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Abstract. The near-wall regions of high Reynolds numbers turbulent flows must be modelled to treat
many practical engineering and aeronautical applications. In this review we examine results from
simulations of both attached and separated flows on coarse grids in which the near-wall regions are
not resolved and are instead represented by approximate wall boundary conditions. The simulations
use the dynamic Smagorinsky subgrid-scale model and a second-order finite-difference method.
Typical results are found to be mixed, with acceptable results found in many cases in the core of
the flow far from the walls, provided there is adequate numerical resolution, but with poorer results
generally found near the wall. Deficiencies in this approach are caused in part by both inaccuracies
in subgrid-scale modelling and numerical errors in the low-order finite-difference method on coarse
near-wall grids, which should be taken into account when constructing models and performing large-
eddy simulation on coarse grids. A promising new method for developing wall models from optimal
control theory is also discussed.
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Abbreviations: DNS – direct numerical simulation; LES – large-eddy simulation; RANS – Rey-
nolds-averaged Navier–Stokes; SGS – subgrid-scale; TBLE – thin boundary layer equations

Nomenclature

A+ = damping function parameter
B = log law intercept
C = dynamic coefficient for the Smagorinsky model
Cf = friction coefficient, 2τw/U2∞
Cp = relative wall pressure coefficient, 2(Pw − Po)/U2∞
h = step height
k = turbulent kinetic energy
L = inertial length scale,k/ε
L = residual SGS stress between test and grid filter levels
M = residual SGS model strain between test and grid filter levels
P = mean pressure
Pm = matching pressure atym
Reh = step Reynolds number,U∞h/ν
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Reτ = friction Reynolds number,uτ δ/ν
S = strain rate tensor
T = residual SGS stress at test filter level
U = mean streamwise velocity
u′ = streamwise rms velocity fluctuation intensity
ũj = velocity in the inner layer
U∞ = free stream velocity
Um = streamwise matching velocity atym
Umi = matching velocity atym in theith direction
uτ = friction speed
x = streamwise coordinate
y = wall-normal coordinate
y+ = wall-normal coordinate in wall units,yuτ /ν
ym = matching height
δ = channel half-width or boundary layer thickness
1 = effective filter width
ε = turbulent dissipation rate
κ = von Kármán constant, inverse slope of log law
ν = kinematic coefficient of molecular viscosity
νs = SGS eddy viscosity
νt = eddy viscosity in the inner layer
τ = residual SGS stress at grid filter level
τw = streamwise wall stress
τwi = wall stress in theith direction

1. Introduction

The near-wall region in high Reynolds number turbulent flow contains small vor-
tical structures (streaks) that are dynamically important to the flow, but which have
dimensions that scale with the viscous scale, making it impractical to resolve them
in numerical simulations at very high Reynolds numbers. Thus there is a crucial
need to approximate the overall dynamical effects of the streaks on the larger outer
scales through appropriate boundary conditions without resolving the inner viscous
regions. On the other hand, the need for approximate wall boundary conditions
has not been so well established in separated flow regions, which do not exhibit
this streak-like structure, and which behave effectively like low Reynolds numbers
flows with lower resolution requirements.

In 1970, Deardorff [17], constrained by the limited computing power of his
time, performed a large-eddy simulation (LES) of channel flow with no molecu-
lar viscosity on a very coarse grid. He used approximate boundary conditions,
matching the second wall-normal derivatives to the log law values, and an eddy
viscosity subgrid-scale (SGS) model, with which he obtained fairly poor mean
flow statistics. The same near-wall resolution problem presents itself to us today,
even though we have vastly greater computing power than in 1970, as we attempt
to simulate more complex, high Reynolds number flows.
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1.1. LESRESOLUTION ISSUES

