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High Reynolds number turbulent flows of incompressible fluids in plane channels and 
annuli are simulated using a finite difference procedure which integrates the Navier- 
Stokes equations in time and in three-dimensional space. This paper describes the 
finite difference procedure and the subgrid scale (SGS) motion model. The model differs 
from earlier ones in the following points. The finite difference equations are based on 
integral conservation equations for each grid volume. As a consequence the SGS 
stresses are defined as surface mean rather than grid volume mean values of the fluctuating 
velocity products. This allows us to identify and model the effects of anisotropic grids 
(especially unequally sided grid volumes) and anisotropic finite difference operators. 
In this model SGS stresses are split into two parts, one accounting for locally isotropic 
turbulence, the other for inhomogeneous effects. This results in a model which is meaning- 
ful even if the size of the grid volumes is very large. The SGS kinetic energy is calculated 
using a separate transport equation. The boundary conditions are formulated in a 
manner consistent with the SGS theory. The method may be used for plane channels 
and annuli as well, and has been used to simulate flows with up to 65,536 grid volumes. 
The results agree rather well with experimental values, even for a smaller number of 
grid volumes. 

I. INTRODUCTION 

A finite difference scheme is introduced for direct numerical simulation of 
turbulent channel flows. This method has been used to simulate high Reynolds 
number flows of incompressible fluids in plane channels (Poiseuille flow) and 
concentric annuli of infinite axial lengths, where the mean flow is along the channel 
axis (see Fig. 1). The flow is assumed to be steady state in its ensemble mean values. 
The purpose of the method is to obtain detailed turbulent velocity and pressure 
fields in space and time. These may be used, for example, to investigate turbulence 
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plane channel flow (K) 

annulus flow (Z) 

FIG. 1. The channel flows under consideration. 

models [20] or wall pressure fluctuations [21]. The present method is an improved 
form of that described in [19]. 

The flows are simulated by integrating the three-dimensional and time-dependent 
Navier-Stokes equations in their primitive form using a finite difference scheme. 
As known from Schiinauer [18] and Galloway and Adler [9], it is impossible with 
our present computers to obtain turbulent channel flows that agree reasonably 
well with experiments by using, e.g., a finite difference form of the Navier-Stokes 
equations in a purely formal sense. The reason is that for resolution of all important 
scales of turbulence at Reynolds number Re, of 105, at least lo9 grid volumes are 
needed, whereas the number of grid volumes feasible today is of the order lo5 [19]. 
So the formal finite difference scheme has to be completed with models based on 
physical reasoning that accounts for those scales of turbulence not resolvable by 
the limited number of grid volumes. This was the approach first used by 
Smagorinsky [22] and Lilly [15] and successfully employed by Deardorff [4-71. In 
that approach, the Navier-Stokes equations are averaged over volumes com- 
parable in size to the grid volumes of the finite difference scheme, in order to filter 
out the subgrid scale (SGS) motions. In this way only the gross scale turbulence 
is simulated directly. The momentum transport by the fine scale or SGS motions 
is described by an eddy viscosity model. In principle, the SGS motions and, 
consequently, the theory and its deficiencies cancel out if we approach an infinitely 
fine grid system. This distinguishes the “direct numerical simulation method” 
being used here from the common “transport models” which start from the 
Navier-Stokes equations averaged over ensembles or time. Moreover it can be 
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claimed that such models for the SGS motions are more universally valid than for 
the total turbulence, since they are much less dependent on channel geometry. 

Until now, the only flow geometry that has been considered using this type of 
method is the plane channel or, in a geometrically similar case, the planetary 
boundary layer. To show the independence of geometry for some practically used 
turbulence models, at least one additional geometry should be investigated. Due 
to its technical importance, e.g., in nuclear engineering, the annular flow is of 
interest in this connection. Therefore, some work had been started to apply 
Deardorff’s method to annular flow, using cylindrical coordinates. Of help here, 
as far as the finite difference procedure away from boundaries is concerned, is the 
work done by Williams [24]. 

But the existing SGS models have been found unsuitable for cylindrical 
coordinate systems. Here we are confronted with the problem of using an 
anisotropic grid in that the ratio of side lengths of grid volumes varies with the 
radial coordinate. The need for some theory to acocunt for unequal side lengths 
of the grid volumes has also been recognized for Cartesian coordinates [7]. It is 
one of the main purposes of this paper to describe such a theory, For brevity, 
we present it for Cartesian coordinates only. The second major problem 
encountered concerns the effects of inhomogeneities. The older theories assume 
locally isotropic turbulence. This causes rather large errors, especially near the 
walls, as can be seen from the results obtained by Deardorff [4]. In the following 
pages, the new method will be described and some results will be reported which 
demonstrate its usefulness. 

II. THE AVERAGED BASIC EQUATIONS 

We start from the basic equations describing conservation of mass and 
momentum for incompressible flows. 

div u = &,/ax, = 0, (1) 

i = 1, 2,3. (2) 

All velocities ui , coordinates xi (see Fig. l), and the time t are made dimensionless 
by means of the length scale B separating the walls, by the friction velocity 
ti, = (.i0/&)1/2, and by the time scale &$, . The quantity +, is the time mean wall 
stress averaged over both walls so that +i, = (p$)/2; here p, is the dimensional 
driving force per unit volume in the axial direction which can be interpreted as 
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the time mean kinematic pressure gradient. p is the dimensionless fluctuating 
kinematic pressure. Re = l/v is a Reynolds number 

Re = ti,,i?/C, (3) 

where P is a constant kinematic viscosity. This Reynolds number is different from 
the usual Reynolds number Re, based on the mean axial velocity z&m: 

Re, = ti,,,&P = u,, Re, 241, = Z.&/l& . (4) 

From definition of the dimensional units, the dimensionless driving force is 
P, = 2. The summation convention applies to all subscripts. 

