid-scale fluxes in LES. To

expose this dependence we introduce the definitions of

the third- and second-order SGS moments

c 5 w2 2 w2 [ ww 2 ww, (14a)

f 5 w3 2 w3 [ www 2 www, (14b)

where (�) indicates a spatially filtered variable. Because

the filtering operator commutes with ensemble

averaging—that is, hw3i[ hw3i5 hw3i—the total skew-

ness given by (12) is next written in terms of resolved

and subgrid contributions defined by (14):

Sw 5
hw3i1hfi

(hw2i 1 hci)3/2
. (15)

Algebraic manipulation of (15) utilizing (14) leads to

Sw 5 Sw

(1 2 ĉ)3/2

(1 2 f̂)
, (16)

where S
w

is the resolved-scale skewness (13) and

ĉ 5 hci/hw2i, (17a)

f̂ 5 hfi/hw3i, (17b)

are nondimensional second- and third-order SGS mo-

ments. Equation (16) is useful—it defines the total

skewness in terms of LES resolved and subgrid-scale

variables.

To evaluate the importance of the SGS moments

(ĉ, f̂) to vertical velocity skewness we filter the 10243

simulation results to produce resolved and SGS vari-

ables on a coarser mesh. This step is justified since the

LES solutions for vertical velocity are converged at this

mesh resolution with a negligible contribution from the

SGS (see Fig. 6a). The vertical velocity field from cases

E and F are filtered in horizontal x–y planes to a reso-

lution of 642 using a sharp spectral filter—no filtering is

applied in the z direction. Tong et al. (1998) show that

2D filtering in a plane is a good approximation to 3D

filtering. As an independent check we verified that the

filtered fields satisfy (16) exactly.

Vertical profiles of skewness and SGS moments con-

structed from the filtered 10243 simulation (referred to

as case Ff) are presented in Fig. 10; results obtained from

filtering case E are similar. The skewness estimates from

Ff are similar to the comparable 643 coarse simulation

result (i.e., small in the surface layer and large near the

inversion) but exhibit important quantitative differ-

ences. In the surface layer, the skewness from case Ff is

always positive except very near the ground, in contrast

to simulation B. This is in agreement with our physical

expectation. Also the skewness from Ff matches the

high-resolution result in the mid-PBL. The SGS mo-

ments in Fig. 10b illustrate the shortcomings of the

FIG. 9. Effect of mesh resolution on resolved vertical velocity

skewness S
w

. The lines legend indicates the mesh size of the various

simulations. The skewness is computed using the resolved (or fil-

tered) vertical velocity field w 5 w0. The observations are taken

from the results provided in Moeng and Rotunno (1990).
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coarse 643 simulation (case B). In the surface layer the

triple moment f̂ is very large, contributing more than

50% to hw3i, in the mid-PBL f̂ ; ĉ, and near the in-

version f̂ , ĉ. Also, f̂ is always greater than zero.

Overall the SGS ‘‘contribution’’ to skewness given by

the ratio on the right-hand side of (16) is .4 in the

surface layer and ;1 in mid-PBL, and falls to ;0.8 near

the inversion on a mesh with 642 resolution in the x–y

directions. Hunt et al. (1988) note that Smagorinsky

closures are Gaussian SGS models and hence assume

f̂ 5 0. As a consequence, coarse-mesh LES results pre-

dict erroneous values of skewness because of their SGS

closure schemes. In general, we find that coarse-mesh

LES tends to overpredict hw3i, underpredict hw2i, and

thus overpredict S
w

compared to fine-resolution simu-

lations as shown in Fig. 11. When Smagorinsky-type

closures are used with LES, the resolution ratio zi/(CsDf)

needs to be greater than 630 to obtain mesh-independent

estimates of Sw.

The turbulent transport (term T) in (9a) and (9b)

depends on the vertical divergence of the third-order

moments g
a

5 hw02u0i and g
b

5 hw0u02i, respectively.

Vertical profiles of these moments are given in Fig. 12.