Current subgrid-scale models, which generally do a good job predicting unresolved
turbulent dissipation, do not model unresolved stresses accurately when they are a
significant fraction of the total Reynolds stress [28]. As a consequence, a proper
LES must resolve all “large” turbulent scales in the flow, viz., those that contain
most of the turbulent kinetic energy and Reynolds shear stress in a localized region
of the flow. Another way to put this is that the grid spacing1 should be some
minimal ratio of the local inertial length scale,L = k3/2/ε, wherek is the turbulent
kinetic energy andε is the turbulent dissipation rate; this ratio has been estimated to
be1/L ≈ 1/10 to obtain good results in channel flow [4]. Near walls in boundary
layers the size of turbulent eddies scales roughly as the distance from the wall,
limited by viscous scales, which means that well resolved LES requires grids nearly
as fine as those used in direct numerical simulation (DNS). This restriction applies
not only to wall-normal grid spacing but to horizontal grid spacing as well. Baggett
et al. [4] estimated that the number of grid points necessary to resolve a channel
flow properly with LES scales approximately as Re2

τ . In well resolved LES of wall-
bounded flow, most of the grid points are thus used in the near-wall regions. An
example of this is a simulation with zonal refinement near the walls at a modest
friction Reynolds number Reτ = 1000 [27], in which 70% of grid points were
allocated in near-wall zones comprising only 10% of the channel width. The time
step in the simulations must also be decreased accordingly with these finer grids
for numerical stability.

We note that, in practice, many LES applications use fairly coarse horizontal
grids – too coarse in fact to resolve the energy-containing scales accurately – but
refine the grid in the wall-normal direction to nearly DNS accuracy to “resolve” the
buffer and viscous regions; we will refer to such simulations as “wall-resolved”
simulations as opposed to ones, e.g., using refined zonal meshes, that arewell
resolvedin all directions.

Near-wall resolution requirements clearly limit the application of LES to mod-
erate Reynolds number flows, even on current supercomputers, and a modelling
strategy for the near-wall region needs to be devised if LES is to be applied to
many practical applications. The ultimate goal of wall modelling is to develop ap-
proximate boundary conditions near walls that allow one to use LES grids that scale
only on outer flow scales, such as the boundary layer thickness in attached flow,
and whose wall modelling expense is at most only weakly dependent on Reynolds
numbers.

1.2. WALL STRESS MODELS

Approximate wall boundary conditions that supply wall stresses to the LES from
the unresolved wall were used in 1975 by Schumann [42] and are still used in
various modified forms. We refer to this general class of boundary condition as
“wall stress models”. The wall stress or drag cannot be computed accurately on
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very coarse wall-normal grids that extend to the wall and must be determined from
models matched to outer flow conditions. Schumann, using a finite volume code,
applied wall stresses, based on the known steady-state result to the wall faces of
his control volumes. Grötzbach [22] later modified this to use the instantaneous
fit of the log law to the mean velocity profile. Such wall models based on the
law of the wall have been used extensively over the years for both attached and
separated flow calculations, even though not valid for the latter. Piomelli et al. [40]
modified Schumann’s approach by shifting the interior horizontal velocity and wall
stress by an empirical amount to approximate the tilting of eddies near the wall, as
well as a model that included a term with the wall-normal velocity to approximate
the effects of bursts and sweeps at the wall. Both models were found to improve
the channel flow results slightly. Nonstandard log law coefficients can be fit to
outer flow profiles in flows with significant pressure gradients and used to predict
wall stresses. Recently, temporally evolving thin boundary layer equations (TBLE),
with coarse near-wall resolution parallel to the wall, have been used [8, 9, 11, 12] to
predict wall stresses in LES of attached and separated flows, with improved results
in some cases. TBLE are essentially the Navier-Stokes equations neglecting the
horizontal viscous diffusion terms and fixing the pressure gradient to the outer
flow value.

In very coarse LES of attached flow with wall stress models, one generally finds
that the core flow far form the walls can be predicted with fair accuracy in many
cases, but that the flow very near the wall is poorly predicted, which can in turn
adversely influence physical processes like boundary layer growth and separation
that depend strongly on the characteristics of the momentum flux near the wall.

