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Abstract. In the spirit of Ha Minh’s semi-deterministic model, we propose a new method for com-
puting fully-developed turbulent flows, called Coherent Vortex Simulation (CVS). It is based on the
observation that turbulent flows contain both an organized part, the coherent vortices, and a random
part, the incoherent background flow. The separation into coherent and incoherent contributions is
done using the wavelet coefficients of the vorticity field and the Biot–Savart kernel to reconstruct
the coherent and incoherent velocity fields. The evolution of the coherent part is computed using
a wavelet basis, adapted at each time step to resolve the regions of strong gradients, while the
incoherent part is discarded during the flow evolution, which models turbulent dissipation. The
CVS method is similar to LES, but it uses nonlinear multiscale band-pass filters, which depend
on the instantaneous flow realization, while LES uses linear low-pass filters, which do not adapt
to the flow evolution. As example, we apply the CVS method to compute a time developing two-
dimensional mixing layer and a wavelet forced two-dimensional homogeneous isotropic flow. We
also demonstrate how walls or obstacles can be taken into account using penalization and compute
a two-dimensional flow past an array of cylinders. Finally, we perform the same segmentation into
coherent and incoherent components in a three-dimensional homogeneous isotropic turbulent flow.
We show that the coherent components correspond to vortex tubes, which exhibit non-Gaussian
statistics and long-range correlation, with the same k−5/3 power-law energy spectrum as the total
flow. In contrast, the incoherent components correspond to an homogeneous random background
flow which does not contain organized structures and presents an energy equipartition together with
a Gaussian PDF of velocity. This justifies their elimination during the CVS computation to model
turbulent dissipation.

Key words: coherent structures, Coherent Vortex Simulation (CVS), semi-deterministic model, tur-
bulence, wavelets.

1. Introduction

Computing fully-developed turbulent flows is one of the challenges for scientific
computing. The difficulty comes from the nonlinear dynamics of the Navier–Stokes
equations which excites a very large range of temporal and spatial scales. Turbu-

� In memory of Ha Minh, with all our gratitude for the human and scientific treasures he has
transmitted to us.
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lence models are necessary because Direct Numerical Simulation (DNS) of fully-
developed turbulent flows requires resolution which is out of the reach of present
or next generation supercomputers. Turbulence models used in industrial codes are
based on phenomenology, rather than first principles, and thus require tuning of
their parameters for each flow configuration.

Laboratory and numerical experiments have shown that, whatever their space
dimension, geometry or Reynolds number, turbulent flows exhibit self-organization,
that leads to the formation of coherent structures, which play an essential role in
the flow dynamics, and should be taken into account when modelling turbulence.
One of the difficulties in dealing with coherent structures is that there are several
definitions of them, based on statistical or dynamical points of view, or both. In the
present paper we propose a definition of coherent structures based on a nonlinear
filtering of the vorticity field projected into wavelet space. We call them ‘coherent
vortices’ to avoid confusion with the other definitions.

Turbulent flow simulations can be divided into three classes:

• fully deterministic simulations, in which all scales of motion are resolved and
deterministically computed, thus is DNS (Figure 1e);

• semi-deterministic methods, in which some degrees of freedom are deter-
ministically computed while the influence of the others is modelled; among
them are Large Eddy Simulation (LES, (Figure 1c) and Unsteady Reynolds
Averaged Navier–Stokes equations (URANS, (Figure 1b); and

• fully statistical models, such as Reynolds Averaged Navier–Stokes equations
(RANS (Figure 1a), in which only a steady solution of the mean turbulent
flow fields is deterministically computed and the influence of all turbulent
fluctuations is modelled.

These simulations are characterized by different computational costs, and a
decreasing level of information on the turbulent motions, respectively. The most
demanding method is DNS, for which the number of degrees of freedom to be
computed at each time step is N = cRe for two-dimensional isotropic turbulent
flows and N = cRe9/4 for three-dimensional isotropic turbulent flows, c being a
constant which depends on the numerical scheme, and Re the Reynolds number
of the flow. Therefore the maximal computable Reynolds number is limited by
the CPU performance and memory of the computers. The number of degrees of
freedom needed by LES does not depend on the Reynolds number, as long as
one does not resolve the viscous boundary sublayers. Therefore LES allows one
to compute much higher Reynolds number flows than DNS. The least demanding
approach in terms of computational cost is RANS, as only the steady mean flow
is computed. RANS does not take into account the spatial distribution of coherent
vortices, while URANS and LES compute only a smoothed spatial distribution of
them.
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Figure 1. Comparison between several methods to compute turbulent flows: (a) RANS,
(b) URANS, (c) LES, (d) CVS, (e) DNS.
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We think that the semi-deterministic methods offer a good compromise, pro-
viding more physical insight than RANS and more realistic Reynolds numbers
and computational cost than DNS. In this paper we argue that semi-deterministic
methods can be improved by:

• better characterizing the coherent structures to be deterministically computed;
and

• controlling the Gaussianity and the decorrelation of the discarded modes to be
modelled.

As example we propose a new semi-deterministic method, called Coherent Vortex
Simulation (CVS, (Figure 1d), aimed at this. It is based on a nonlinear wavelet
filtering of the Navier–Stokes equations which extracts coherent vortices with-
out imposing an a priori cut-off scale. The only a priori demand is to require
a quasi-Gaussian probability distribution of the discarded incoherent components
and decorrelation between them. The principle of CVS is:

• to deterministically compute the evolution of the coherent vortices in a wavelet
basis, which dynamically adapts to the regions of strong gradients and thus
resolves the nonlinear interactions between coherent vortices; and

• to model the influence of the incoherent components, produced by nonlinear
vortex interactions, which are discarded at each time step.

The paper is organized as follows: after a short overview of classical turbulence
models, we explain the CVS method and illustrate its applicability to both two-
and three-dimensional turbulent flows. We present the CVS computation of a two-
dimensional mixing layer and compare the results thus obtained with classical
DNS. We also give a method of computing turbulent flows in complex geometries
and use as an example the computation of a two-dimensional flow past an array
of cylinders. Finally, we demonstrate the application of CVS to three-dimensional
flows, and present the extraction of coherent vortex tubes in a three-dimensional
homogeneous isotropic turbulent flow.

2. Classical Turbulence Models

2.1. PRINCIPLE

Even with present supercomputers, Navier–Stokes equations cannot be integrated
in the fully-developed turbulence regime without using some ad hoc turbulence
model. The role of turbulence model is to reduce the number of degrees of free-
dom of the system of equations to be computed. The degrees of freedom are split
into two subsets: the retained modes, to be deterministically computed, and the
discarded modes, whose effect is modelled. The number of retained modes should
be as small as possible, while the number of discarded modes should be as large
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as possible. Moreover, the discarded modes should have reached some statistical
equilibrium state in order that their effect on the retained modes can be modelled.
Therefore the central question is: which information should be kept, and which
information can be safely discarded? A related question is: which averages or
filterings are appropriate to compute the evolution of turbulent flows? We believe
that these questions cannot be answered a priori. The answers must be based on
a deep understanding of the nature of Navier–Stokes solutions at large Reynolds
numbers, which results from a subtle interaction between the nonlinear term, the
linear term and the incompressibility condition.