As might be anticipated based on their content, the

FIG. 10. (a) Skewness from the 10243 simulation (solid), the 10243 simulation filtered in

horizontal planes to 642 resolution (dotted), and the 643 simulation (dashed). (b) Third- and

second-order SGS moments computed from 10243 simulation, showing f̂, the third-order

moment (dotted); ĉ, the second-order moment (dashed); and the SGS skewness correction

(1 2 ĉ)3/2/(1 2 f̂) [which appears in (16)] (solid).

FIG. 11. Comparison of third- and second-order resolved vertical velocity moments from the

10243 simulation (solid), the 10243 simulation filtered in horizontal planes to 642 resolution

(dotted), and the 643 simulation (dashed), showing (a) normalized hw03i/w3
* and (b) normalized

hw02i/w2
*.
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moments (ga, gb) are broadly similar to the (w, u) vari-

ances, respectively. Each displays reasonable conver-

gence in the interior of the PBL on the fine meshes.

There is a clear mesh dependence in the inversion layer

and also near the surface for the gb moment. This is

a consequence of the temperature variance mesh de-

pendence. Hence LES that utilize eddy viscosity clo-

sures require a very fine mesh to adequately estimate

high-order moments in the inversion and wall regions.

f. Flow visualization

A complete discussion of the impact of mesh resolu-

tion on the formation and dynamics of coherent struc-

tures and their connection to the statistical moments in

the convective PBL is beyond the scope of the present

work. Here we briefly illustrate one aspect of large- and

small-scale interaction that can occur in high-resolution

LES. In Fig. 13, we observe the classic formation of

plumes in a convective PBL. Vigorous thermal plumes

near the top of the PBL can trace their roots through the

middle of the PBL down to the surface layer. Conver-

gence at the common corners of the hexagonal patterns

in the surface layer leads to the formation of strong

updrafts that evolve into large-scale plumes that fill and

dominate the dynamics of the daytime PBL. Near the

inversion a descending shell of motion readily develops

around each plume.

Closer inspection of the large-scale flow patterns in

Fig. 13 also reveals coherent smaller-scale structures.

This is demonstrated in Fig. 14 where we track the evo-

lution of 105 particles over about 400 s. Over the limited

region where the particles are released the flow is domi-

nated by a persistent line of larger-scale upward convec-

tion. On either side of the convection line descending

motion develops and near the surface these downdrafts

turn laterally and converge. The outcome of this surface

layer convergence spawns many small-scale vertically

oriented vortices that resemble dust devils. These rapidly

rotating vortices are readily observed, persist in time, and

rotate in both clockwise and counterclockwise directions.

Often the vortices coalesce in a region where a coherent

thermal plume erupts. Coarse-mesh LES hints at these

coherent vortices but fine-resolution simulations allow a

detailed examination of their dynamics within the larger-

scale flow. Previously, Kanak (2005) observed the for-

mation of dust devils in convective simulations, but in

small computational domains O(750 m).

5. Summary

A highly parallel large-eddy simulation (LES) code

for the atmospheric boundary layer is developed based

on a high-Reynolds number Boussinesq flow model with

a fully rough lower boundary. The numerical scheme

employs pseudospectral differencing in horizontal planes

and solves an elliptic pressure Poisson equation utilizing

2D domain decomposition. Despite these global opera-

tions, the code exhibits both weak and strong scaling over

FIG. 12. Effect of mesh resolution on resolved third-order moments (left) g
a

5 hw02u0i and

(right) g
b

5 hw0u02i.
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a wide range of problem sizes with scaling tests are carried

out using as many 16 384 processors (see the appendix).

This code is used to carry out a grid sensitivity study of

a daytime convective PBL for a wide range of meshes

varying from 323 to 10243. Based on the variation of the

second-order statistics, spectra, and entrainment statis-

tics we find that the 3D time-dependent LES solutions

numerically converge as the mesh is refined for this ca-

nonical problem. In the boundary layer interior (0.1 ,

z/zi , 0.9, where zi is the boundary layer height), the

total variances and temperature flux have effectively

converged when the mesh resolution is 2563 or greater.

