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TURBULENT FLOW.*

By L. Prandtl.

What I am about to say on the phenomena of turbulent flow
is still far from conclusive. it concerns, rather, the first
steps in a new path which I hope will be followed by many
others.

The researches on the problem of turbulence which have
been carried on in Ggftingen for about five years, have unfor-
tunately left the hope of a thorough understanding of turbulent
flow very small. The photograpnic and kinetographic pictures
have shown us only ﬁow hopelessly complicated this flow is.
Figs. 1-4 are photozraphs of water flowing in a very long deep
rectangular trough, as taken from above with a camera carried
along on a car in the direction of the flow. The pictures dif-
fer greatly according to the speed of the car, but they are all
unpleasantly complicated. I will show motion pictures of the
same motions at the close of my lecture. Ssuch pictures have
hitherto been utilized only for statistical information on the
magnitude of the velocity variations. Ctherwise, we have not

been able to learn much from them. That which I would call the
*"Ueber die ausgebildete Turbulenz," a lecture delivered at
Zurich in Septeaber, 1928, before the International Congress
for Applied Mecianics. . . '
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"oreat problem of developed turbulence," involving a thorough
understanding and a quantitative calculation of the processes
through Whiéh new phenomena are constantly being developed
and also involving the determination of that mixing force
which is produced in each individual instance by the contest
of new dcvelopment and damping, is not Iikely therefore to be
soon solved. )

It is always possible, however, if we forego a dceper un-
derstanding of the phenomena of turbulecnce, fo“follow theoret—
ically various phenomena in a logical way controlled by exper—
iments, especially regarding the mean motion in a given turbu-
lent flow. Even the determination of the méaﬁ velocity, as a
function of the place, 1s a technically very important task.
The first step in this direction may be so characterized that
the apparent'visoosity forces, produced by the mixing, Wili be
represented in such a form that they can be introduced into
the hydrodynamic differential equations and thus furnish dif-
ferential equations for the mean motion of turbulent flows..

Boussinesqg has already undertaken this tésk. He originated
the formula, now much used, which includes an "equivalent" A *
analogous to the viscosity whereby, in acddition to the molecu-
oua

P

lar tension T = i
. ¢

— etc., we have the apparent molecular ten—
7

*I took this designation from the interesting and instructive
article "Der ilassenaustausch in frefer Luft und verwandie Er-
scheinungen," by Professor Wilhelm Schmidt, Vienna (Hamburg,
1925). EBcussinesg and subsequently other hydraulic engineers
designated this quantity by €.
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sion

=

T=A etc. ' (1)

3y
in which T = the periodidél mean ﬁalue of the velocity compo-
nent u. This formula has the disadvantage, however, that the
equivaleht itself depends in turn on the velocity, which must
therefore first be found.

After many futile attempts, I finally succeeded in obtain-
ing an expression for the apparent frictfon which, although only
a rough approximation, still quite well reﬁresents the essential
flow characteristics of slightly viscous fluids and is therefore
free from the abovementioned fault.

In order to formulate the exoﬁange of momentum, which pro-
duces the apparent friction, it 1s customary, according to the
method of O.lReynolds, to divide the momentary velocity into two
components, the periodical mean value and the oscillation about
this value.

u=1u+ u' v =y + v! w=w+ w

In the mean value the oscillations now give an apparent state

of tension thrdﬁgh the components

2
ou'”, pu! v', etc.

in which p = density, overlined as sign of the mean value for-
mation. These expressions are well known, and the task is now
to obtain for them a form in which the mean flow ("fundamental

flow") W ¥ W occurs.

At this point it is essential to introduce the character—
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istic length for the turbulent condition, which here plays a
similar role to that of the free wave 1eﬂgth in the kinetio'
gas theory. It can be considered as the diameter of the simul-
taneously moved fluid masses, but also as the distance trav-
ersed by such a fluid mass before it loses its individuality
by mixing with neighboring masses. It is easily found that
these two distaﬁﬁes; if the Reynolds Number* is large enough,
differ only through a constant factor (work of overcoming re-
sistance in penetrating foreign fluid masses = kinetic energy
of the mass). Following the second definition, we will desig-
nate this length as the "mixing path" (or "mixing distance")
and represent it by 1. If we assume that a moving fluid mass,
situated in a current with velocity decrease crosswise to the
current, possesses a velocity equal to the mean velocity at
the point where it originated, and that it is shifted by the
mixing distance 1 transversely to the current, its velocity
will then differ from the mean velocity at the new point, and
_ﬁ’