1.3. OFF-WALL BOUNDARY CONDITIONS

Another superficially attractive approach is to apply approximate wall boundary
conditions directly on the velocity field at some height above the physical location
of the wall. The main reason for this is that in most of the previously cited examples
the LES grid is too coarse in the near-wall region in both the wall-normal and
horizontal directions to capture the energy-bearing scales of motion or even the
variation of the mean flow in the wall-normal direction. With a zonal or unstruc-
tured mesh, one could provide a mesh for the outer flow that does capture the
energy-containing scales down to a certain distance from the wall that is physically
reasonable (say, within some small fraction of the boundary layer thickness) and
affordable for the given computational resources. Boundary conditions on all ve-
locity components are then specified at the location off of the wall where the grid
ends.

Attempts at using such “off-wall” boundary conditions synthesized from res-
caled interior flow data [7, 29, 36] have proven to be largely unsuccessful. Baggett
[5] performed tests using exact near-wall flow data in a channel, obtained from a
wall-resolved LES, as an off-wall boundary condition; by scrambling the phases
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of the data, he found that the interior flow was severely disrupted near the artificial
boundary unless the relative phases and the time scales of the original flow were
preserved in the boundary plane, indicating that a good deal of physical structural
information is required for off-wall boundary conditions to avoid generating spuri-
ous transition regions. Jiménez and Vasco [29] found that the interior flow is very
sensitive to the boundary-normal transpiration velocity; if it is incompatible in the
sense of continuity from the interior flow, then large pressure and velocity fluctu-
ations are generated. The off-wall boundary may also be generally incompatible
in the sense of injecting an unphysical rate of energy into the interior flow; this
may also be a problem in wall stress models. Any workable off-wall model will
need to satisfy rather severe constraints like this, which makes them very difficult
to construct successfully.

The usual result of applying poorly designed off-wall boundary conditions is
the appearance of a strong, spurious boundary layer above the artificial boundary.
The rest of the outer flow may also be affected adversely in addition because of
the spurious pressure generated at the artificial boundary, which is felt everywhere
in incompressible flow. Because of these problems, we will restrict our further
discussion to the performance of wall stress models.

1.4. NUMERICAL SCHEME

Throughout this paper we will discuss results using second-order central finite
differencing on a staggered grid [23, 25] and a third-order Runge-Kutta time ad-
vancement scheme, whose numerical properties have been examined in some detail
[15, 20, 26, 32]. Numerical dispersion errors are known to be high for second-
order differencing, which effectively reduces the spatial resolution to about 1/3
that of spectral methods for same number of grid points in each direction [32],
and in which numerical errors are probably comparable to the contributions from
the SGS model [20]. However, low-order codes like these have good conservation
properties, are relatively flexible for implementation in complex geometries, and
are hence widely used in engineering flow applications. It is therefore of practical
interest to examine their performance using LES on coarse grids with wall models.
We will also only consider simulations using the standard dynamic SGS model
[19, 31]. These choices, as will be seen further on, have important consequences
on the wall model results.

1.5. OUTLINE

In this paper, we review recent simulation results from coarse LES using wall stress
models to examine their performance and identify sources of error that may lead
to the generally poor results found close to the wall. In particular, the lack of
resolution of energy-containing scales of motion, the behaviour of SGS models
on coarse grids near walls and the numerical solution technique contribute to these
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errors. New wall modelling strategies that make use of tools from control theory
[37, 38] will also be discussed that attempt to correct, or at least work around,
these deficiencies. In Section 2 results from LES using specific types of wall stress
models in attached and separated turbulent flow are presented and discussed, and
new strategies for developing wall models are discussed. In Section 4 we conclude
with a discussion of practical ways to implement wall models in their current state.