The convergence of the total vertical velocity is very

good. For our mesh of 2563, the ratio zi/Df . 60 or zi/

(CsDf) . 310, where Df is the LES filter width and Cs is

the Smagorinsky constant. In this regime, the scale sep-

aration between the energy containing eddies and the

filter cutoff scale is sufficiently wide that the large-eddy

Reynolds number Re‘ ; (zi/Df)
4/3 and the parameter-

ized viscous dissipation E ; e3/2/Df (e is the subgrid-scale

energy) approaches a mesh-independent constant. Two-

dimensional spectra of the vertical and horizontal

velocities in horizontal planes scale as k25/3
h (kh is the

horizontal wavenumber) over almost two decades at the

highest resolution. Thus, the LES solutions show clear

Kolmogorov inertial subrange scaling, which is the basis

of most high-Reynolds number subgrid-scale modeling.

Near the rough lower surface and in the entrainment

zone, the total (resolved plus subgrid) temperature

variance increases with mesh refinement. This is partly

FIG. 13. Visualization of the vertical velocity field in a convective PBL at different heights from the 10243 simu-

lation: z/zi 5 (top left) 0.04, (top right) 0.1, (bottom left) 0.5, and (bottom right) 0.9. The gray scale color bar changes

between the panels and is in units of m s21.
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a consequence of the subgrid-scale model, which does not

employ a prognostic equation for subgrid-scale tempera-

ture variance. Potentially, this can be improved by utiliz-

ing a fuller set of rate equations for subgrid-scale variables

(e.g., Wyngaard 2004b; Hatlee and Wyngaard 2007).

The entrainment rate determined from the time var-

iation of the boundary layer height we 5 dzi/dt is a sensi-

tive measure of the LES solution convergence. The LES

estimates of entrainment velocity become mesh in-

dependent when the vertical grid resolution is able to

capture both the mean structure of the overlying in-

version and the turbulence. The entrainment rate

increases with decreasing mesh resolution because of

inadequate resolution of the mean temperature gradients

in the inversion. For all mesh resolutions used, the ver-

tical temperature flux varies linearly over the boundary

layer with the minimum temperature flux ’ 20.2 of the

surface flux. Thus, these scalar-flux properties are not

adequate to judge the convergence of LES solutions.

The variation of third-order moments, often used to

interpret PBL dynamics, depends on the grid resolution;

skewness of resolved vertical velocity S
w

highlights the

grid resolution sensitivity. The mesh dependence of Sw is

a consequence of a Smagorinsky closure that neglects

FIG. 14. Visualization of 105 particles randomly released in a convective PBL at z/zi ; 0.01 over a limited horizontal

extent from the 10243 simulation of convection. The viewed area, ;3.8% of the total horizontal domain, is the

topmost left corner from the top-left panel of Fig. 13. Notice the evolution of the larger-scale line of convection into

small-scale vortical motions that resemble dust devils. Time advances from left to right beginning along the top row of

images. The images are 71.6, 151, and 390 s after the initial release. Vertical vorticity v
z

5 y
x

2 u
y

is shown in the

bottom-right panel at t 5 390 s. The gray scale bar is in units of s21.
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third-order SGS moments of vertical velocity. In-

terrogation of the 10243 simulations shows the subgrid-

scale correction to vertical velocity skewness is greater

than one in the surface layer, near unity in mid-PBL, and

less than one near the inversion. Simulations with 5123

mesh points or more are needed to estimate vertical ve-

locity skewness and higher-order moments from the re-

solved LES flow fields. Flow visualization of the 10243

simulations shows the coupling between large-scale

thermal plumes and small-scale vortical motions that re-

semble dust devils. The dust devil cores tend to develop in

the branches or spokes of the surface updrafts.