The statistical theory of homogeneous isotropic turbulence is based on ensemble
averages, although in practice they are often replaced by space or time averages,
which are equivalent, assuming ergodicity and Taylor’s hypothesis. This theory
relies on the cascade hypothesis, which supposes that an L2-norm averaged quan-
tity (energy in three dimensions or enstrophy in two dimensions) is injected at low
wavenumbers and dissipated at high wavenumbers. This hypothetical spectral sepa-
ration, between production at low wavenumbers and dissipation at high wavenum-
bers, allows the existence of an intermediate range of wavenumbers, called the
inertial range, where the turbulent flow dynamics is supposed to be conservative
and exhibits a power-law energy spectrum. This uni-directional cascade, from low
wavenumbers to high wavenumbers, is observed in laboratory experiments using
L2-norm averages. However, if one considers the time evolution of one realization
only, as is the case for numerical experiments, this direct cascade mechanism is no
longer adequate. At each instant there is also backscatter [6, 34], which corresponds
to transfers (of enstrophy in two dimensions or energy in three dimensions) in the
opposite direction, i.e., from high to low wavenumbers. This backscatter comes
from the nonlinear term of the Navier–Stokes equations, which instantaneously
redistributes any quantity amongst all Fourier modes, because the nonlinear term in
physical space becomes a convolution in spectral space which involves all Fourier
modes. The cascade mechanism makes sense for ensemble averages, but it cannot
be used to model the effect of the discarded modes on the retained modes, since
those are instantaneous and correspond to one realization only.

In turbulence models (e.g., RANS, URANS or LES) one supposes that most
of the modes can be discarded, provided that some term(s) or new equations(s)
are added to model the effect of the discarded modes on the retained modes (Fig-
ure 1). In order to reduce the computational cost as much as possible, the number
of retained modes should be much smaller than the number of discarded modes.
Furthermore, the turbulence model will be efficient if the number of retained modes
increases more slowly with the Reynolds number Re than does the total number of
modes N . We have conjectured [28] that this is the case for two-dimensional turbu-
lent flows filtered with wavelets, because the number of retained modes is roughly
proportional to the number of vortices, which increases more slowly with Re than
the total number of modes N . The retained modes are computed deterministically,
while the effect of the discarded modes is statistically modelled. To justify this



398 MARIE FARGE AND KAI SCHNEIDER

procedure, it is assumed that the modelled modes are slaved to the resolved modes,
and therefore are dynamically passive, in the sense that their nonlinear behaviour
is very weak and should not significantly affect the resolved modes. Therefore one
must insure that the discarded modes to be modelled have reached a statistical equi-
librium state, characterized by a steady Gaussian Probability Distribution Function
(PDF), and an equipartition of their energy (i.e., all degrees of freedom have the
energy) which corresponds to decorrelation, similarly to a Gaussian white noise. In
this case it is no longer necessary to compute the evolution of the discarded modes
in detail, and the model describing the effect of the discarded modes on the retained
modes can be specified once the mean and variance of the discarded modes have
been parametrized in terms of the properties of the retained modes.

2.2. REYNOLDS AVERAGED NAVIER–STOKES (RANS)

The classical method for computing fully-developed turbulent flows is based on
Reynolds averaging [37], which splits each flow field, e.g., velocity, into mean and
fluctuations:

V = V + V′, (1)

where V is the mean and V′ are the fluctuations.
To compute the mean, we consider

• either ensemble averages

V =
∫

V(x, t)p(V) dV; (2)

where p(V) is the PDF of V;
• or time averages:

V = lim
T→∞

1

T

T∫
0

V(x, t) dt; (3)

• or space averages:

V = 1

V0(�)

∫
�

V(x, t) dx, (4)

where V0(�) denotes the volume of the computational domain �.

The goal is to calculate the mean velocity using a deterministic equation, and
to design a statistical model, which simulates the effect of the fluctuations (which
have been averaged out) on the mean. statistical turbulence model is necessary,
because the huge number of degrees of freedom Reynolds number turbulent flows
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prohibits to perform DNS. We briefly summarize the classical turbulence models
and use a representation introduced by Ha Minh [27] to compare them (Figure 1).

If we compute only a steady mean solution, we have a RANS model (Fig-
ure 1a). If we compute the time evolution of the mean, we have a URANS model
(Figure 1b). These models are extensively used for industrial applications, e.g.,
Reynolds stress or k–ε models. But it should be noticed that these low-order turbu-
lence models lack universality, in the sense that the parameters of the model should
be adjusted to fit laboratory measurements (e.g., in wind tunnel). This procedure
must be repeated for each flow configuration, and sometimes different values of
the parameters are required for different regions of the same flow [25].

Moreover, due to the nonlinearity of the Navier–Stokes equations, the fluc-
tuations depend on the second-order moments, which depend on the third-order
moments, and so on ad infinitum. Therefore the hierarchy of equations is not closed.
Its closure requires that the statistics of the discarded moments be known com-
pletely. This is possible if their statistical distribution is Gaussian, since in this
case all higher-order even moments can be expressed in terms of the second order
moments and all odd moments are zero. Therefore the fundamental issue in turbu-
lence modelling is to find an averaging technique that produces a fluctuating part
with Gaussian statistics. Unfortunately, the classical averaging techniques do not
guarantee this. In this paper we propose a nonlinear filtering method, based on the
wavelet representation, which is designed to separate Gaussian from non-Gaussian
fluctuations.

2.3. SEMI-DETERMINISTIC SIMULATION (SDS)

The Semi-Deterministic Simulation (SDS) has been introduced by Ha Minh [26]
following an idea proposed by Reynolds and Hussain [38], where each field is split
into three contributions (Figure 1c):

V = V + 〈V〉C + V′, (5)

with

• V being the time average;
• 〈V〉C being a conditional average associated to the coherent structures; and
• V′ corresponds to the remaining incoherent fluctuations.

SDS is appropriate for simulating turbulent flows when there exist dominant
periodic modes, as it is the case for transitional flows close to the critical Reynolds
number or periodically forced flows. Ha Minh [27] was considering phenomena
having a characteristic temporal frequency, for instance to a periodic forcing, and
he used the phase averaging procedure proposed by Reynolds and Hussain [38].

In this paper we propose a new semi-deterministic turbulence model with a
conditional averaging method different from the one used by Ha Minh, although
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the general principles of splitting between coherent and incoherent contributions is
similar. The main difference is that our statistical approach is Bayesian [4] and the
coherent vortices are extracted in each flow realization, using a procedure based on
an a priori definition of coherent vortices in wavelet coefficient space. The classical
approach is frequentist [4] and requires a sufficiently large statistical sample since
the averaging is done a posteriori.

2.4. LARGE EDDY SIMULATION (LES)

Another approach to computing fully-developed turbulent flows is Large Eddy
Simulation (LES) [19, 31], where the separation is done by means of linear filtering
between large scale modes, assumed to be dynamically important, and small scale
modes, assumed to be dynamically less important (Figure 1d). One should notice
that the equivalence between large scale modes and low wavenumber modes is well
defined for an ensemble of flow realizations, but is no more obvious for one flow
realization. Since in numerical experiments we compute one flow realization at a
time, we should be cautious when associating a large scale with a low wavenumber,
which is valid for waves but not for individual vortices. Indeed, the vortices being
localized in contrast to waves, one needs several wavenumbers to preserve their
locality.