thisvvelocity, in its first approximation, equals 1 %—- when

«

the mean direction of flow rolative to the X axis is chosen.
The mean oscillation u' <can therefore be put proportional to
l %%. The transverse motion v' can be considered as being'
produced in the mamner that two fluid masses with different
u', which find themselves in one another's presence, either

come together or move farther apart. The velocities v' thus

*That is, the Reynolds Number obtained from the diameter of the
fluid mass and from the relative velocity.

LN o * b e
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produced can therefore be put proportional to u'. The appar-
ent molecular tension (T' =0 u! VT) therefore becomes
Lo 2
R 1°/au
e \ay\’

when the proportionality factors of’ u'- and ﬁ' and also
the correlﬁtion Tactor, which would come into the formatipn of
the mean product, are expressed. ~If the sign, which must
Change with thét of %%, is taken into coﬁsideration, it is

more correctly written

dul du (2)
oy

Comparison with the Boussinesq form shows that agreement will
be obtained when the "eguivalent" is written

2

A =p 1 leu , (3)

iayz
Th;swsimpla formula has given very good results, iﬁ spite of its
obvious imperfections, for the case used as the vasis of its
derivation, namely, a flow with velocity decrease transverse

to the current. Above all, in agreement with hydraulic ex-
perience, it gives resistances proportional to the squarerf

the velocity, as can be easily seen from its structure. We

must bear in mind, however, in the results which are obtained
with -this formula, that it gives only a first rough apbroxima—
tion. The solutions of flow problems with this visooéity fac-

tor show somewhat unusual characteristics, when the customary
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viscosity factor is exXpressed as numerically‘small.‘ Instead of
an asymptotic transition to constant velocity, a place is found
somewhere in the finite, where the finite sharp curve tangenti-
ally joins a horizontal straight line. Velocity'maxima always
have such a form, that the radius of curvature there drops to
zero. 1t is in the vicinity of the maximum ﬁﬁax - ﬁprgp,

l i / 3 - s . 3 3 3
\y - yl‘a'e.\ This behavior is connected with the condition

Y
el

that for - = 0 the equivalent becomes zero according to our

o)
<

formula. In reality fhis is not exactly what happens, since
the equivalent does not entirely disappear, due to the disturb—
ance in the adjacent régions.‘ If, for the refinement of thev
theory, an extensioﬁ of the equivalent is assumed, there is
then obtained, at the places g%.= 0, still another equivalent
differing from zero, and correct asymptotes and maximé with
finite curvature are again obtained. Nevertheless, many exper-
iments show that the curvature of the velocity curve at the
plaoé of the maxima ié especially large, from which 1t is to
be concluded that the equivalent, although not zero, is still
considérably smaller than in the vicinity, so that the simple
formula 2 cannot be denied a certain intrinsic justification.
Thus far we have considered only the components of the
molecular tension, which usually play the principal role in
hydraulic problems. It is not difficult, however, even for

somewhat more general cases to develop an expression compati-

ble with the symmetry characteristics, which furnishes a full ,
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[

tension tensor. For example, the factor \ in formula 2

3

aT
can be.replaced by the maximum velocity decrease transverse to

the streamline, and the second factor by %% lby the tensor
A'ﬁ‘+ TA. Certain experiments, to which I will recur, indi-
cate, however, that the matter is not quite so simple. The
equivalent itself must rather be regarded as a tensor, so that
in the generaligzation of formulaia, as sdon as we bass beyond
the planar proﬁlem, we have the product of two tensors.

| The "mixing path" 1 réquires further special investiga—
tion. It may generally be considered as a ¢ function of the
place, concerning which it is first to be established, that it
must become zero on approaching a wall, because the trahsverse
motions are here prevented. The observations in smooth-walled
tubes indicate, howe#er, that the viscosity still has a slight
effect. In the Tield of the Blasius resistance formula 1 mnust

be put proportional with

ya%/ " . \Vv
\V/Tboundary P

in order, by using formula 2, to obtain the correct relation
of the resistaﬂce to Reynolds Humber angd simultaneously‘the
proportionality of fhe speed with the seventh root of the wall
resistance vy.*