2. Wall Stress Models

The objective with wall stress models is to supply to the simulation of the outer
flow the viscous stresses or drag due to the sharp velocity gradient at the walls,
which cannot otherwise be calculated on the very coarse LES grid. Wall stress
models generally use information from outer flow near the wall to set the level of
wall stress, which allows them to respond to varying conditions in the outer flow.
Depending on the level of modelling effort, the wall stress can be determined from
an algebraic model, or from differential model equations on a grid refined in the
wall-normal direction. The wall stress is in turn fed back to the outer flow LES
as an additional drag in the near-wall cells. In second-order finite difference or
finite volume approaches the horizontal velocities on the wall, normally needed
to compute the viscous stresses, are not used and can be considered to be slip
velocities. The wall-normal velocity in the outer flow is taken to be zero at the
wall. There is an implicit assumption made that the Reynolds stresses near the wall
in the outer flow can be accurately calculated from the SGS model and resolved
flow field, although this is usually far from true on coarse grids.

2.1. WALL STRESSES BASED ON THE LAW OF THE WALL

For attached flow at sufficiently high Reynolds number, the first off-wall computa-
tional cells extend into the logarithmic region, and the horizontal velocity (either
the instantaneous values or some kind of spatial or temporal mean) can be fitted to
the log law to predict a wall stress. Tests of wind tunnel data [35] show, however,
that an instantaneous logarithmic region is valid only on horizontal scales greater
than about 1800 wall units. This can take the simple form

Um = uτ
[
κ−1 ln(ymuτ /ν)+ B

]
, τw = u2

τ , (1)

whereUm is the instantaneous horizontal speed in the outer flow at a distanceym
from the wall, τw is the wall stress,uτ is the friction speed,ν is the kinematic
coefficient of molecular viscosity,κ ≈ 0.4 is von Kármán’s constant, andB ≈ 5
is the log law intercept; or a more complicated composite formula foruτ including
the viscous and “wake” regions [16] can solved in flows featuring low Reynolds
number regions (e.g., near separation). For rough walls, the value of the match-
ing heightym is usually offset by an effective roughness thickness [33]. These
equations are generally transcendental inuτ , but can be solved quite efficiently
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with a few Newton iterations. Sometimes Equation (1) is applied only to the mean
streamwise component of velocity in simple flows [22, 42], or an effort is made
to calculate the wall stress in alignment with the full horizontal velocity [11, 33].
Because flow conditions at a heightym affect the wall some distance downstream,
one can shiftUm andτw either manually by an empirical amount [40] or by time
averaging the matching velocity from the outer flow over roughly the diffusion
time of the inner layer. This shift is seen to increase the correlation ofUm andτw
in a priori tests of resolved flow simulations from about 30 to 50%, and slight
improvements in the mean flow results have been reported [40]. Note that the level
of averaging used in specifyingUm affects the calibration of log law constants in
Equation (1) [33]. Werner and Wengle [47] fit the instantaneous horizontal velo-
cities to a profile comprising a power law (rather than a log law) matched to a
linear near-wall segment to obtain wall stresses, which does not give significantly
different wall stress predictions from the previously cited models; for the subgrid-
scale eddy viscosity they also switched from a Smagorinsky model to a mixing
length model near walls.

In geometrically simple flows like channel, horizontally averagedUm can be
used to set a meanτw, with fluctuations set equal to the near-wall velocity fluctu-
ations [22, 42]. Wu and Squires [48] generalized this approach to complex bound-
aries by obtaining a steady RANS solution for the near-wall region to determine
the mean wall stress and using instantaneous outer flow information to set the local
fluctuations in the wall stress.