In LES the flow evolution is calculated deterministically up to a given cutoff
scale λ, whereas the influence of the subgrid scales
(< λ) on the resolved scales (> λ) is modelled, e.g., using Smagorinsky’s parame-
trization. Each field (we consider velocity as example) is decomposed into

V(x, t) = VL(x, t) + VH(x, t), (6)

where the low–pass filtered velocity is

VL(x, t) =
∫

V(x′, t)G>λ(x, x′) dx′, (7)

with G>λ a low–pass filter (e.g., Gaussian or box-filter) having a cutoff scale λ,
and the high-pass filtered velocity is:

VH(x, t) = V(x, t)− VL(x, t). (8)

This separation of the velocity into large and small scale contributions is not nec-
essarily L2-orthogonal, i.e., (VL)H �= 0 when filtering twice, and a nonzero inter-
action term 〈VL,VH 〉 exists, as for example for the Gaussian filter. In this case the
LES filter is no more idempotent, i.e., (VL)L �= VL (as for example the Gaussian
filter).

A drawback of LES filters is that they smooth strong gradients produced by
nonlinear interactions and instabilities which may develop at subgrid scales are
ignored. Indeed, LES models have problems dealing with backscatter, i.e., trans-
fers from subgrid scales towards resolved scales owing nonlinear instabilities. The
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dynamical LES model proposed by Germano et al. [22] takes backscatter into
account, but only in a locally averaged way. In the next paragraph we propose a
new method, called Coherent Vortex Simulation (CVS), adaptive in both space
and scale, which overcomes this backscatter problem by insuring that aliasing
errors remain negligible and that the discarded modes are decorrelated and in
quasi-Gaussian statistical equilibrium.

3. Coherent Vortex Simulation (CVS)

3.1. COHERENT VORTEX EXTRACTION

Inspired by the work of Grossmann and Morlet [24], we have proposed the use
of wavelets to study turbulent flows [9, 11]. Wavelets are functions which are well
localized in both physical and spectral space. In addition, their smoothness (defined
by the number of times they can be differentiated without ultraviolet divergence)
and their number of vanishing moments (defined by the number of times they can
be integrated without infrared divergence) can be controlled. Lemarié and Meyer
[32] has shown that one can construct orthogonal bases made from their translates
and dilates. In this paper we will demonstrate that wavelet bases can efficiently
represent data which are neither completely particle-like nor wave-like such as the
coherent vortices observed in turbulent flows. Furthermore, fast wavelet algorithms
in O(N) exist and wavelet bases are available for Neumann or Dirichlet boundary
conditions [5]. The advantage of the wavelet representation in comparison to the
Fourier representation is that the phase information is built-in each wavelet coeffi-
cients, while it is carried by the combination of all Fourier coefficients otherwise.
Therefore the spatial localization is preserved when one truncates wavelet series,
which is not the case for Fourier series. For an introduction to wavelets we refer
the reader to [3], and for a more advanced presentation to [33]. For an overview
of the application of wavelets to the study of turbulence, we refer the reader to
[11, 14, 15, 40].

We have designed a nonlinear wavelet filter, called CVS filter, able to extract
coherent vortices and high strain regions from turbulent flows, using either the
continuous wavelet transform [13] or the orthogonal wavelet transform [12]. We
have shown [9, 10] that coherent vortices are multiscale and that a Fourier low-
pass filter, as used in LES, eliminates the small scales of the coherent vortices. In
contrast, the CVS filter is able to extract these vortices, without any smoothing, and
leaves a quasi-homogeneous background flow free of organized structures, whose
effect is therefore easier to model.

The procedures we have proposed for extracting coherent vortices are based
on the wavelet decomposition of the vorticity, using either the continuous wavelet
transform [13] or the orthogonal wavelet transform [12, 16]. We have chosen to
work with the vorticity field, rather than the velocity field. We consider that vortic-
ity is the most appropriate quantity to track the nonlinear dynamics of incompress-
ible turbulent flows, whatever the space dimension, because it is independent of the
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chosen inertial reference frame (Galilean invariance) and has strong topological
properties expressed in Helmholtz’ and Kelvin’s theorems. The CVS extraction
scheme is based on the assumption that coherent vortices are responsible for the
non-Gaussianity of the PDF of vorticity in 2D and of velocity in 3D. We define
the coherent vortices to be the non-Gaussian part, which corresponds to the modes
remaining after discarding those with a Gaussian PDF. This is the only a priori
assumption we make, apart from the choice of the wavelet basis. Note that we do
not assume any shape, scale or intensity of the vortices.

To extract coherent vortices in two-dimensional turbulent flows we take the
vorticity field ω(x, y) = ∇ × V and develop it as an orthogonal wavelet se-
ries, from the largest scale lmax = 20 to the smallest scale lmin = 2J−1, using a
two-dimensional multi-resolution analysis (MRA) of L2(R2), i.e., a set of nested
subspaces Vj ⊂ Vj+1 for j = 0, . . . , J − 1, and their orthogonal complement
subspaces Wj = Vj+1 −Vj which correspond to the wavelet representation [5, 11]:

ω(x, y) = ω̄0,0,0 φ0,0,0(x, y) +
J−1∑
j=0

2j−1∑
ix=0

2j−1∑
iy=0

3∑
µ=1

ω̃
µ

j,ix ,iy
ψ
µ

j,ix ,iy
(x, y), (9)

with

φj,ix ,iy (x, y) = φj,ix (x) φj,iy (y),

and

ψ
µ

j,ix ,iy
(x, y) =



ψj,ix (x) φj,iy (y); µ = 1,
φj,ix (x) ψj,iy (y); µ = 2,
ψj,ix (x) ψj,iy (y); µ = 3,

(10)

where φj,i and ψj,i are the one-dimensional scaling functions and the correspond-
ing wavelets, respectively, and µ indexes the three spatial directions (horizon-
tal, vertical and diagonal). Due to the orthogonality, the scaling coefficients are
given by ω̄0,0,0 = 〈ω, φ0,0,0〉 and the wavelet coefficients are given by ω̃

µ

j,ix ,iy
=

〈ω,ψµ
j,ix ,iy

〉, where 〈·, ·〉 denotes the L2-inner product. The scaling coefficients ω̄0

correspond to an approximation of ω(x, y) at the largest scale j = 0. The wavelet
coefficients ω̃j correspond to the details to be added to approximate ω(x, y) from
scale j to smaller scale j + 1.

We then split the vorticity field into two orthogonal components:

ω = ωC + ωI . (11)

The coherent vorticity ωC is reconstructed by inverse wavelet transform from the
wavelet coefficients ω̃µ

j,ix ,iy
whose modulus is larger than the threshold εT = ε0Z

1/2

with ε0 = (2 loge N)
1/2, where Z = 1/2〈ω,ω〉 is the total enstrophy and N

the number of degrees of freedom or grid points. The incoherent vorticity ωI is
reconstructed from the remaining weak wavelet coefficients. The choice of the
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threshold εT is based on theorems derived by Donoho and Johnstone [7, 8] for
denoising in presence of Gaussian white noise. The advantage of the CVS filter is
that there is no parameter to adjust since the threshold εT is objective, depending
only on the total enstrophy and resolution. The orthogonality between ωC and ωI

ensures a separation of the total enstrophy into Z = ZC + ZI .
We finally reconstruct both the coherent and the incoherent velocity fields using

Biot–Savart kernel:

VC = ∇⊥∇−2ωC (12)

and

VI = ∇⊥∇−2ωI, (13)

where ∇⊥ = (−∂y, ∂x) and ∇−2 denotes the Green’s function of the Laplacian. It
follows that:

V = VC + VI . (14)

This decomposition of the velocity field is only approximately orthogonal, i.e.,
E = EC + EI + ε with E = 1/2〈V,V〉 with ε/E � 1. This is due to the fact that
the Biot–Savart kernel projected on a wavelet basis is almost diagonal. Note that,
for the Fourier projection, it is diagonal and hence ε = 0 in this case.