In order to generate finite difference formulas from these equations we average 
them over small volumes as defined by our grid (see Fig. 2). Any quantity y 
averaged over such a volume V is denoted by “J. 

Note that the volume over which the average is taken is fixed in space, so that “7 
is defined only on discrete points. Then we integrate by parts using Gauss’ theorem. 

Line 

FIG. 2. Grid volumes and surfaces. 

This results in a relationship between the time derivative of the physical quantity 
averaged over that volume and its transport across the surface of that volume in 
terms of surface averages. We denote the surface area of a grid volume, the normal 
of which is in the j-coordinate direction, by jF (presuperscripts are introduced 
for those indices for which the summation convention does not apply). The mean 
value of any quantity y averaged over jF is denoted by Qi, e.g.: 

‘j E 1 
s s Ax, Ax, Ax2 

Y& > ~2 7 23 4 dzs - 
Ax, 

(6) 
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Integration by parts gives us relationships of the form 
v- 

&y=L lj xl+++lj(X’-~ 
I ( )I 

6 
l- 

Ax, 
= 1 y. (7) 

Here, aj is the usual finite difference operator [24]. 
Applying these definitions to Eq. (l), the conservation law of mass, results in 

‘div = sj ‘iTf = 0. (8) 

Now, let ‘iij be equal to the velocity component in the j-direction defined in a 
staggered grid system (see Fig. 3). Then we see that we do not need any approxi- 
mation for this equation. This seems to be the reason why staggered grids are used 
so often in hydrodynamics. 

In order to get the averaged conservation law for the different velocity com- 
ponents, we average Eq. (2) over volumes Vi which are of the same size and form 
as the volume V, but shifted so as to surround the position of the velocity 
component within the staggered grid. Any quantity y averaged over such a volume 
is denoted by “$7, where i corresponds to the coordinate direction in which the 
volume was shifted. Then we get 

The terms 

fa z (& - ‘C)(U, - ‘<) zz ‘E - ‘c ‘c (10) 

are the SGS Reynolds stresses by which the effect of the fine-scale motion is 
identified. Here and below the summation convention refers to all lower subscripts 
on the right not enclosed in square brackets. Other indices of equal name take the 
corresponding values. 
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So far no approximations have been involved. Indeed, the equations above are 
the conservation laws written in their integral form for grid volumes. We might 
have started from them right away, but as they do not exist in general for grid 
volumes in curvilinear coordinate systems, we prefer to start from the basic 
equations in their differential form. 

The “volume balance procedure” used above is of course quite usual in continuum 
mechanics. Nevertheless, this approach is different from the ‘filter procedure” 
used in the past by Lilly [15] and Deardorff [4-71. They average over a volume 
which is not fixed in space. This averaging procedure is equivalent to a convolution 
of the original field with a filter function, as shown by Leonard [13]. This excludes 
the possibility of integration by part. Therefore, the older theories speak of 
volume-averaged SGS stresses, which is physically unrealistic in the finite difference 
approach, since the SGS stresses are basically surface forces. Those theories have, 
therefore, not been able to describe the effects of grid anisotropy. One drawback 
of the “volume balance procedure” is, of course, that we need quite a strange 
notation in order to distinguish between the different types of averages which 
appear (see summary of operator notation). 

Approximations are needed for many terms appearing in the averaged conser- 
vation law of momentum Eq. (9). There are two types of unknown quantities: 
the SGS stresses *uilujl and those averaged quantities which must be known at 
positions not coinciding with the positions of the corresponding variables in the 
staggered grid. The latter unknown quantities can be evaluated by the usual 
difference formulas from the corresponding staggered grid values in their neigh- 
borhood. A second-order energy-conserving scheme is used. The resultant finite 
difference equations are the same as those used by Deardorff [4] for Cartesian and 
by Williams [24] for cylindrical coordinates, as far as the gross scale velocities 
are concerned. Therefore, volume balance and titer averaging procedures give the 
same result in this respect. The approximations used for the SGS stresses form the 
topics of the next section. 

III. THE SGS EDDY VISCOSITY MODEL 

Splitting into “Locally Isotropic” and “Inhomogeneous” Parts 

We look for an approximate equation to correlate the SGS Reynolds stresses 
*uiluil, as defined by Eq. (lo), with the gross scale variables. Although we are not 
able to model these terms without any empirical adjustment, we should use as 
little experimental support as possible. Then we might be able to extract new 
empirical information and to cover a wide range of boundary conditions. 

It is well known [17] that any turbulent flow is locally isotropic and possesses 
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an inertial subrange if the Reynolds number is sufficiently high. From measurements 
of velocity spectra we may identify that characteristic length scale which separates 
the anisotropic part from the locally isotropic part. Using the results of Laufer [12] 
and Comte-Bellot [3] has lead to the finding that the grid cell size 

h = (Ax, Ax, Llxp (11) 

falls within the local isotropic range if the Reynolds number Re, = 4&-,/O defined 
by the distance of the wall 4, is larger than 200. Taking 32’, = hs and ti, M ii&30 [3] 
(see Eq. (4)), we find that for a grid side length h of the order D/30, and for a 
Reynolds number Re, > 2 x 105, the assumption of local isotropy is justified 
except for the wall-adjacent grid cells. 

In the inertial subrange, the energy spectrum E(k) as a function of the wave- 
number k (for its definition, see Hinze [lo, Eq. 3-571) is equal to the so-called 
Kolmogorov spectrum [ 111: 

E(k) = a(Q213 k-5J3. (12) 

Due to the experimental results obtained by several workers (some are compiled 
in [19]), we may assume “Kolmogorov’s constant 01” to be 

cx = 1.5. (13) 

The dissipation rate E is defined by 

(14) 

The brackets ( ) denote the time mean value. From the experimental results of 
Comte-Bellot [3] we find that the range where (12) is valid usually extends to even 
larger scales than the local isotropic subrange. 