The relations appear to be simpler in those turbulent mo--

tions in which no walls participate as, e.g., in the mingling

*Proportionality with-%% follows from v'. 1 2% for a mean
. . . — : Ay
value of v' (b = width, U = nean value).
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i

of flowing fluid with the surrounding non-flowing fluid and in

-the rctardation of the flow behind a moving object. In these

cases of "frece turbulence," it can be assumed, at least for
sufficiently large Reynolds Hﬁmbers that, in éomparable cases,
the phcnomena are alwavs geonetrically and mechanically similar
in a cross section trans?érse to the longitudinal direction.
Consecquently the mixing distances, with increasing width of
the stream or wake, are always proportional to the width of
the stream, whereby the consideration at the base of formula
2 alsc enables the transverse veloclities to be proportional to
the mean relative.velocity u  with respect to the undisturbed
fluid. This in itsélf plausible assumption concerning 1 may
moreover be derived, if so desired, as a result of the fact
that the retardation of the mean motion U 1is produced by
the molecular tensions given in formula 2, and that, on the
other hand, the periodical increase in the width of a section
of the turbulent flow, etc., is proportional to the velocity
of the transverse motions. The results of the various ways of
considering the sulbyject therefore agree well with one another.
With the addition of the law of inertia for the princiﬁal-
motion, the ratio for the increase in the width and for the
decrease in velocity with increasing distance from the place
of disturbance can be forecast for numerous instances. In the
widening of the flow, tﬁgre is already developed, without thne

law of inertia (or momentum), an increase of the width propor-
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tional to the c¢istancec from thce hole* and consequently, due to
the law of incrtia, a veloclty decrcase inversely proportional
to the first power of the distance for a flow of circular
cross section or inversely proportional to the (square) root of
the distance in the casc of a flow coming out of a slot.

In the wake of a rod or rotational body placed transverse—
ly to the flow, the width increases proporfion&lly to the square
root or cubic root of the distance, while the velocity decreases
in inversc proportion to the square root or thé 2/3 power~of
the distance. In all these rules it is, moreover, assumed that
the velocities, or the deviations of the.velooity from the un-
disturbed flow, are small in comparison with those of the
place of disturbance.

The spreading of a stream with circular cross section and

the wake of a rotational body may be taken as examples. Let D

represent the width of the stream or wake. Let 1 = ab, so
that the transverse velocity v' =1 %% ~ %% ~ o Ul
From the expression
%% ~ v . (a)

is obtained, by estimating the stream

2

uwlb o qu
X

hence b~ a X.

*This result can also be obtaired through a similarity calcu-
lation.
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The constant momentum in all the cross sections becomes

J ~uw ¥, whence u = Coiﬁi'
.For the wake g? = U 9% where U is the velocity of the
undisturbed flow and hence
U &5 (

. 2 . . .
The monentum is J~ p Uu ¥, which equals the resistance

En

F in which ¥ = cross section of body

2 2

and oy = coefficient of drag. J = W gives

(Or dr&g) o= Cv.]

which, when introduced into formula 1, becomes

hence b ~ cyw F X
R —
/Cy F
and u~ U/ E
A X

The experimental proof of the rules tnus obitained, in so
far as they relate to the widening of the stream, has already
been giﬁen. In the wake flows, the preliminary‘experiments
show certain deviations, which may possibly be connected with
too small Reynolds Numbers. The finai conclusion has not yet

been reacncd.
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If, as mentioned, w

(¢
&
165
@]
g
0]

the mixing distance 1 in for-
rnula 3 to be proportional to the stream width determined by the
above-mentioned rules and also assume that it is constant over
the whole width dt one and the same distance, we then have suf-
ficient data to solve the hycdrodynemic differential quations,
supplencented by the frictlion member of formula 2, in the same
manner as customary ia boundary layer calﬂulatloqs. (The ﬁres—
sure differences transverse to the direction of flow are disre-
garded, as 1ikéwise the effects of other deformation members .
except %%.) On this basis my fellow worker, Dr. Tollmien, has
made various calculations, which will appear snortly in "Zeit-
schrift fur a angewandte Nathematik und Mechanik." The accoxpany;

ing diagroms show some of the results. In this connection, the

Mm1X1nz, W1lvl
o

or

J
(=

ot

he neighvoring air, of a broad unifomm air flow,
which comes from an opening, is_treated as & specilal previously
unobserved form of flow. This case may be a iitﬁle more closely
inveétigated as an example. Here also, as in the other flow
extension problems, 1 1is to be put proportional to x (distance
from bpening). A dependence on y 1is not to be assumed, so ‘that