The criterion zi/(CsDf) . 310 proposed here for sim-

ulations of convective boundary layers needs to be

tested for simulations of boundary layers dominated by

shear, stable stratification, cloudy boundary layers, and

boundary layers with surface heterogeneity where the

energy containing eddies are concentrated at scales

smaller than the boundary layer height zi.
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APPENDIX

Algorithm Parallelization

a. Domain decomposition

The parallelization of the LES algorithm is based on

the following criteria: 1) to accomplish 2D domain de-

composition using solely the Message Passing Interface

(MPI) (Aoyama and Nakano 1999); 2) to preserve

pseudospectral differencing in x–y planes using fast

Fourier transforms (FFTs); and 3) to maintain a Bous-

sinesq incompressible flow model. The ability to use 2D

domain decomposition is a significant advantage in

pseudospectral simulation codes as it allows direct nu-

merical simulations of isotropic turbulence on meshes

of 20483 or more (Pekurovsky et al. 2006). A sketch of

the domain decomposition layout that conforms to

our constraints is given in Fig. A1. We mention that 2D

domain decomposition in x–y planes is often used with

low-order finite-difference schemes (Raasch and Schröter

2001) and mesoscale codes that adopt compressible equa-

tions (Michalakes et al. 2005).

In our 2D domain decomposition, each processor

operates on constricted three-dimensional ‘‘bricks or

pencils’’ subsampled in x, y, or z directions. Brick-to-

brick communication is a combination of transposes and

ghost point exchange. To preserve pseudospectral dif-

ferencing in the horizontal directions a custom MPI

matrix transpose was designed and implemented. Other

FIG. A1. The 2D domain decomposition on nine processors: (a) base state with y–z decomposition, (b) x–z decomposition used for

computation of y derivatives and 2D planar FFT, and (c) x–y decomposition used in the tridiagonal matrix inversion of the pressure

Poisson equation.
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nonlocal schemes—such as compact finite difference

(Lele 1992) or fully spectral direct numerical simulation

codes (Werne and Fritts 1999)—require similar com-

munication patterns. Given a field f(x, y, z) discretized at

(Nx, Ny, Nz) locations, our transpose routines perform

the forward and inverse operations

r̂(ky, kx, z)

all x

ys # y # ye

zs # z # ze

3
755 f T(y, x, z)

all y

xs # x # xe

zs # z # ze

3
75

2
64

2
64

(A1)

using a subset of horizontal processors as shown in Figs.

A1a and A1b. In (A1) and the following equations,

subscripts (�)s,e denote starting and ending locations in

the (x, y, z) directions. The data transpose shown sche-

matically in Figs. A1a and A1b only requires local

communication, that is, communication between pro-

cessors in groups [0, 1, 2], [3, 4, 5], and [6, 7, 8]. De-

rivatives ›f/›y, which are needed in physical space, are

computed using this sequence of steps:

(i) forward x to y transpose f / f T,

(ii) FFT derivative ›fT/›y, and

(iii) inverse y to x transpose ›fT/›y / ›f/›y.

Existing serial 1D FFT routines for real and complex

arrays are used as in previous implementations (see

http://www.cisl.ucar.edu/css/software/fftpack5/). With this

algorithm, so-called ghost points used in computing

derivatives ›f/›z are only needed on the top and bot-

tom faces of each brick in Fig. A1a.

The 2D decomposition of the computational domain

also impacts the pressure Poisson equation solver. In an

incompressible Boussinesq fluid model the pressure p is

a solution of the elliptic equation (see section 2)

=2p 5 r, (A2)

where the source term r is the numerical (discrete) di-

vergence of the unsteady momentum equations (e.g.,

Sullivan et al. 1996). The solution for p begins with

a standard forward 2D Fourier transform of (A2):

2(k2
x 1k2

y)p̂ 1
›2p̂

›z2
5 r̂(ky, kx, z) for

allky

kx,s # kx # kx,e

zs # z# ze

3
75,

2
64

(A3)

where the 2D Fourier transform for p or r is

f (x, y, z) 5
1

NxNy

�
k

y

�
k

x

f̂ (kx, ky, z)ei(k
x
x1k

y
y) (A4)

and (kx, ky) are horizontal wavenumbers. At this stage

the data layout on each processor is as shown in

Fig. A1b. Next, custom routines carry out forward ky

to z and inverse z to ky matrix transposes on the source

term of (A3):

r̂(ky, kx, z)

all ky

kx,s # kx # kx,e

zs # z# ze

3
755 r̂T(z,kx,ky)

all z

kx,s # kx # kx,e

ky,s # ky # ky,e

3
75.