On the other hand, the requirement of h < D/30 (or even more, h < D/30) is 
still quite restrictive in view of our present computer resources. Therefore we are 
looking for a way to separate the SGS stresses into one part which can be evaluated 
using the assumption of local isotropy and a second part which accounts for the 
inhomogeneities especially in the near-wall region. There, we refer to Prandtl’s 
mixing length model and the resulting logarithmic “law of the wall” [lo, 171: both 
are known to be quite suitable for the near-wall region. In order to keep the 
theory simple, we adopt an eddy viscosity concept (Boussinesq approximation [17]) 
to relate the stresses to the strain tensor Dij respectively to its finite difference 
analog Dij . 

(15) 
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We therefore write 

(16) 

The coefficients Qp and iip* are eddy viscosities accounting for locally isotropic 
and inhomogeneous turbulence, respectively. The locally isotropic part of the 
SGS stresses is set proportional to the fluctuating part of the strain tensor in order 
to get zero time mean values of the SGS stresses for i # j. As these stress com- 
ponents are zero in isotropic turbulence (by definition), this part of the model is 
thus made consistent with the assumption on which it is based. The channel 
turbulence is inhomogeneous due to the nonzero components of the time mean 
strain. This is reflected by the inhomogeneous part of the above assumption. The 
last term in Eq. (16) has been added to ensure that the value of & ‘u,.)ujl is equal 
for both sides of the equation [IO, p. 211. This term can be added to the pressure, 
resulting in a virtual pressure j = jp + $‘m (independent ofj). Actually, jj is 
that pressure that is simulated by the finite difference scheme. We should note 
that ijp and $J’P* are not tensors. The dependence of i and j is introduced solely 
by the anisotropy of the finite difference grid. In the following sections we describe 
the models used for these eddy viscosities. 

Locally Isotropic SGS Eddy Viscosity 

The SGS eddy viscosity ijp is modeled as 

ii,,, = c,(jp ‘F)1/2 iic. (17) 

This is an analog to the Prandtl-Kolmogorov proposal for the total eddy viscosity 
[17, Eq. (3.117)]. The characteristic length scale is taken from jF as this is the size 
of the surface over which we are averaging. If the grid is refined, as fF approaches 
zero the SGS stresses become zero by definition (see Eq. (10)). Thus, this property 
is retained in this model. In earlier proposals [4-7, 151, h (Eq. (11)) has been taken 
as the characteristic length scale, which is a measure for the grid cell volume and 
thus is not consistent with the fact that the stresses are basically surface forces. 
The characteristic velocity is the root value of the SGS kinetic energy contained 
within the area ‘F: 

We evaluate ‘El from 

(19) 
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where 

fCB = (‘E’) 
(7) 

(20) 

and 

V 

‘E’ c 4 (q - “$2 = S(‘? - (Q) (21) 

is the SGS kinetic energy. For the determination of jc5, see below. The SGS 
kinetic energy is determined from a separate transport equation as described in 
Section IV. The coefficient ijc is introduced to account for anisotropy introduced 
by finite differencing: the definition of ‘zq does not allow these stresses to be 
dependent upon the grid spacings dxj . On the other hand, Dij is dependent 
upon dxj . Therefore this coefficient shall compensate for the dependence. The 
need for such a compensation and the evaluation of % is described further in 
Section IV. 

The coefficients jc5 and Qc are both of the order of one. They would be absorbed 
into c2 if we are to neglect geometrical details of the averaging and finite difference 
operator as has been done in older SGS theories. The constant c, , however, 
must be determined so that the energy dissipation due to the eddy viscosity in the 
simulated gross-scale flow is of the same size as the viscous dissipation which 
represents the energy sink in reality. To formulate this requirement quantitatively 
we need the conservation law for the SGS kinetic energy “F. 

We get the conservation law for this quantity by evaluating the time differential 
of the definition, Eq. (21), using Eqs. (l), (2), (8), and (9). In order to simplify the 
expressions we use the identity 

(22) 

where p is the arithmetic mean value of any quantity y at two positions separated 
by one grid interval in the x,-direction. We also use one approximate equation, 

--i 
V- 

Uj M ‘G 3 (23) 

which can be defended using the mean value theorem of the integral calculus so 
as to be valid up to errors of the order U(dx2). The result: 
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$ vF + S,(‘tl; ‘E’) = - 
------I 
im s,‘;;l- 

V- 
E + V{(Sj ‘i& ‘& + si ‘iiJ> 

- -w 
convection production dissipation viscous *cm scale dissismtion 

. v / 

diffUSiOtl 

The coefficient c2 can be found by introducing Eqs. (16) (neglecting the inhomo- 
geneous part due to the assumption of local isotropy) and (17) into Eq. (24) and 
taking the time mean value. In locally isotropic turbulence the time mean values of 
the convection and diffusion terms vanish. To simplify the resulting equations, 
we neglect the viscous gross-scale dissipation rate and assume that the SGS 
kinetic energy and the square strain of the gross-scale motion are uncorrelated. 
Both assumptions can be avoided [19] but they are of minor importance. The result 
is the following equation for c2 . 

i 

c2 = (c)/[(jF ‘E’y12 ((S$ ‘ij + sj 74J sj jiii ijc)]. (25) 

All correlations involved in this equation and in Eq. (20) can be evaluated in a 
purely formal way without any further assumptions (see below, however). This 
can be done once for all integration steps because they depend on the grid system 
only. The mathematical procedure is to some extent similar to that used by 
Lilly [14]. It has been extended to account for unequal grid side lenghts and the 
definition of the different averages occurring. Moreover, Lilly’s method was rather 
expensive, because he had to evaluate by numerical means some integral expressions 
with up to six independent variables. Using a formulation provided mainly by 
Uberoi and Kovasznay [23], we can reduce this number to half, which reduces 
computing time for these integrals from hours to seconds. However, since we must 
evaluate a large number of these integrals, this would still be too expensive. 
Therefore, some approximate equations were developed to fit the numerical results 
of the integrals. For details, see the Appendix. Some typical results are reported 
in Table I. 