2.2. WALL STRESSES USING THINBOUNDARY LAYER EQUATIONS

The unsteady thin boundary layer equations (TBLE), which in general are a simpli-
fied set of partial differential equations derived from the Navier–Stokes equations,
can also be used, especially in flows with large pressure gradients which require
more detailed momentum balance information [8]. The governing equations for
inner horizontal velocity components̃ui (i = 1,3) are

∂ũi

∂t
+ ∂(̃uiũj )

∂xj
+ ∂Pm
∂xi
= ∂

∂y

[
(ν + νt )∂ũi

∂y

]
(2)

with continuity

ũ2 = −
y∫

0

∂ũi

∂xi
dy′, (3)

and with matching interior boundary conditioñui(ym) = Umi and wall boundary
condition ũi(0) = 0. In Equation (2),Pm is the near-wall pressure from the outer
flow, assumed to be independent ofy in the inner layer. The eddy viscosityνt is
usually modelled with an ad hoc damped mixing length prescription that approxim-
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ates the linear and logarithmic regions for attached flow with reasonable accuracy.
Balaras et al. [8, 9] used

νt = (κy)2|̃S|D, D = [1− exp(−(y+/A+)3)], (4)

where |̃S| is the magnitude of the strain rate,y+ is the distance from the wall in
wall units, andA+ = 25. Cabot [11, 12] used

νt = κyuτD, D = [1− exp(−y+/A+)]2, (5)

with A+ = 17. The wall-normal velocity given by Equation (3) does not in general
match that of the outer flow at the matching pointym; these can be made consistent,
however, by imposing the condition that the horizontal mass flux in the inner layer
also agrees with that in the outer flow, instead of matching the horizontal velocity
itself. Finally, the wall stress is determined from the wall gradient of the inner
solution:

τwi = ν ∂ũi
∂y

∣∣∣∣
y=0

. (6)

The solution of Equation (2) is generally found on a grid embedded within the outer
LES grid that is refined in the wall-normal direction such that the viscous region
is resolved well enough to compute the wall stress directly from Equation (6). The
horizontal resolution in the inner region is taken to be the same or even coarser than
the outer solution, justifying to some extent using inner governing equations that
resemble Reynolds-averaged Navier–Stokes (RANS) models. However, we have
found no significant difference between results using horizontal grids that are the
same as the outer grid and ones twice as coarse [11, 12].

When the left-hand side of Equation (2) is set to zero, we refer to it as the
“stress balance model”, which are solutions of uncoupled ordinary differential
equations in each near-wall computational cell that vary smoothly between a linear
and logarithmic solution, and which can be solved numerically at little expense
with a semi-analytic solution. In attached flow at high Reynolds numbers, the stress
balance model is equivalent to the instantaneous log law model (Equation (1)). The
left-hand side (or selected terms therein) can also be approximated by values from
the outer flow; e.g., Hoffmann and Benocci [24] suggested using only the pressure
gradient and time-derivative of the velocity. Wall stress models using the full, time-
evolving solution of Equation (2) are called “thin boundary layer equation models”
[12] or “two-layer models” [9]. It was noted by Cabot [12] that the Reynolds stress
carried by the nonlinear terms in Equation (2) are substantial and that a lower value
of eddy viscosity should be used in principle, corresponding to a lower value ofκ

in Equations (4, 5).
Instantaneous and shifted wall stress models based on algebraic or semi-analytic

representations of the log law are attractive because they are simple and very inex-
pensive to compute. Unsteady boundary layer equations are about half as expensive
to compute as the full Navier–Stokes equations for the same number of grid points,



WALL BOUNDARY CONDITIONS IN LES 277

and the fine wall-normal resolution required makes them very much Reynolds
number dependent – not a good feature when going to very high Reynolds number
applications. They are, however, in principle more accurate and flexible in complex
flow situations. And, while the mixing length eddy viscosity model normally used
in all of these models is not valid in separated and reattaching regions, it has
certainly not prevented their use in these cases, with surprisingly good success
under the circumstances (see Section 3.2). The cost of computing the LES of
the outer flow, of course, decreases dramatically using wall stress models, since
much coarser grids can be used near walls and, for explicit numerical schemes,
larger time steps can be used. The precise savings one gains in computational cost
depends very much on the complexity of the flow and the complexity of the wall
model employed.