2
64

2
64

(A5)

Again notice the communication pattern needed to

transpose from Fig. A1b to A1c is accomplished locally

by processors in groups [0, 3, 6], [1, 4, 7], and [2, 5, 8]. The

continuous storage of r̂T along the z direction allows

standard tridiagonal matrix inversion for pairs of hori-

zontal wavenumbers on each processor. This step is re-

peated for all pairs of horizontal wavenumbers and

provides the transposed field p̂T(z, kx,s: kx,e, ky,s: ky,e). To

FIG. A2. Computational time per grid point for different com-

binations of problem size and 2D domain decomposition for the

Cray XT4 (an example of strong scaling), showing problem sizes

(a) 5123 ()), (b) 10243 (s), (c) 20483 (u), and (d) 30723 (D). For

a given number of total processors NP the symbols are varying

vertical and horizontal decompositions [i.e., different combinations

(NPz, NPxy)].

FIG. A3. Computational time per grid point for a fixed amount of

work per processor (an example of weak scaling). Shown are 60 000

points per processor for the Cray XT4 (s), dual core IBM SP51

()), and single core IBM SP5 (u), and 524 288 points per processor

for the Cray XT4 (D). For a fixed number of total processors NP

multiple symbols are different combinations of (NPz, NPxy).
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recover the pressure field in physical space we retrace our

steps: p̂T0p̂ followed by an inverse 2D Fourier trans-

form p̂ 0 p. In designing the present algorithm, we also

considered using the parallel tridiagonal solver described

by Gibbs (2004) for the solution of the Poisson equation

but found it not as flexible as the present scheme.

With these enhancements our new algorithm allows a

very large number of processors O(104) or more to be

utilized. No global communication between processors

is required; that is, we do not call MPI’s ALL_TO_ALL

routine. Instead, the MPI routine SENDRECV is

wrapped with FORTRAN statements to accomplish the

desired communication pattern. The scheme outlined

above introduces more communication but the send–

receive messages are smaller and hence large numbers

of grid points can be used. Also, the total number of

processors is not limited by the number of vertical grid

points. This flexibility allows simulations in boxes with

large horizontal and small vertical extents. The trans-

pose routines are general and allow arbitrary numbers of

mesh points, although the best performance is of course

realized when the load is balanced across processors.

b. Scaling

The performance of the code for varying workload as a

function of the total number of processors NP is provided

in Figs. A2 and A3 for three different machine architec-

tures (NP 5 NPz 3 NPxy where NPz and NPxy are the

number of processors in the vertical and horizontal di-

rections, respectively). In each figure, the vertical axis is

total computational time t 3 NP divided by total work.

Also, Nz is the number of vertical levels and Mx,y is pro-

portional to the FFT work (i.e., Mx,y 5 Nx,y logNx,y, with

Nx,y being the number of grid points in the x and y di-

rections). Ideal scaling corresponds to a flat line with in-

creasing number of processors. The timing tests illustrate

the present scheme exhibits both strong scaling (i.e.,

where the problem size is held fixed and the number of

processors is increased) and weak scaling (i.e., where the

problem size grows as the number of processors increases

so the amount of work per processor is held constant) over

a wide range of problem sizes and is able to use as many as

16 384 processors (i.e., the maximum number available to

our application). Further, the results are robust for vary-

ing combinations of (NPz, NPxy). Generally, the perfor-

mance only begins to degrade when the number of

processors exceeds about 8 times the minimum of (Nx, Ny,

Nz) because of increases in communication overhead.
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CORRIGENDUM

PETER P. SULLIVAN AND EDWARD G. PATTON

National Center for Atmospheric Research,* Boulder, Colorado

(Manuscript received and in final form 2 December 2011)

An editing error was introduced into Eq. (A1) in the final published version of Sullivan

and Patton (2011). The correct version of the equation should be

f (x, y, z)

2
64

all x

ys # y # ye

zs # z # ze

3
755 f T(y, x, z)

2
64

all y

xs # x # xe

zs # z # ze

3
75. (A1)

The staff of the Journal of the Atmospheric Sciences regrets any inconvenience this error

may have caused.
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