The principal way to determine the constant c2, using the assumption of local 
isotropy and Kolmogorov’s spectrum (Eqs. (12), (13)), is most simply demonstrat- 
ed by employing Lilly’s [15] approximate method to evaluate the terms appearing 
in Eq. (25): 

(26) 

i- i- ’ j- 
((Si Uj + Sj Us) Sj U<) M 2 

f  

nib 
k2E(k) dk, 

O (jF)l’2 w h, ijc M 1. 

(27) 

(28) 
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TABLE I 

Coefficients Appearing in the SGS-Theory 

Ax,:Ax,:Ax, 

Factor = 1:l:l = 0.125:0.05:005 

c2 a 0.143 0.141 

lC6 0.828 0.614 

% 0.828 0.915 

%i 0.828 0.915 

C, 1.02 0.884 

4% 1.63 1.57 

5 The value used in the computations is smaller by 
a factor of 8. 

From Eqs. (12) and (13) we then get 

c3 w  (2/301)~/~ N 0.094. (29) 

This has to be compared with the result given in Table I. 
It must be stated, however, that the predicted value of cg determining the size 

of the fluctuating part of the SGS stresses, which by theory depends on 
Kolmogorov’s constant only, was found to be too high for reasonable results. It 
caused too-large dampings and had to be decreased in an empirical way. A similar 
effect has been found by Deardorff [4, 51. The value of c2 used in the final compu- 
tation was smaller by a factor of $ than that found theoretically. This factor gave 
reasonable results for all grids and both channel types (plane and annular) 
considered, which represents some progress in comparison to [19], where different 
factors had to be used for plane and annular channels; this is due to the correction 
factor ijc in Eq. (17), which has not been used in the older version of this method. 
We expect the explanation for the difference between theory and experiment 
to be connected with finite difference errors. It seems that while the finite difference 
scheme is energy conserving, the actual energy transfer toward larger wavenumbers 
in the gross-scale simulation is too large, so that we get larger values of afj than 
predicted by theory. Higher-order difference schemes might be useful, therefore. 
On the other hand, the stencils used in higher-order schemes usually include grid 
points which are separated by more grid intervals than those used in a second-order 
scheme. For the error analysis we have to assume that the large-scale flow is 
sufficiently smooth and correlated in a deterministic manner even for these larger 
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intervals. The correlation between the velocities at two points separated by a 
distance r decreases proportional to r2/3 for isotropic turbulence with Kolmogorov’s 
spectrum (see Appendix, Eq. (A-2)). It is therefore not a priori clear whether the 
gain in accuracy using a higher-order scheme is large enough to justify the increased 
computation time. Moreover, it follows from Eqs. (12), (17), and (26) that the 
SGS eddy viscosity ij~ is of the order h4/3, and any error in the model must be 
assumed to be of the same order. As long as the eddy viscosity is larger than the 
molecular viscosity, this is the dominant error even for a second-order finite 
difference scheme. Here, we use the second-order scheme for simplicity. 

Inhomogeneous SGS Eddy Viscosity 

The inhomogeneity of the flow would have negligible effects on the SGS 
momentum transport if the size of the grid surfaces jF were extremely small. 
However, this limit cannot be accomplished, especially in the near-wall region. 
Here the characteristic eddy length scale, the mixing length L, becomes smaller 
than the root value of jF. If (jF)1/2 is much larger than L, all momentum is trans- 
ported by the SGS motion and the gross-scale momentum transport becomes 
negligible. Thus, we have the limit 

(30) 

The right-hand side represents the common time mean Reynolds stresses. Therefore, 
we model the inhomogeneous part of the SGS momentum transport so that it 
becomes equal to common models for the time mean Reynolds stresses in this 
limiting case. The simplest model in this respect is Prandtl’s mixing length model, 
which is known to be valid in the near-wall region. If, however, the value of 
(jF)‘l” is small in comparison to the mixing length, then the former becomes the 
characteristic length scale. For the channel flows under consideration here, 
the eddy viscosity ij~* must be known only for the subscripts i = 1, j = 3, 
because then either the other stress components or their gradients used in the 
finite difference equations are zero. The only factor of interest, 13p*, is calculated 
by means of the equations 

13p* = w2 I ~,Wl, (31) 

(“,Q2 = min(c,, 3F, L2), (32) 

L = KXQI. (33) 

Equation (31) is the mixing length model [lo, 171. The factor K is Karman’s 
Constant (K M 0.4) [lo, 171 and x3’ is the distance to the nearest wall. The factor 
cl,, may be estimated on the basis of typical values of L2 and a size of 3F just large 
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enough to make the mean value of (u,‘u,‘) taken over this area equal to its time 
mean value (Eq. 30) with negligible error only. Using the measurements of 
Comte-Bellot [3], especially those of the correlations in the x1- and x,-directions, 
to estimate the size of 3F in this special case, we may support the assumption 

Cl0 - 0.01. (34) 

Equation (33) can be extended, according to Van Driest [8], to account for low 
local Reynolds numbers [19]. But this is of small importance for those Reynolds 
numbers (Re, = 3 x 105) and grid spacings (Table II) actually used. 

TABLE II 

Specifications of Cases Kl-K4,Zl--24, K3+, K4+, Z3+ 

Kl K2 K3/K3+ K4/K4+ Zl 22 z3/23+ 24 

Ax,iD 0.125 0.125 0.0625 0.0625 0.25 0.25 0.125 0.125 

AxdD 0.125 0.125 0.0625 0.0625 s/16 r/16 ?r/32 a/32 

&ID 0.0625 0.0625 0.0625 0.018/0.042 0.0625 0.0625 0.0625 0.018 to 0.042 

XIID 2 4 4 4 2 4 4 4 

&ID 1 2 2 2 $7 2s 27r 2r 

Number of 2048 8192 32768 65536 2048 8192 32768 65536 
grid cells 

Problem-time 5.6 3.8 0.9/3.98 +0.2/+0.6” 7.4 12.3 1.414.87 +0.4” 
per d& 

Computing 35’ 2h30’ 6h/20h +3h/+14h” 40 5h30’ 7h40’/25h +7h” 
time IBM 
3701165 

a Starting from initial values which are obtained by interpolating final results of K3/z3. 