2.3. SUBGRID-SCALE MODELLING

In the simulations we will be considering, the standard dynamic procedure is ap-
plied to the Smagorinsky [43] SGS model for the trace-free (*) part of the residual
stressτ [19, 31]:

τ ∗ = (uu− u u)∗ ∼ −2νsS= −2C12|S|S, (7)

where ( ) denotes the filter,νs is the SGS eddy viscosity,C is the Smagorinsky
coefficient,1 is the effective grid width, andS is the resolved strain tensor. At a
coarser scale given by an additional test filter ()̂, the residual stress is

T ∗ = (ûu− û û)∗ ∼ −2̂νsŜ= −2C1̂2|̂S|̂S. (8)

Test filtering Equation (7) and combining with (8), assuming thatC is not af-
fected by the filtering operation, gives an algebraic expression forC in terms of
test-filtered flow quantities, which is solved in a least-squares sense over tensor
components and a spatial average〈 〉:

C ∼ 〈L :M〉/〈M :M〉, (9)

where

L ≡ (û u− û û)∗, M ≡ 2(12|̂S|S− 1̂2|̂S|̂S). (10)

A more mathematically rigorous formulation of the dynamic procedure, including
effects of backscatter, is provided by Ghosal and Moin [21].

In plane-parallel flows, filtering and averaging are performed only on horizontal
planes parallel to the walls. When the simulation uses a refined wall-normal grid,
this may be justified, since the filtering over very small wall-normal distances has
little effect. This approach is not at all justified when the mesh is so coarse in
the wall-normal directions that large flow variations are being averaged over. The
general class of commutative filters developed by Vasilyev et al. [45], which is
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normally applicable to all directions in wall bounded flows, is not appropriate here
for the same reason. Also the terms used to computeC in the dynamic procedure,
especially strain terms involving wall-normal derivatives, cannot be determined
accurately on a coarse grid near walls. We therefore recognize from the outset
that the SGS model may be highly inaccurate in the near-wall region, and that
improvements are clearly needed in SGS/wall modelling in this area.

When filters are much wider than energy-containing scales, as is the case on
coarse near-wall meshes, one expects that the effect of large-scale spatial averaging
over many turbulent eddies might correspond to a Reynolds average. In that case,
one would be justified in switching from SGS models suited for isotropic flow
conditions to a RANS-like solution in the near-wall region. Baggett [6] has shown
that it is difficult to merge the RANS and SGS eddy viscosities without generating
an artificial buffer region between an effectively low Reynolds number flow near
the wall and the outer flow.

There are several other issues that affect the accuracy of the SGS model on
coarse grids. The Smagorinsky model, while adequate for predicting SGS dissip-
ation in fairly isotropic turbulent regions, does not carry sufficient stresses, and it
cannot treat cases with large degrees of anisotropy [28], both of which are import-
ant factors near walls. The numerical errors in second-order finite differencing are
probably comparable to the contribution from the SGS model [20]. This further
affects the dynamic procedure, because it samples the highest resolved wavenum-
bers, which are probably contaminated by dispersion errors [32]. It has also been
noticed recently that the value of the Smagorinsky coefficient and eddy viscosity
drop dramatically near the wall in the outer flow, which has been found to be occur
on the first few grid cells away from the wall regardless of the physical grid spacing
[41]. This unphysical behaviour may result from applying the dynamic proced-
ure inappropriately to energy-bearing scales where the self-similarity assumptions
break down. We will show in Section 3.1 that the level of the near-wall SGS eddy
viscosity can have a large effect on the results. A rather complicated attempt to
improve the near-wall SGS model prediction [44] uses a nested grid along the
wall and directly computes the residual Reynolds stresses, with model inaccuracies
occurring at the nested grid level.