7 =

we can put ! = cx. Here the formula is T = f{m), in which

it

1 = y/x. On one boundary of the field T = U; on ‘the other

boundary W =0 (Fig. 5). We now have

2

— 3T, = 3T . 17 _ - |t !l 2*m
= = O == ad <
Usy tVSy T D oy = 3 ¢x ay! 3v° -

By introducing the flow function V = x F(n), vwhere

F(n) = sf(n) 4N, we obtain, after a short calculation, the
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very simple diffcrential cquations

FF' ¢+ 2 c®F' 71t =0
which can be solved both through F" = 0- (u = const.) and also
through
F+23c2F'"=0

- The latter differcntial cquation represents o sort of damped'os—
cillation, of which a half-oscillation represents the funciion
to be considered for the mixing region. This region is joined—
tangentially on one side by u = U and on the other side by
u =0 (Fig. 6). In other cases, similar differential eguations
are obtained, most of which, however, are more difficult to solve.
After the solution, the pressure differences transverse
to the flow dircction, which werc at first disrcgarded, can be
caloulated from the transverse aooelerations and the apparent
tramsverse fensions. In the hitherto verified examples, these
pressure differences were found to be less than 1% of the dy-
namic pfessure at the maximum velocity in the given cross sec—
tion, so that their neglect is justified. Everywherc in the -
stream therc. is found a slight positive pressure. In the air
streams of the aerodynamic laboratories, this positive pressure
has a technical importance for precision experiments, e.g.,
~for the calibration of pressure gauges fof air—-speed measure—
ments. For the large thtiﬁgen air stream, whose mingling with

the surrounding air has been measured, Dr. Tollmien calculated
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pU?
_ 3
figures will also be of interest: width of mixing zone

a positive pressurc of about 0.006 . Pecrhaps the following
b = 0.255 x; mixing distance 1 = 0.0174 x = 0.068 b; inflow
velocity of the air (from a state of rest) into the air stroam
to replace the air carried away by the latter, ¥ = 0.032 U.
The agreement of the calculated with the observed curves 1s

well shown by Fig. §, where two pressure records arc given, with
the theoretical curves represented by acded dash lines.

In addition to the above-mentioned cases, there have al-

s
ready been calculated the lessening of the tufbulenoe benind

'a screen of parailel wires, wheredy the veloéity deviations
diminish in an inverse ratio %o the distarce, and the periodic-
ai increase in the turbulent layer, which proceeds from a sepa—
ration laver with velocity increase. The increase’ %% occurs
with a constant velocity proportional %o the strength of the
velocity increase. The mixing distance 1 = ¢ (u, - uy) %

(The veloclty curve is here given according to formula & simply
by a function of the third degrece of the form Ay - By3)

A theoretical detcrmination of the hitherto only empiric-
ally detcerminable magnitude ¢ can be obtained, I believe, in
this as in other suitable examnples, from the claim that the
1ayer'thus developed is no longer unstable toward small osoilla—
tions. Of course it is not easy actually to calculate the os;

cillations of such & layer with allowance for the apparent

friction, even of the oscillation motion. The proof of this
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claim is that a too small & produces too small transition
layers or streams, which arc then dynamically unstable. The in-
stability then indicates the formation of vortices, i.c., in-
creased mixing, widening, etc., g.e.d. (If wey also be that in-
stability is cdeveloped for a skort time in the disturbance of:
& given wave length or oscillation period, which is then, how--
ever, replaced by stability. In such cases the ¢ value actu-
ally iavolved will depend on the initial disturbances.)
We must now discuss another queétion, which concerns the

more compléx problems, which cannot.be 80 readily subjeoted to

heoretical treatment. FHere formula 2 or its extensions can
be employed to determine the magnitude of the mixidg distance
in dependence on the location iﬂ the fluid, for the flow es-
tablished by the experiment. Thig furnishes an especially
clear picture of the.inteﬁsity of the mixing phenomena at each
individual point, and we reéeive thereby, since it concerns
a simple length in the mixing path, a very easily presentable.
meagure of this intensity, Which can be readily transferred
from the model to the full-scale object. Thereby remarkably
small differences in the mean value of | are manifested in the
previously tested cases.. In smooth troughs of uniform cross
section, as in the case of an increasing or decreasing cross
section and as ih_the violent phenomena behind an obstacle and
in the widening of streams, mixing paths are.developed, which