We may assume that the finite difference grid is dense enough to resolve the 
gradient a,(~,) of the time mean velocity field in the interior of the flow field. 
Therefore, the gradients are independent of Ax, and the correction factor jjc 
introduced in Eq. (17) is not necessary here. (Special considerations are necessary 
at the walls; see Section V). 

An important practical problem connected with this model is to evaluate the 
time mean values needed in the model and later on in extracting statistical results. 
Because of limited computer time we get results for rather short problem times. 



SUBGRID SCALE MODEL 389 

So the data basis is not large enough to compute real time mean values. Moreover, 
we need what is denoted by ( ) already during the transient part of integration. 
Therefore, these mean values are calculated here as space mean values taken for 
those planes which are parallel to the walls. For sufficiently large planes these 
values and the time mean values are the same for steady state [17, p. 211. 

IV. SGS KINETIC ENERGY TRANSPORT EQUATION 

The SGS kinetic energy ‘E’ as defined by Eq. (21) is calculated by means of a 
separate transport equation deduced from its conservation law, Eq. (24). Here, 
the unknown turbulence terms are modeled in the manner suggested by Lilly [15]. 

; .E’ + s&i5 jii5 ‘E’) = P - cJF)3/2/h + S,[(v + c,c,(jF kg ‘E’)l12) 6, %I. 

(35) 
Here, P is the production term, which is the consequence of Eqs. (16) and (17) 
and the assumption of local isotropy: 

p = c,h i5cjj;5( ‘E’)lj2. (36) 

The length scale h is that defined in Eq. (11). The quantity a& stands for any 
specific finite difference form of the strain tensor squared. The square value of nu 
as defined by Eq. (15) is not appropriate as this is not defined for the midpoint 
of a grid volume. The formula finally used is 

m, = 

I 

$(Si 74; + sj ‘ii;>” , i #j, 
2(6j $2, i = j, 

(37) 

corresponding to the formula used by Deardorff [5]. However, in this case we use 
fluctuating velocities instead of total velocities. This is consistent with the 
assumption of local isotropy and results in zero production, if the flow becomes 
laminar. The constants jcg are those given in Eq. (20). The factor c, is found from 
the condition that the time mean value of P is equal to the time mean value of the 
exact production term as defined in Eq. (24). If we neglect the impacts of the finite 
differencing, jcg would be equal to one and c, equal to c2 , as given by Eq. (25). 
c, corresponds to a turbulent Prandtl number describing the ratio of the eddy 
diffusivities for SGS energy and momentum transport. It was arbitrarily fixed at 
c, = 0.3. The results have been found to be insensitive to this value. The factor cQ 
can be evaluated approximately, using Eq. (12): 
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c3 w (e) h/( vE’)3/2 w (c} h/[j= E(k) &j3” = T ($-)““. (38) 
nlh 

Actually, however, jcg , cd, and c3 have been evaluated, with all geometrical 
details accounted for in the same manner as described for the factor c2 . 

The factors % appear due to Eq. (17). If ijc is set to one everywhere, it has been 
found that for strongly anisotropic grids with, e.g., dx, > dx, w  dx, , the 
resultant velocity field does not have the nearly random structure expected for 
turbulent flows. Instead, the fluctuating velocity field becomes nearly independent 
of the xz and x3 directions. This effect can be explained as due to the large differ- 
ences between the magnitudes of the single values Dfilrj, contributing to the 
production term P - atj. In the inertial subrange @‘& is proportional to 
Lilx;y3, so each variation of the velocity field in the x2 or x3 direction results in 
much larger contributions to the production term than do such variations in the 
x1 direction; this generates large SGS kinetic energy and thus large eddy viscosity iip 
(Eq. (17)) in this region, damping out every velocity fluctuation. Therefore, the 
anisotropic form of the grid affects anisotropic values of (Df& which in turn 
cause a nonphysical anisotropy of the velocity field. This is even enforced by the 
anisotropic form of the finite difference model as given by Eq. (37). The solution 
of this problem appears to be a correction factor 

with Dij and Dii according to Eqs. (15) and (37), respectively. For isotropic 
turbulence, we know [IO, Eq. (3-20)] that 

@&+=I 2115, i = j, 
(qj) l/10, i #j. (40) 

The first factor in Eq. (39) can be calculated in the same manner as the other 
constants in this section. This correction factor gives a production term P to which 
all strain components in their time mean value contribute with the same weight 
as they do in isotropic turbulence, regardless of the grid’s anisotropy. This feature 
has been found to be important. 

We get a “quasi-steady-state” model if we neglect the acceleration, convection, 
and diffusion terms in Eq. (35): 

‘E’ = (c4/c3) h2 ‘%D& . (41) 

This is essentially the model used by Deardorff [41, except for the correction 
factor *jc and the use of fluctuating velocities to compute Dij . It has been found 
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that the replacement of Eq. (35) by Eq. (41) does not change the results consider- 
ably. This is quite a fortunate result because it shows that we do not need such 
complicated SGS transport equations as proposed in [7]. 

V. BOUNDARY CONDITIONS AND INITIAL VALUES 

The exact wall boundary condition can be taken over directly for the normal 
velocity only: 

3- 
u3 Imall = 0. (42) 

For all the other variables we must use a model, since they are not defined as 
surface mean values taken at the wall. Even Eq. (42) would be an approximation 
if filtered velocities were used. Starting from the averaged basic equation, Eq. (9), 
we see that we need boundary conditions for the momentum flux due to the 
normal diffusion only. For example, 

For this we assume 

l- 

7 - -..!I- (7w%va11 

w - &> 1 

(43) 

(44) 

The subscript 1 corresponds to the grid-index IZ in Fig. 3. For the time mean value 
of U, we assume the law of the wall in the following way. 