3. Results

3.1. CHANNEL FLOW

Results are shown here for very coarse LES with 323 computational cells with the
second-order central finite difference code for Reτ = 4000 and 20000 [14]. The
numerical domain is 2π × 2× 2π/3 in the streamwise, wall-normal and spanwise
directions in units of channel half-widthδ. This domain size is considered to be
marginally adequate to capture the largest structures in the core of the flow, a
typical symptom of which is an exaggerated wake region [27]. While this resol-
ution may seem exceptionally coarse, it is probably representative of resolutions
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Figure 1. Mean streamwise velocity in wall units for LES with TBLE wall stress models on
a 323 mesh at Reτ = 4000 (circles) and 20000 (squares) with (open symbols) and without
(solid symbols) enhanced SGS eddy viscosity near the walls. The log law (Equation (1)) using
κ = 0.41 andB = 5.1 is also shown (dotted line).

that must be used in high Reynolds numbers, complex flow configurations. Mean
velocity results are largely insensitive to the type of wall stress model. The wall
stress was computed using the instantaneous log law model (Equation (1)) and the
full thin boundary layer equations (Equation (2)) [11, 14], and using a shifted log
law model [37, 38], with little significant difference between any of the results. The
horizontal velocity from the centre of the first off-wall computational cell was used
to compute the wall stresses.

In the first two or three grid points adjacent to the walls, the results are gen-
erally poor for the mean streamwise velocityU using the standard dynamic SGS
model, as seen in Figure 1 (solid symbols). The slope ofU in the first few off-
wall grid points changes from interior values and is much too shallow. Because
this is the region in which the outer flow is matched to the inner solution, it causes
the logarithmic region to have too low an intercept. As a consequence, the mass
flux will also tend to be too low for the predicted skin friction, or equivalently the
skin friction will be too high for a given mass flux or free stream velocity. The
near-wall anisotropy of the resolved flow is also not well predicted, with values of
the streamwise velocity fluctuation intensityu′ that are somewhat too high, again
most noticeably at the first few off-wall grid points. This is shown in Figure 2 with
reference to a well resolved LES [27], in which more scales are resolved compared
with the coarse LES (especially near the walls) and which should therefore have
larger intensities. Note that the tendency to overpredict streamwise fluctuations is
also a well known problem in “wall-resolved” simulations that do not properly
resolve the horizontal scales near walls [27]. It was found [37, 38] that matching
the wall stress model to the horizontal velocity at a height above the spurious near-
wall points effectively shiftsU profile to the proper level, with the first few off-wall



280 W. CABOT AND P. MOIN

Figure 2. Resolved velocity fluctuation intensities for LES with TBLE wall stress models on
a 323 mesh at Reτ = 4000 with (open symbols) and without (solid symbols) enhanced SGS
eddy viscosity near the walls. For comparison the (unfiltered) well resolved LES data of [27]
at Reτ = 4000 is shown with dashed lines.

points now having values that are too large. The mean streamwise momentum
balance,

τw ≈ (ν + νs)dU/dy − u′v′ − (dP/dx)y, (11)

where dP/dx is the mean pressure gradient and−u′v′ is the resolved Reynolds
stress, is largely insensitive to the level ofU . It was found that dU/dy could be
steepened in the near-wall region by augmenting SGS eddy viscosityνs in the near-
wall region [6]. This has the effect of lowering the resolved velocity fluctuations
and hence−u′v′ substantially, which appear to be overpredicted, even though it
raises the value ofνsdU/dy at the same time by a smaller amount.

It was found [14] that modifying the values for the dynamic coefficientC in the
SGS model (7) at the first three off-wall points with a linear fit to interior values
gives much higher SGS eddy viscosities near the wall (Figure 3) and improves
somewhat the near-wall behaviour of the mean streamwise profile (Figure 1). (In-
terior plane-averaged values ofC for y/δ < 0.6, excluding the three near-wall
points, were used for the fit; they were found to be sufficiently smooth to give
well behaved solutions without additional time averaging.) This fix is partially
justified by the consideration that the near-wall computational cells still lie well
in log layer and Reynolds stresses should not be affected strongly by the presence
of the wall. The improvement in the mean velocity results indicate that the under-
resolved flow and inaccuracies in standard SGS models in the vicinity of walls
contribute to poor predictions of dissipation and Reynolds stresses there. We note
that the mixed dynamic SGS model [50], which includes a self-similar stress term,
u u − u u, in the model for the residual stress (Equation (7)), performs worse at
these coarse resolutions, because it tends to give larger residual stresses and lower
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Figure 3. The mean SGS eddy viscosityνs in units of uτ δ (squares) and the coefficient
20C12/δ2 (circles) from the dynamic Smagorinsky model (Equation (7)) for LES on a 323