constitute 1/8 to 1/10 of the depth of the water or 1/2 of
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the width of the channel or half of the actual width of the
stream. Figs. 9-10 give the 1 curves for smooth widened and
narrowed channels. Rough channels are being tested in Gottin—
but the results have not yet been published.
One of the most important works of the near future will
involve the study of the friction l@yers on £0lid bodies and
especially the conditions for the harmful separation of the
flow from airplane wings, the walls of diffusers (exit cones
of wind tunnels), etc. Here also beginnings have already been
made.
. *In concluding, I will speak of one more group of phenomena
which relates to the spatial turbulence problem (in_contrast
to the periodical or symmetric rotational problem, which alone
has thus far been discussed)- It concérns the velocity distri-
bution in other than cylindrical tubes. I have had especially
careful measurements made in this ccnnection, the results of
which were very surprising. Ingtead of a distribution with
ever more rounded "Isotechen' (lines of like velocity), as ob—
tained in laminar flow, there were obtained for triangular and
rectangular channels the lines showvn in Figs. 11-13, of which
those for the rectangular channel are stili more peculiar than
for tﬁe triangular one. An article on old observaticns of the
spiral wmotion of water in a straight channel ("Die Wasserkraft-
laboratorien Europas" Berlin, 19268, pp. 66-67), furnished'me

the basis for a usable cxplanation. The water develops "second-
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ary motions" in all- channels of uniform but not circular cross
section in such manner that in a coiner‘the fluid along the
middle of the aﬁgle flows into the corner and on both sides of
the middle it flows ou£ of the corner. These flows, in connec-
tion with the usual turbulent mixing path, enable the explanaF
tion of the observed phcenomena. Momentum is ever communicated
to the corners; thus producing the great velocities there.

Fig. 13 shows the secondary floﬁs for the triangular and»rebtang—
ular channels. It is seen how the inward flow from the wall

develops regions of subnormal velocity at the ends of the loang

0]

ides and algso in the middle of the short sides. For the con-

)

irmation of the new views, I recently nad measurements made
~with another tube, as shown in Fig. 14. The results, which
othefwise would be very surprising, confirm the explanation in
the best manner. The currents coming from the corners develop,
in éhe middle, a double eddy, which carries the Water in the
middle line toward the level fluid and carries it away again
at the orojecting corners, thus producing hypornormai velocity
in the middle and subnormal velooify on the sides. Such sec-
ondary currents are generated on the surface of opén troughs,
as.shown by experiments. The free surface 1is accordihgly no
cross section through an even flow. Moreover, the photograph-
icelly determined velocity distribution on the surfacé.agrees

well with that found with a Pitot tube.
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How then are the secondary currents to be explained? In
my opinion there is no other explanation than this. The mixing
motion is of‘such a nature that; alongside the to-and-fro motion
in the direction of the strongest velocity gradient, there is a
still stronger oscillation, crosswise to the former and hence
in the direction of the "Isotachen." If this is true, it is
explained by a simple momentum consideration that, through this
kind of wmotion, forces are gencrated on the convex side of the
"Isotache," whosec strength 1s proportional to the sharpness of
the curvature. Consideration of the mean values of (u?)g,‘

u' v', and (v1)? give results which agfee with this momentum
consideration.

As to why the mixing wmotion is of this nature, that is a
gquestion which belongs to the previously mentioned "“great tur-
bulence problem," to which unfortumately I do not have the ah~
sﬁer. In any event, this phenomenon plainly indicatcs that the
dgvelopod turbulence 1s an essentially thrce-~dimensional motion.
This circumstance scems, however, to postponé the solution of
the great turbulence problem to the very distant future, be-
causé-our present mathematical resources are gquite insufficient
for three-dimensional fluid motions. The way indicated in this
lecture will, however, suffice in general for the arranéing of
the cxperimental results, so that we can dispense with a com-

plete expnlanation.

Translation by Dwight U in

ie Hiner
National Advisory Committec

e b
for Aeronautics.
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