&ll = F [In (9 I1 E) - I]. (45) 

Here, E accounts for the wall roughness at the wall. We use the same value as 
Deardorff [4], E = 8.8 x 104/0. The term -1 results from averaging the 
logarithmic law over the wall-adjacent mesh. The time-mean wall stress at the wall 
is known a priori, for a plane channel with equal wall properties at both walls from 
an integral momentum balance, to be equal to unity. For an annulus we use Eq. (45) 
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to calculate (T,} for that value of ($) jl found as the average value of the 
velocities Ii& II in the foregoing integration step. (This is different from Schumann 
[19], where no suitable method had been found.) For the velocity 2ti2 we take a 
boundary condition in which the normal flux is calculated assuming a linear 
velocity profile and a constant eddy viscosity within the wall-adjacent grid volumes. 

The boundary condition for the kinetic energy is of the form 

(46) 

If cl1 is equal to unity, this condition implies a linear variation of ‘%? near the wall. 
This seems to be inappropriate because the kinetic energy profile varies strongly 
and assumes a maximum value in the proximity of the wall, which might fall into 
the grid volume adjacent to the wall. Therefore, a smaller value of cl1 should be 
taken. On the other hand, as the diffusion is zero at the wall, in principle we might 
take c,, = 0. But a positive value of cl1 allows us to account for the dissipation 
in the viscous sublayer. Without any further reasoning we assume cl1 = 0.2. 
Moreover, the eddy viscosity for ‘E’ at the wall is set equal to that value resulting 
for the middle of this grid volume. 

Finally, boundary conditions are needed for the calculation of Dfi according 
to Eq. (37). Here we assume linear variations of the velocity fluctuations 
(i& - (ni)) near the walls. 

No artificial boundary conditions are needed for the convective terms. These all 
cancel out due to Eq. (42) at the wall. Equations (44) and (45) are consistent with 
the known law of the wall and are applicable even for rather coarse grid systems. 
No isotropy condition is used here as it was in Deardorff [4]. 

For the x1- and x,-directions, we assume periodicity as boundary conditions 
with periodic lengths X1 and X2 , the values of which are given in Table Il. These 
rather artificial conditions can be defended if the periodic lengths are at least 
twice the length over which the field variables are correlated noticeably. From the 
experiments of Comte-Bellot [3], we conclude that the values used (see Table II) 
are large enough (except for cases Kl, 21). 

The initial velocities are calculated out of two potentials (to assure continuity) 
which are established using random numbers with a prescribed energy spectrum 
according to Eq. (12). The initial values of SGS kinetic energy are determined 
afterward from Eq. (41). 

Starting from these initial values the variables are stepped forward by the 
leap-frog method [4]. After about two dimensionless time units the solutions have 
reached a steady state in their statistical values, though remaining time- and space- 
dependent for all time in their local values. 
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VI. NUMERICAL VERIFICATION OF THE METHOD 

Two channel flows are considered: one plane channel (labeled “Kn”) and the 
flow in an annulus with the ratio of external to internal radius of 5:l (“ZC). 
Both cases were simulated with four (n = 1,2,3,4) different grid systems, each 
having different numbers of grid volumes and periodic lengths. The values used 
are shown in Table II. The largest grid, with ‘65,536 volumes, is used in cases K4 
and 24. The number of grid volumes is considerably larger than that used by 
Deardorff [4], who used 6720 volumes. In cases K4 and 24, nonequidistant mesh 

FIG. 4. Fluctuating velocities at one time in an annulus with the ratio of radii of 5:l. The 
velocity components in the plane of the drawing are represented by the vectors; the axial fluctuating 
velocities are represented by the contour lines. 

spacings are used in the cross-stream direction. Moreover, in these cases the 
initial conditions are evaluated out of the final results found for K3 and 23 by 
linear interpolation. In case K3 the grid side lengths are equal, whereas they are 
very much different in case K4. So comparison of the results for cases K3 and K4 
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is a good test for the ability of the present theory to account for anisotropic grids. 
In the following, results are reported for different realizations of the flows. 

Those labeled Kn and Zn are preliminary results reported already in [19, 201. 
In that study the steady-state solution had not been reached for cases 3 and 4. 
Since then, some further integrating has been performed for cases K3, K4, and 23 
using the revised method described here. Moreover, in addition to averaging over 
planes parallel to walls, the results found for some specific times [21] have been 
averaged in order to reduce the statistical fluctuations. These results are denoted 
by K3+, K4+, 23+. The Reynolds number is Re, = 3 x 105. 

-Figures 4 and 5 show some typical flow patterns. 
instantaneous fluctuating velocities, the SGS kinetic 
scale pressure. 

Displays are shown of the 
energy “p, and the gross 

+ K3+ 
X K4+ 

FIG. 6. Time mean values of the SGS and the total Reynolds stresses. The inclined straight 
line gives the steady-state value of the total stresses. 

The influence of the SGS theory can be seen from Fig. 6, which shows the time 
mean values of the total Reynolds stress (ul’uQ’) for cases K3+ and K4+. We see 
that (‘&%s’), which is that part of the stress predicted by the SGS model, is 
negligible over the range 0.1 < x3 < 0.9, but of large importance near the walls. 
The fact that the numerical results for the stress do not coincide with the theoretical 
line shows that the steady state is still not reached completely. It should be noted 
that the SGS stress seen in this figure is solely due to the “inhomogeneous” part 
of the SGS model, Eq. (16), whereas the “isotropic” part mainly determines the 
SGS kinetic energy. The SGS model contributes up to 40 % of the kinetic energy 
(see Fig. 8). 