As example, we apply the CVS filter to DNS data of a two-dimensional ho-
mogeneous and isotropic turbulenct flow, which was computed using a pseudo-
spectral scheme with resolution N = 5122 and without hyperdissipation. One real-
ization of the vorticity field is shown in Figure 2a (left) and most of the enstrophy
is concentrated in the coherent vortices one observe. We observe that:

• The coherent vortices are extracted by retaining only 2% of the N wavelet
modes, which contain 99.99% of the total energy and 99.01% of the total en-
strophy (Figure 2a, middle). They have the same velocity and vorticity PDFs
(Figure 2c), the same energy spectrum in the inertial range (Figure 2d, left)
and the same cross PDF between vorticity and streamfunction characteristic
of coherence (Figure 2b) as the total flow.

• The remaining incoherent background flow is made of vorticity filaments
densely distributed in space (Figure 2d, right), deprived of coherence (Fig-
ure 2b, right), which have Gaussian PDFs for both velocity (Figure 2c, left)
and vorticity (Figure 2c, right), and present a k+1 scaling of the energy spec-
trum characteristic of enstrophy equipartition in two dimensions (Figure 2d,
left). This gives evidence that the incoherent background flow has reached a
statistical equilibrium which corresponds to turbulent dissipation.
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Figure 2. CVS filtering of a two-dimensional turbulent flow computed at N = 5122: (a) total
vorticity (left), coherent vorticity (middle) which corresponds to 2% N modes and contains
99% of both energy and enstrophy, incoherent vorticity (right) which corresponds to 98% N

modes and contains less than 1% of both energy and enstrophy, (b) corresponding coherence
scatter plots, (c) PDF of velocity (left), PDF of vorticity (right), (d) energy spectrum (left),
cuts of vorticity (right). Solid lines for the total, dashed lines for the coherent and dotted lines
for the incoherent contributions.
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3.2. ADAPTIVE WAVELET COMPUTATION

The extraction of coherent vortices led us to propose a new way to split the turbu-
lent flow dynamics into two parts:

• active coherent vortex modes, computed in a wavelet basis that is dynamically
adapted at each time step (see Section 3.2),

• passive incoherent modes, which are discarded and whose effect on the coher-
ent modes is modelled (see Section 3.4).

This approach, called Coherent Vortex Simulation (CVS) [16], differs signif-
icantly from LES. LES is based on low-pass filtering and assumes that the small
scale dynamics can be represented in terms of the large scale dynamics (Figure 1c).
But LES does not guarantee that the retained modes (larger than the cutoff scale λ)
have a PDF similar to that of the total field and that the discarded modes (smaller
than the cutoff scale λ) have a Gaussian PDF. CVS uses nonlinear filtering (defined
in wavelet space) between Gaussian and non-Gaussian modes having different
scaling laws, but without assuming a priori any spectral gap nor scale separation
(Figure 1d). The goal of the CVS method compared to LES is to reduce the number
of computed active modes for a given Reynolds number [12] and to guarantee the
quasi-Gaussianity and the decorrelation of the incoherent degrees of freedom to be
modelled [16].

For the numerical simulation of two-dimensional turbulence we consider the
Navier–Stokes equations written in velocity-vorticity formulation:

∂tω + ∇ · (ωV)− ν∇2ω = ∇ × F, (15)

∇ · V = 0, (16)

with V the velocity field, ω = ∇ × V the vorticity, F an external force, and ν the
kinematic viscosity. We assume periodic boundary conditions in both directions.

For the time discretization we use finite differences with a semi-implicit scheme,
i.e., backwards-differencing for the viscous term and Adams–Bashforth extrapola-
tion for the nonlinear term, both of second order. We obtain:

(γ I − ν∇2)ωn+1 = 4

3
γωn − 1

3
γωn−1 − ∇ · (ω�V�)+ ∇ × F, (17)

where

ω� = 2ωn − ωn−1 (18)

and

V� = 2 Vn − Vn−1, (19)

with time step -t , γ = 3/(2-t) and I representing the identity.
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For spatial discretization we use a Petrov–Galerkin scheme. Therefore the vor-
ticity is developed into a set of trial functions and the minimization of the weighted
residual of (17) requires that the projection on a space of test functions vanishes.
As space of trial functions we employ a two-dimensional multiresolution analysis
(MRA) and develop ωn at time step n into an orthonormal wavelet series 15). The
test functions θµj,ix ,iy are defined as solutions of the linear part of equation (17):

(γ I − ν∇2)θ
µ

j,ix ,iy
= ψ

µ

j,ix ,iy
. (20)

This avoids assembling the stiffness matrix and solving a linear equation at each
time step. The functions θ , called vaguelettes, are explicitly calculated in Fourier
space and have similar localization properties as wavelets do. Furthermore, using
a proper rescaling, they constitute a Riesz basis [21]. The solution of (17) then
reduces to a simple change of basis:

ω̃
µ,n+1
j,ix ,iy

= 〈ωn+1, ψ
µ

j,ix ,iy
〉

=
〈(

2

3
γωn − 1

3
γωn−1 − ∇ · (ω�V�)+ ∇ × F

)
, θ

µ
j,ix ,iy

〉
. (21)

An adaptive discretization is obtained by applying at each time step a nonlinear
wavelet thresholding technique, retaining only wavelet coefficients ω̃

µ,n

j,ix ,iy
with

absolute value above a given threshold ε = ε0Z
1/2, where ε0 is a constant. For the

next time step the index coefficient set (which addresses each coefficient in wavelet
space) is determined by adding neighbours to the retained wavelet coefficients,
consequently only those coefficients ω̃ in (21), belonging to this extrapolated index
set, are computed using the adaptive vaguelette decomposition [21]. The nonlinear
term ∇ · (ω�V�) is evaluated by partial collocation on a locally refined grid. The
vorticity ω� is reconstructed in physical space on an adaptive grid (Figure 3a,
right) from its wavelet coefficients ω̃� (Figure 3b, left) using the adaptive wavelet
reconstruction algorithm [21]. From the adaptive vaguelette decomposition with
θ = (∇2)−1 ψ , we solve ∇2/� = ω� to get /̃� and reconstruct /� on a locally
refined grid (Figure 3b, right). Using these special test functions θ avoids solving an
elliptic problem as θ is calculated explicitly in Fourier space. By means of centered
finite differences of fourth order we finally compute ∇ω� and V� = (−∂y/�, ∂x/

�)

on the adaptive grid and we evaluate the nonlinear term pointwise. Subsequently
(21) can be solved using the adaptive vaguelette decomposition.