Table III shows the computed maximum velocity values compared with some 
experimental values. Agreement seems to be satisfactory for the plane channel 
even for rather coarse grids. Barthels [I] and Maubach [16] found the maximum 
velocity value for the annulus to be 1 x-2 % lower than for a plane channel. 
Such small variations lie within the statistical errors of the numerical results. 
But we find that the tendency is described correctly. 
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TABLE III 

Maximum Velocity 

wro, R2/R1 low5 * Re, Reference 

31.8 

31.5 

27.7 

27 

30.1 

28.9 

31.3 

27.4 

28.2 

27.6 

28.3 

28.0 

28.3 

27.6 

28.6 

27.9 

Plane channel 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Annulus 

5 

5 

5 

5 

5 

1 Clark [2] 

4.6 Comte-Bellot [3] 

2.4 Comte-Bellot [3] 

1 Laufer [ 121 

al Deardoti [4] 

3 Kl 

3 K2 

3 K3 

3 K3+ 

3 K4 

3 K4+ 

3 Zl 

3 22 

3 23 

3 z3+ 

3 24 

2 1.0 

3 
\ 
3 0.5 

Comie-Ballot (196 

+ K3+ 

x K4+ 

FIG. 7. Normalized velocity profile in comparison with measured values (dashed curves). 
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K3+ 

K4+ 

OO 
I I I I I 

0.2 0.4 0.6 0.6 1.0 

t 
OO 

I I I I 1 
0.2 0.4 0.6 0.6 1.0 

x3- 

FIG. 8. Root mean square values of the fluctuating velocity components in comparison with 
measured values (dashed curves). The dotted curves show the contribution by the gross scale 
motion. 

The mean axial velocity profile is shown in Fig. 7 in comparison with the values 
measured by Laufer [12] and Comte-Bellot [3]. Especially the later ones agree well 
with the numerical results. A sensitive measure of the protile is .the difference 
between its maximum and mean values. The results obtained for this difference are 
reported in Table IV. Here we see that agreement between the calculated and the 
experimental values is satisfactory and that it is better than for the results obtained 
by Deardorff [4]. This seems to be a consequence of the new SGS theory. 

A similar improvement can be recognized in the proties of the rms values of the 
fluctuating velocities as shown in Fig. 8, where they are compared with the values 
measured by Comte-Bellot [3]. The agreement is very good for the axial component 
and generally in the middle of the channel, whereas there is some departure in the 
other components near the walls. We have to keep in mind, however, that 
differences between the experimental results obtained by different workers [2,3,12] 
for these quantities are of about the same magnitude. As a whole, the agreement is 
considerably better than for the results of Deardorff [4]. The same has been found 
for case Kl and K2 [19,20]. 

Principal agreement was established between the measured values of Comte- 
Bellot [3], the numerical results of Deardorff [4], and this approach concerning 
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TABLE IV 

Difference between Maximum and Mean Velocity 

RZ/Rl Re,,, . 10e5 Reference 

2.32 1 1 Clark [2] 
2.70 1 3 Barthels [l] 
2.68 5 3 Barthels [l] 

5 1 co Deardorff [4] 
3.19 1 3 K1 
3.17 1 3 K2 
2.60 1 3 K3 
3.08 1 3 K3+ 
2.87 1 3 K4 
3.14 1 3 K4+ 

2.75 5 3 Zl 
2.52 5 3 22 
2.74 5 3 23 
3.28 5 3 z3+ 
3.15 5 3 24 

0.6 + K3+ - 

x K4+ 

1 I I 1 
0.2 0.4 0.6 0.6 1.0 

FIG. 9. Axial integral correlation lengths for the different velocity components in comparison 
with measured values. These figures are unsmoothed computer drawings. The large tictuations 
are due to the small number of realizations over which the averages have been taken. 
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the axial integral correlation lengths for the three different velocity components. 
Figure 9 shows the numerical results of 

in comparison with those values measured by Comte-Bellot [3]. The double 
primes denote the departure of time mean. Although there are still large statistical 
fluctuations we see that the correlation length of the axial velocity fluctuation is 
about five times that of the other velocity fluctuations. Corresponding results 
have been found for the annulus [19,21]. 

VII. CONCLUSIONS 

A method has been developed for direct numerical simulation of incompressible 
turbulent channel flows in a plane channel and an annulus. A SGS theory is used 
which accounts for the inhomogeneities of the turbulence and the anisotropy 
of the finite difference grid and the finite difference operators. The results are in 
good agreement with experimental data. This agreement is virtually independent 
of the number of grid cells employed. Moreover, we get the same results for different 
degrees in the anisotropy of the grid. This seems to be a strong indication of the 
usefulness of the SGS theory. 

The most important differences between the present method and older ones, 
especially that of Deardorff [4], are: (a) splitting of the SGS stresses into inhomo- 
geneous and locally isotropic parts; (b) accounting for the anisotropy of the finite 
difference scheme; (c) appropriate boundary conditions; (d) higher grid resolution; 
(e) use of a SGS kinetic energy transport equation; (f) larger values for the 
periodicity lengths. These differences are listed in the order of their estimated 
importance. 

The most important limitations of the method are: (a) The method is restricted 
to high Reynolds numbers; (b) the method is not completely independent of 
empirical information; (c) large amounts of computer time are required if flow 
details are desired (refer to Table II). Moreover, although much has been done to 
account for unequal-sided grid cells we must be aware of the problematic nature 
of using cylindrical coordinates. The method of using cylindrical coordinates for 
the simulation of pipe flow cannot be recommended, for example, since it would 
resolve nearly all scales of turbulence near the center line but only a small range of 
scales near the walls. It is doubtful whether the different correction factors proposed 
are valid for such a large variation. 