Although the numerical method is Eulerian, based on a Galerkin scheme, its
adaptive character, in both space and scale, allows us to track the displacements
and deformations of flow regions dominated by strong gradients, as Lagrangian
methods do. Let us also mention that the total complexity of the algorithm is of
order O(Nad), where Nad denotes the number of wavelet coefficients retained in
the adapted basis. As the present implementation has not yet been optimized, the
computing time at the resolution used here (N = 2562) is not as effective as a
classical spectral method.
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Figure 3. Decaying two-dimensional homogeneous and isotropic turbulence: (a) vorticity
field (left) with the adaptive grid (right), (b) active wavelet coefficients (left) with the cor-
responding adaptive grid (right). The wavelet coefficients are represented using Mallat’s
convention [5, 33]: the smallest scales correspond to the largest squares (top-right for the
vertical, bottom-left for the horizontal and bottom-right for the diagonal directions), while the
largest scales correspond to the smallest squares (top-left).

To check the dynamical behaviour of the wavelet filtering we plot in Figure 4,
besides the vorticity field ω, the linear dissipation ν∇2ω and the nonlinear ad-
vection term ∇ · (ωV) of two-dimensional Navier–Stokes equations (15), together
with the corresponding wavelet coefficients. We observe that the three wavelet
coefficient fields exhibit a similar sparsity, i.e., the number of negligible wavelet
coefficients increases when the scale decreases, which is a measure of intermit-
tency [11, 41]. Moreover, we observe that the active structures in the small scales,
which correspond to the strongest wavelet coefficients (Figure 4, right) have the
same spatial support for the vorticity, for the linear dissipation and for the non-
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Figure 4. Wavelet analysis of two-dimensional homogeneous and isotropic turbulence:
(a) vorticity, (b) linear dissipation term and (c) nonlinear advection term, with the correspond-
ing wavelet coefficients on the right.
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linear advection. This observation justifies to use a wavelet filter to compute their
dynamics.

3.3. WAVELET FORCING

Forcing schemes are used to balance dissipation and reach statistically steady states.
The usual method is performed in Fourier space by exciting Fourier modes in the
two following ways:

• either a negative dissipation within a given wavenumber band, with a complex
amplification coefficient which depends on the wavenumber; or

• a white or coloured noise in time with a prescribed isotropic spectral distribu-
tion and random phases, strongly peaked in the vicinity of a given wavenum-
ber.

For both schemes the choice of the wavenumber band represents that part of
the energy spectrum where the stiring has a significant effect. Neither of the two
schemes is satisfactory because they both inject energy and enstrophy locally in
Fourier space and therefore nonlocally in physical space. Another drawback is that
the scale of the coherent vortices produced by the nonlinear dynamics is imposed
by the scale at which the forcing is done. Our aim is to design a forcing scheme able
to excite vortices locally in physical space and as smoothly as possible in order to
avoid creating any unphysical discontinuities in the vorticity field. This is possible
if the forcing is performed in wavelet space [42], rather than in Fourier space, as it
is classically done.

To numerically simulate nondecaying two-dimensional turbulence we consider
the Navier–Stokes equations (15) with an artificial dissipative term α/, called
Rayleigh friction, to provide an energy sink at large scales, with the parameter
α being the strength of the friction.

The forcing term ∇ ×F is applied at time step n+1 and is defined as a function
of ω at time step n:

∇ × Fn+1(x) = β
∑

J0<j<J1

2j−1∑
kx=0

2j−1∑
ky=0

∑
µ=1,2,3

〈ωn,ψ
µ

j,kx ,ky
〉ψµ

j,kx ,ky
(x), (22)

with 0 ≤ J0 ≤ J1 ≤ J , where J denotes the finest scale in the simulation, β > 0
and |〈ωn,ψ

µ

j,kx ,ky
〉| > ε. The scale parameters J0 and J1 define the scale range of

the forcing. The restriction to wavelet coefficients above a given threshold ε implies
that only the dynamically active part of the flow, corresponding to the coherent
vortices, is forced. The constants β and α, responsible for the strength of the forcing
and the Rayleigh friction respectively, are adjusted in such a way that we obtain a
statistically stationary state.
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3.4. TURBULENCE MODEL

The CVS method is based on a deterministic computation of the evolution of the
coherent flow components, while modelling the effect of the incoherent compo-
nents on the coherent ones. In contrast to LES, CVS uses a nonlinear filter that
depends on each flow realization, since it uses the wavelet thresholding procedure
presented in Section 3.1. This CVS filter corresponds to an orthogonal projection,
implying (ωC)I = 0, and is hence idempotent, i.e., (ωC)C = ωC , which is not
the case for most LES filters (e.g., the Gaussian filter). It eliminates at each time
step the incoherent components which are produced by the nonlinear interactions
between the coherent components. This filtering thus models the turbulent dis-
sipation, which corresponds to direct transfers (of enstrophy in 2D or energy in
3D) from the coherent to the incoherent components. Besides this, one should
also model inverse transfers, from the incoherent to the coherent components,
produced by the advection and straining of the random incoherent background by
the coherent vortices which tend to reorganize it.

We apply the CVS filter to the two-dimensional Navier–Stokes equations, writ-
ten in the vorticity-velocity formulation (15), and obtain the evolution equation for
the coherent vorticity ωC and coherent velocity VC:

∂tωC + ∇ · (ω V)C − ν∇2ωC = ∇ × FC,

∇ · VC = 0. (23)

For the nonlinear term ∇ · (ω V)C we use Leonard’s triple decomposition, since it
is computed with the same adapted grid as the linear term ν∇2ωC +∇ ×FC . Using
(11) and (14) we decompose the nonlinear term of (23) into:

(ω V)C = ωC VC + L+ C + R, (24)

with the Leonard stress L, the cross stress C and the Reynolds stress R defined as:

L = (ωC VC)C − ωC VC,

C = (ωI VC)C + (ωC VI )C,

R = (ωI VI )C.

The sum of these unknown stresses corresponds to the incoherent stress to be
modelled:

τI = (ω V)C − ωC VC = L+ C + R, (25)

which describes the effect of the discarded incoherent components on the retained
coherent components. Note that the localization property of the wavelet representa-
tion controls aliasing errors and therefore the Leonard stress L remains negligible
since (ωC VC)C � ωC VC [40].
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The filtered Navier–Stokes equations (23) can be rewritten as:

∂tωC + ∇ · (ωC VC)− ν∇2ωC = ∇ × FC − ∇ · τI ,
∇ · VC = 0. (26)

We integrate equations (26) with the adaptive wavelet method described in
Section 3.2, in retaining only the strong wavelet coefficients corresponding to the
coherent components. The wavelet basis is remapped at each time step in order to
follow, in both space and scale, the motion of the coherent vortices and to resolve
the regions of strong gradients produced by their nonlinear interactions [39].

In contrast to LES, the incoherent stress τ does not correspond to turbulent
dissipation, since CVS models it by eliminating the incoherent components at each
time step. The incoherent stress τ here corresponds to a weak forcing, which mod-
els the reorganization of the random incoherent background due to its advection
by the coherent vortices. We propose two different ways to model the incoherent
stress τ :

• Solving an linear advection-diffusion equation for the incoherent vorticity
ωI by neglecting the influence of incoherent velocity terms to compute the
interaction terms [40]. This approach is in the spirit of nonlinear Galerkin
methods using a time scale splitting between the coherent and incoherent
flow components. This is possible since the time evolution of the incoherent
background, characterized by the time scale tI = (ZI )

−1/2, is much slower
than the characteristic time scale tC = (ZC)

−1/2 of the coherent vortex mo-
tions, because ZC � ZI . This behaviour of the incoherent background flow
had already been noticed, and discussed in comparison to Fourier filtering in
[12, 40].

• Modelling the incoherent stress τI as a forcing term in wavelet space (see
Section 3.3), proportional to the enstrophy discarded at the previous time step.
This forcing term reinjects in an inhomogeneous way a small percentage of the
incoherent enstrophy lost by the CVS filtering to model turbulent dissipation.
This weak forcing models the reorganization of the incoherent background
advected by the coherent vortices and thus contributes to the coherent energy.

The CVS method relies on the assumption that the incoherent part of the flow
remains quasi-Gaussian. This is true for short times because the strain exerted by
the coherent vortices on the incoherent background flow slows down the nonlin-
ear interactions between incoherent modes [28]. This property has not yet been
checked for three-dimensional turbulent flows, but we conjecture it is still valid in
this case.
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3.5. COMPLEX GEOMETRIES

Computing fully-developed turbulent flows in complex geometries is an important
goal for CFD, since most industrial applications involve walls, obstacles or contain-
ers of different shapes. The problem of treating such flows with no-slip boundary
conditions is still open, since Prandtl’s classical wall law does not hold as soon as
the boundary layer detaches, which is the case when the Reynolds number becomes
large. Anyway, even when the boundary layer remains attached, its thickness is
inversely proportional to the Reynolds number, which thus requires a prohibitive
grid refinement near the wall.

To overcome these difficulties and to compute flows near walls or obstacles, we
have proposed to combine the CVS method with a recently developed penalization
method which offers an elegant way to take account of complex geometries. The
penalization method was introduced in 1984 by Arquis and Caltagirone [2], who
modelled solid walls or obstacles as a porous medium with porosity η tending
to zero. It has been implemented using finite differences [2], finite volumes [1]
and spectral methods [20, 29, 45]. This volume penalization is different from the
surface penalization introduced by Peskin [36] and from the immersed boundary
methods, using Lagrange multipliers, proposed by Glowinski [23]. The complex
geometry is described by a mask function χ(x) set to 1 inside the solid regions and
to 0 elsewhere, which can also take into account obstacles whose shape varies in
time, such as flaps or actuators, by varying the mask when time evolves.

We thus solve the Navier–Stokes equations with an additional penalization term

∂tVη + (Vη · ∇)Vη + ∇Pη − ν∇2Vη + 1

η
χ(x)Vη = F. (27)

For η → 0 the flow evolution is governed by Navier–Stokes equations in regions
where the fluid is, and by d’Arcy law (velocity proportional to pressure gradient)
in regions where the obstacles or solid walls are.

The penalization term thus forces the velocity to be very small inside solid
regions, which leads to the formation of boundary layers where the flow encounters
the solid walls. Recently Angot et al. [1] have demonstrated that, when η → 0, the
solutions of the penalized Navier–Stokes equations tend to the solutions of the
Navier–Stokes equations with no-slip conditions on obstacles or solid walls.

Modelling turbulent flows in the vicinity of walls is crucial for predicting and
controlling their evolution, e.g., to compute the drag and lift induced by obstacles
or to compute heat exchanges in unsteady regime.

The resulting forces R on the obstacle can be computed by integrating the
penalized velocity over the obstacle’s volume [1]:

R = lim
η→0

∫
�s

∇Pη dx = − lim
η→0

1

η

∫
�s

Vη dx =
∫
∂�s

S(V, P ) · n dγ, (28)
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where �s denotes the volume of the obstacle, ∂� its boundary, n its outer normal
and

S(V, P ) = 1

2ν
(∇V + (∇V)T )− PI

the stress tensor. Therefore the drag and the lift induced by the obstacle are easy to
compute as volume integrals instead of contour integrals.

For the application of the penalization method to two-dimensional turbulent
flows we prefer to use the vorticity-velocity formulation [29], rather than the vel-
ocity-pressure formulation. Taking the curl of (27), we obtain

∂tωη + Vη · ∇ωη − ν ∇2 ωη + ∇ ×
(

1

η
χ�s

Vη

)
= ∇ × F. (29)

Using the vector identity ∇ × (ζ ∇⊥φ) = ∇ · (ζ∇φ) we get

∂tωη + Vη · ∇ωη − ν ∇2 ωη + 1

η
∇ · (χ�s

∇/) = ∇ × F, (30)

where ∇2/ = ω and ∇⊥/ = (−∂y/, ∂x/) = V).

4. Applications of CVS

4.1. 2D TEMPORALLY DEVELOPING MIXING LAYER

We consider a temporally developing mixing layer, which is a flow configuration
which has been well studied, and is therefore a good test case for the CVS method.
The initial velocity V = u, v corresponds to a hyperbolic-tangent profile u(y) =
U tanh(2y/δ0) which implies a vorticity thickness δ0 = 2U/(du/dy)|y=0. From
linear stability analysis the mixing layer is known to be inviscidly unstable and any
perturbation leads to the formation of vortices by Kelvin–Helmholtz instability,
with the most amplified mode corresponding to a longitudinal wavelength L = 7δ0.
To trigger the instability we have superimposed a weak white noise in the rotational
region.

We compare three different simulations, i.e., a DNS as reference run and two
CVS integrations, with and without turbulence model, which have been computed
during 60 s, i.e., 30 eddy-turnover times based on the initial enstrophy. As tur-
bulence model we use a forcing term in wavelet space previously described in
Section 3.3. In all simulations the maximal resolution is N = 2562, which corre-
sponds to J = 8 octaves. For the wavelet projection we have chosen cubic spline
wavelets of Battle–Lemarié [5, 33] and the threshold εT = ε0Z

1/2 for the wavelet
coefficients has been set to the value ε0 = 10−5. The viscosity is ν = 5·10−5 m2s−1,
which allows a time step -t = 10−3 s. The initial vorticity thickness δ0 is chosen
such that ten vortices should develop in the periodic domain of size [0, 2π ]2.

In Figure 6c we compare the energy spectra at t = 60 s for the reference
run, computed using a classical pseudo-spectral method, and for two CVS runs,
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Figure 5. Simulation of a two-dimensional mixing layer: isolines of vorticity at t = 30 s (left),
50 s (middle) and 60 s (right) for (a) DNS, (b) CVS without turbulence model, (c) CVS with
turbulence model, (d) corresponding adaptive grid.
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Figure 6. Comparison between DNS and CVS with and without turbulence model for the
two-dimensional mixing layer: (a) time evolution of energy, (b) time evolution of enstrophy,
(c) energy spectra at t = 60 s, (d) time evolution of the number of degrees of freedom for the
two CVS computations.

computed with and without turbulence model. They show that all scales of the flow
are well-resolved for both CVS runs but that the energy is underestimated in the
absence of turbulence model. The underlying grid, which corresponds to the cen-
ters of the retained wavelets for the CVS runs, shows local refinement in regions of
strong vorticity gradients, where dissipation is most active (Figure 5d). In Figure 5
we compare the evolutions of the vorticity field for the reference DNS (a), and
for the CVS with (c) and without (b) the turbulence model. In all simulations, as
predicted by the linear theory, ten vortices are formed at t = 12 s (not shown here),
which subsequently undergo mergings. We observe that in the CVS run without the
turbulence model the evolution of coherent vortices is slightly delayed with respect
to the reference run. This is due to the fact that the retained wavelet coefficients
contain less energy and enstrophy than the total flow, as observed in Figure 6 which
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compare the time evolutions of the total energy (a) and enstrophy (b) in the three
simulations. We observe that, if we do not model the effect of the discarded modes
on the retained ones, there is a strong loss of energy (Figure 6b). For the CVS
run with model the situation is somehow different. The flow evolution follows the
reference and captures all of the vortex mergings (Figure 5c). This is also reflected
in the time evolution of the energy and enstrophy. The wavelet forcing term injects
enstrophy into the retained wavelet coefficients and leads to a slight increased of the
enstrophy with respect to the reference run (Figure 6b). For the energy evolution
we find a good agreement between the DNS and the CVS with turbulence model
(Figure 6a).