The method has been used successfully to investigate turbulence closure 
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assumptions used in empirical models. It is possible to evaluate some of the 
constants appearing in them, especially for those terms which are mainly deter- 
mined by the gross scale structure of the turbulent flows and are zero in isotropic 
turbulence. These results have been reported in [20]. They showed that some of the 
empirical “constants” used in simple turbulence models are dependent of the 
cross-stream position. In [21] it has been shown that the present method can be 
used to calculate wall-pressure correlation functions and the resultant forces 
acting on the inner cylinder of the annulus. 

APPENDIX: CALCULATION OF VOLUME-AVERAGED VELOCITY OXRELATIONS 

We assume u,(x, t) and Q(X, t) to be any two components of an isotropic 
velocity field having the two-point correlation 

&j(r) = +4(x) %(X + r)), i,j = 1,2, 3. 

For turbulence having Kolmogorov’s spectrum this is [lo, 191 

2’3r2’3[1 - rt.1/(4r2)] + l&(O), 
Ur) = /I;&3 rirj,(4r4i3): 

(A-1) 

i = j, 
i #j, 64-2) 

where 

r = (riri)1/2, f2 = (18/55)LC(1/3). 

We want to calculate correlations of type 

R(u, , u, , v, , v, , 6-1 = <“%<x) ‘%4x + 8). (A-3) 

The prescripted overbars denote averages taken over space volumes Va,s . These 
averages can be formulated (e.g., for subscript CY) [23]: 

with 

va- 24, = III! K(Y) %c(Y~ WY), (A-4) 
co 

We start from the definitions 

(A-5) 
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The integration involving time averaging and the two in@Mons with respect 
to y and z can be interchanged; let ‘F = z - y, TV = do; then 

(A-7) 

Here, +aB is the “volume-correlation,” 

dcd4 = j-1 KAY) &l(r + Y) MY), (A-8) 
00 

which can be evaluated analytically for any rectangular volume V, , V, . 
In this study we need this volume-correlation for two types of pairs of volumes: 

(a) V, = V, = Vtn) , where * V(,) is an n-dimensional volume, which means it is 
either a line (n = 1) of length H1 or a plane (n = 2) of side lengths & and H, 
or a real volume (n = 3) of side lengths HI , H, , H3 . For these volumes Eq. (A-8) 
gives 

bB(4 = ii& max(O, Hi - 1 7i I). 
[$I 

(b) V, and V, are two finite planes which are perpendicular to each other 
with coinciding centers of gravity (see Fig. 10): 

6: {y; I YI 1 < HI/~, Yz = 0, 1 Y3 1 < H3/2), 

v,: {Y; YI = 0, 1 Y2 1 < H2/2, 1 Y3 1 < H3/2). 

V. 
v, 

$* 
HI 

FIG. 10. Configuration of planes over which averages are taken. 

Here we find 

u4 = 

i 

Hli2H32 max(09 H3 - 1 T3 11, 
if (I r1 I < fW2) and (I 72 I G H2/2), 

(A-10) 

0, elsewhere. 

Using these tools, all volume-averaged velocity correlations needed can be 
evaluated. This shall be shown for two examples. 
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(a) We ask for that portion of SGS-kinetic energy contained within a line, 
a plane, or a volume: 

V(n)- 

We find 

(“‘“)E,) E &((Ui -v(“)u,)Z). (A-l 1) 

For IZ = 1 the integral is equal to 9/40. For II > 1 the integral must be evaluated 
numerically. The results can be approximated with an error of about 1% by 

(‘(“)E,) = fi(E)W h2/3 $ ($ (+)‘3”“‘: 
(A-13) 

153 = 0.69687. 

(b) As-an example for the time mean value of finite difference form of the 
squared strain tensor we consider (B:,) as appears in Eq. (25): 

2 

<a;,> = ((6, “ii2 + 6, ‘iii) 6, “ii,). (A-14) 

Using the definitions of the finite difference and the algebraic averaging operators 
we find for isotropic turbulence: 

Of,) = Ax22 -A( ‘ii1 2zs,(0, dx,/2,0)) - <‘I(, ‘i&(0,3/2 dx, , 0))) 

- g&- (‘ii1 2&$/2, Llx, , 0)). 
12 

(A-l 5) 

Here the parameters behind velocity products specify the components of the 



SUBGRID SCALE MODEL 403 

distance vector between the centers of gravity of the different finite planes over 
which the averages are taken. We see that we have to evaluate, e.g., 

(A-16) 

The volume correlation is that given by Eq. (A-10) with Hi = & . The result is 

(?il ‘ii,<& , t2 , 0)) = -f2(Q2i3 h2J3 

x *I_:“y2 Jy2 loh8q$ (71 + .%x72 + z2> 

1 a 
[cT1 + z32 + cT2 + z2)2 + 732~2/3 dT3 dT2 dTl 3 CA-l71 

where 

hi = AxJh; zi = &/h; h = (Ax, Ax, Ax3)li3. 

This integral (and similar ones for the other terms in Eqs. (A-l 5) and (25)) must be 
evaluated numerically. Some approximate algebraic equations for these integrals 
are listed in [19]. 

We see that the method is capable of evaluation of all volume-averaged 
correlations needed. The only assumptions are isotropy and Kolmogorov’s 
spectrum. 

Summary of Operator Notation 

Y 

9 

Y  = {YlsY2,Y3} 

(Y> 

Ym = Y - <Y> 
V- 
Y 

Vi- 
Y 

i- 
Y 

Y’ 

&Y 
-i Y 

Y3lI 

Ymax 

Any (dimensionless) quantity 

Dimensional quantity 

Vector 

Time mean value 

Departure of time mean value 

Volume mean value; see Eq. (5) and Fig. 2 

Volume mean value; the volume is shifted in the i-direction 
by AxJ2; see Fig. 2 

Surface mean value; the normal of the surface (iF) is in the 
i-direction; see Eq. (6) and Fig. 2 

Departure of the mean value used in the context 

Finite differential in i-direction; see Eq. (7) 

Algebraic mean value of y at two positions separated by one 
grid interval in i-direction 

Mean value taken over the channel cross section 

Maximum value 
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