For both CVS simulations (with and without turbulence model) we observe
that the basis dynamically adapts to the flow evolution, although only 4% of the
coefficients are used. In Figure 6d we plot the time evolution of the number of
degrees of freedom for the two CVS runs. We observe an initial phase, up to t =
12 s in which there is a strong reduction in the number of retained modes, which
corresponds to the formation of the coherent vortices and associated high strain
regions. Later in time, the number of retained modes remains almost constant and
represents a significant reduction in the number of modes, with Nad = 2000, out of
N = 65536 initial modes, which corresponds to 3% of retained modes.

4.2. 2D HOMOGENEOUS ISOTROPIC TURBULENT FLOW

As an illustration of the CVS forcing we consider a two-dimensional homogeneous
isotropic flow which is forced in wavelet space to obtain a statistically steady
state. The resolution is N = 2562 corresponding to J = 7, the viscosity ν =
2 · 10−3 m2 s−1 and -t = 10−3 s. The forcing scale range lies between J0 = 3 and
J1 = 6 with β = 2.5 · 10−1 s−2 and α = 1.0 m−2 s−1. The wavelet decomposition
is done using cubic spline wavelets of Battle–Lemarié type. The wavelet com-
pression is done by cancelling all wavelet coefficients smaller than the threshold
ε0 = 10−4 s−1.

Figure 7e shows that both energy and enstrophy are steady during more than 60
eddy turnover times. Figure 7a displays the vorticity field in the stationary regime
at t = 0, 8 and 16 s, during which neither the energy spectrum (Figure 7c) nor the
PDF of vorticity (Figure 7d) change significantly in time. The vortices present in
the initial condition become more circular and isolated during the flow evolution,
because they are better able to stand mutual strain due to the additional enstrophy
injected into them. We observe that the slopes of the spectra (see Figure 7c) are
much steeper (close to k−6) than the k−3 law predicted by the statistical theory
of homogeneous turbulence. This discrepancy confirms the fact that the spectral
behaviour of two-dimensional turbulent flows is not universal and depends on the
forcing.

We also observe that there is no inverse energy cascade, because the maximum
of energy remains localized around wavenumber kI = 4. This is different from
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Figure 7. Wavelet-forced two-dimensional homogeneous and isotropic turbulence: (a) vor-
ticity at t = 0 (left) and at t = 20 (right), (b) corresponding active wavelet coefficients,
(c) corresponding energy and enstrophy spectra, (d) PDF of vorticity, (e) evolution of energy
and enstrophy.
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what is predicted by the statistical theory of homogeneous turbulence [30]. In
Figure 7b we observe that the spatial support of the active wavelet coefficients
decreases with the scale, which reveals a strong intermittency of the flow. Con-
sequently the vorticity field is efficiently compressed in a wavelet basis, because
only about 20% of the N = 2562 coefficients are needed to represent the flow
dynamics. We also show that the PDF of vorticity (Figure 7d) is Gaussian for the
weak values, corresponding to the background flow, and presents non-Gaussian
tails for the strong values, corresponding to the vortices.

4.3. 2D FLOW PAST AN ARRAY OF CYLINDERS

As example for the application of penalization to study complex geometries, we
present several numerical simulations [45, 46] of a two-dimensional flow through
an array of cylinders at Re = 1000 (the Reynolds number being based on the
diameter of the cylinders) for different angles of incidence, 0, 30, 45◦. Note that for
this flow configuration, which is typical for heat exchangers, the two-dimensional
approximation is justified for Reynolds numbers up to several thousands. Figure
8a shows the corresponding instantaneous vorticity fields. We observe that the
behaviour of the flow varies significantly depending on the angle of incidence.
In particular, the time evolution of the drag (Figure 8b) and the lift coefficients
(Figure 8c) are very different.

The advantage of the CVS method is to refine dynamically the grid in regions
of strong gradients, even where the boundary layer detaches. The active wavelet
coefficients (Figure 8d) and the corresponding grid in physical space (Figure 8e)
illustrate the local refinment property in regions of strong gradients. This feature
allows a better prediction of the vorticity production in wall regions, together with
the boundary layer detachment, which are both essential for computing drag and
lift coefficients.

4.4. 3D HOMOGENEOUS ISOTROPIC TURBULENT FLOW

The importance and the role of coherent structures (i.e., vortex tubes) in three-
dimensional turbulence have been established largely by high resolution numerical
simulations, e.g., in [47]. We consider DNS data of a statistically steady three-
dimensional homogenous and isotropic turbulent flow. One realization of the vor-
ticity field is shown on Figure 9a and most of the enstrophy is concentrated in the
coherent vortex tubes. The flow was computed by Vincent and Meneguzzi [47]
using a pseudo-spectral scheme with resolution N = 2563 corresponding to a
Taylor microscale Reynolds number R = 150. A 643 subcube from one realization
of the vorticity field is shown in Figure 9a, where we observe that most of the
enstrophy is concentrated in coherent vortex tubes.

We project each component of the vorticity field ω on a three-dimensional or-
thogonal wavelet basis using Coifman 12 wavelets [5, 33], which are compactly
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Figure 8. Computation of the flow past an array of cylinders for three angles of incidence
α: (a) vorticity for α = 0◦ (left), 30◦ (middle), 45◦ (right), (b) drag, (c) lift, (d) wavelet
coefficients of vorticity for α = 30◦, (e) adaptive grid for α = 30◦.
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Figure 9. Homogeneous and isotropic three-dimensional turbulence: isosurfaces of vorticity
modulus for (a) the total flow with |ω| = 2σ and σ = (2Z)1/2, (b) the coherent flow with
|ω| = 2σ (left) and incoherent flow with |ω| = σ (right).

supported, quasi-symmetric and have good spectral localization. We then recon-
struct the coherent vorticity field (ωC) from those wavelet coefficients for which
the modulus of the wavelet coefficients is larger than εT = ε0Z

1/2 with ε0 =
(4/3 loge N)

1/2, while the incoherent background flow (ωI ) is reconstructed from
the remaining weak coefficients.

We find that only 3% of the coefficients extract the coherent vortex tubes (Fig-
ure 9b) which retain 99% of the energy and 75% of the enstrophy. The remaining
97% of the coefficients represent the incoherent background flow (Figure 9c) which
is depleted from organized structures and contains only 1% of the energy and 25%
of the enstrophy. We observe that both coherent and incoherent vorticity fields
are weakly divergent, although the divergent part of the enstrophy is less than 3%
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Figure 10. Superposition of the total, coherent and incoherent contributions to: (a) the PDF
of velocity (left) and PDF of vorticity (right), (b) the PDF of relative helicity (left) and energy
spectrum (right).

of the total enstrophy and affects only the dissipative scales. The same problem is
encountered with vortex methods applied to three-dimensional turbulent flows [48].
However, the coherent and incoherent velocities remain divergence-free since they
are reconstructed using the Biot–Savart’s kernel.

The energy spectrum (cf. Figure 10b, right) shows that both coherent and in-
coherent components are multiscale, as previously observed for 2D turbulence
[12]:

• the coherent flow exhibits the same power-law spectrum in k−5/3 as the total
flow;

• the incoherent flow has a k+2 power-law spectrum which corresponds to an
equipartition of the incoherent energy in three dimensions.
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The PDFs of velocity (Figure 10a, left) and of vorticity (Figure 10a, right) for the
coherent part are the same as the original PDFs, which confirms that the statistical
information is preserved by the CVS filter. In contrast, the PDF of the incoherent
energy is Gaussian with a variance ten times smaller that for the total flow while
the PDF of the incoherent vorticity is exponential with a variance also strongly
reduced.

The CVS filter is based on a denoising method applied to the vorticity field with-
out any a priori assumption as to the shape, topological or dynamical properties of
the coherent structures to be filtered. We now use the relative helicity

h = V · ω
|V| |ω|

to check a posteriori that we have separated the total flow into coherent vortex
tubes which tend to maximize the relative helicity due to vortex stretching and
incoherent background flow which tends to maximize dissipation on vortex sheets
where helicity is zero (Figure 10b, left). These observations are consistent with
Moffatt’s conjecture stating that: ‘Blobs of maximal helicity may be interpreted as
coherent structures, separated by regular surfaces on which vortex sheets, the site
of strong dissipation, may be located’ [35].

We have shown that the coherent flow contains the vortex tubes and has the same
k−5/3 power-law behavior as the total flow. This lead us to propose a new scenario
to explain the turbulent cascade. The transfer of energy between the various scales
does not result from vortex fragmentation, as in the classical Richardson’s scenario.
It is rather due to nonlinear vortex interactions, e.g., stretching and straining, which
transfer coherent energy throughout the whole inertial range, while at the same
time producing incoherent energy which is dissipated at the smallest scales. We
have obtained similar results for other homogeneous isotropic three-dimensional
turbulent flows [17, 18] and for three-dimensional turbulent mixing layers [44],
which are consistent with our interpretation of the turbulent cascade.

5. Conclusion

For more than ten years we have been developing a research program based on
the wavelet representation to analyse, compute and model fully-developed tur-
bulent flows. This has lead us to propose a new method, called Coherent Vortex
Simulation, to compute their time evolution. CVS is in the spirit of Ha Minh’s
semi-deterministic model because it splits the flow into coherent and incoherent
components, with the difference that CVS filtering is nonlinear and thus depends
on each flow realization.

The coherent vortex extraction is done by nonlinearly filtering the wavelet co-
efficients of the vorticity, which is chosen since it is better suited than velocity
for dynamical, topological and invariance reasons. The multiscale property of the
wavelet representation is essential to extract all the active scales of coherent vor-
tices, in particular their small scales which are excited during nonlinear vortex
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interactions. Classical methods, such as LES, only extract the larger scales of the
coherent vortices and thus eliminate their small scales. As a result, subgrid scale
models have difficulties to model them correctly, since the small scales attached
to the coherent vortices may be nonlinearly active and thus cause backscatter. The
CVS filter avoids this problem, since it controls that the discarded modes, corre-
sponding to the incoherent random background, are structureless and have reached
a statistical equilibrium characterized by a Gaussian PDF for vorticity in 2D (and
for velocity in 3D), together with an enstrophy equipartition in 2D (and an energy
equipartition in 3D). Indeed, the stirring of the incoherent background flow by the
coherent vortices guarantees its statistical stationarity, homogeneity and ergodicity.
Moreover, we have shown that for two-dimensional turbulent flows the nonlinear
instabilities are inhibited in the background flow by the strain the coherent vor-
tices exert on it, and thus the incoherent background flow is slaved to the coherent
vortices. We have conjectured that this is also true for three-dimensional turbulent
flows. In contrast to the incoherent modes, the coherent vortices are not in statistical
equilibrium, and therefore their evolution cannot be statistically modelled, but is
deterministically computed in a wavelet basis which dynamically adapts to the
regions where strong gradients are produced by the nonliner vortex interections.

We have also proposed a new way of forcing turbulent flows, where the injection
of both energy and enstrophy is done in wavelet space, i.e., locally in both space
and scale. This method seems more sound physically than the classical forcing in
Fourier space, since it models the local production of coherent vortices by nonlin-
ear instabilities, such as Kelvin–Helmholtz instability. This wavelet forcing is also
used to model the effect of the incoherent background flow on the coherent vortices.
To take into account obstacles or complex geometries using CVS, we have chosen
the penalization method, which treats them as porous media. As example, we have
computed a two-dimensional flow past an array of cylinders for three angles of
incidence.

The CVS method can be summarized as follows:

• extraction of coherent vortices, whatever their excited scales;
• computation of their time evolution in an adaptive wavelet basis which dy-

namically resolves the regions of strong gradients;
• elimination at each time step of the incoherent components produced by the

vortex interactions, which models the turbulent dissipation;
• modelling of the effect of the incoherent background flow on the coherent

vortices by applying a forcing in wavelet coefficients space.

Applications of CVS to both two and three-dimensional turbulent flows have
shown that coherent vortices are well extracted and that the compression thus
obtained is important. Moreover, the remaining incoherent background flow ex-
hibits quasi-Gaussian statistics and decorrelation, which guarantees that its effect
on the coherent vortices can be statistically modelled. We have applied CVS to
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compute a time developing two-dimensional mixing layer and a wavelet forced
two-dimensional homogeneous and isotropic turbulent flow. For the former we
have compared the CVS results with a pseudo-spectral DNS integrated during 30
initial eddy-turnover times. We found excellent agreement between the solutions
obtained with both methods, although the CVS uses 30 times less degrees of free-
dom than the DNS computed at resolution N = 2562. In particular, all active
scales of motions are well resolved, the energy spectra have the same scaling, and
the vortex pairings are well predicted in space and time.

In conclusion, CVS is a new semi-deterministic method, intermediate between
LES and DNS, which offers the advantage that the number of degrees of freedom
is dynamically adapted during the flow evolution and depends on the number of
coherent vortices excited by the nonlinear dynamics. This gives hope to signifi-
cantly reduce the number of degrees of freedom needed to compute high Reynolds
turbulent flows. In this paper the CVS method has been demonstrated for two-
dimensional turbulent flows at moderate Reynolds number. We plan for future
work to implement it for simulating three-dimensional turbulent flows. Moreover,
as the number of coherent vortices seems to increase more slowly, for increasing
Reynolds number, than the number of degrees of freedom predicted by the statis-
tical theory of homogeneous isotropic turbulence, we expect that the compression
obtained with CVS will become more efficient for large Reynolds numbers.
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