mesh at Reτ = 4000 (solid symbols). The curves with open symbols are modified by fitting
the three near-wall points ofC linearly to interior values.

eddy viscosity (dissipation), which acts entirely in the wrong direction. There is
no real overall improvement in the rms velocities by enhancing the near-wall SGS
eddy viscosity (Figure 2); the shift outward in the peak ofu′ may indicate that the
near-wall flow is just acting like a lower Reynolds number flow [6].

Another problem appears to be the development of unphysical structures near
the wall. Baggett [6] showed that streak-like structures develop near the walls with
maximum spanwise spacing of about six times the grid spacing or the physical
scale, which is about 100 wall units. In moderately high Reynolds number LES the
grid spacing is several hundred of wall units or greater, but the robust streak form-
ation process causes streaks to develop with unphysically large dimensions, giving
rise to unphysical velocity intensities and correlations. These structures occur in
the previously presented simulations and may account in part for the inaccurate
rms velocity fluctuations predicted near the walls. In this context it is interesting to
note that Mason and Thomson [34] added stochastic fluctuations to the SGS model,
which improved the mean velocity profiles near the walls. It is possible that the
improvement occurs because the stochastic fluctuations disrupt the development of
these pseudo-streaks, although this needs to be verified with more careful studies.

A notable feature about the mean streamwise velocity profiles using wall mod-
els is that they exhibit virtually no wake-like structure in the core compared with
experimental data and results from better resolved simulations. This behaviour
occurs for both 323 and 643 resolutions [14] and appears to be insensitive to the
type of wall stress model and near-wall enhancement of the SGS eddy viscosity,
even with quite vigorous wall stress fluctuations [37, 38]. A physical analogy to
changing the wall conditions is the difference between smooth and rough walls.



282 W. CABOT AND P. MOIN

Figure 4. Sketch of the simulation domain for flow over a step of heighth with an expansion
ratio of 4 to 5. Wall stress models were used in the hatched region.

Perry et al.’s [1, 39] data show a slight drop in the wake parameter for rough walls,
but nothing nearly as dramatic as seen in the coarse LES results. The lack of a wake
appears instead to be due to insufficient resolution of the core flow with low-order
numerical schemes. A healthy wake was recovered at Reτ = 2000 with the same
numerical scheme with resolved walls [32] only when the grid spacing was about
five times finer in the streamwise and ten times finer in the spanwise directions
than on the coarse 323 grid used here. This demonstrates the degree to which the
second-order numerical scheme degrades the resolution of the simulation.

3.2. SEPARATED FLOW

Arnal and Friedrich [3] performed LES of flow over a step on a coarse grid using
the dynamic SGS model and a law-of-the-wall wall stress model [42] on all of the
solid boundaries. They found quantitatively good results for Reh = 113,000 and
1:2 expansion ratio compared with experimental results, but their prediction of the
reattachment point was poor.

Several wall stress models were employed [12, 13] on a coarse grid on the
bottom wall behind a step with otherwise the same numerical setup and inflow
conditions as [2] for the case with Reh = 28000 and 4:5 expansion ratio (see the
sketch in Figure 4). Only 8 computational cells in the wall-normal direction with
uniform spacing were used from the bottom wall to half way up the step, com-
pared with 16 computational cells on a stretched mesh used in the wall-resolved
case [2]. The flow in the wall-resolved LES reattaches at about 6.5 step heights
(h) past the step. A massive separation bubble develops between about 2.5 and
6.5h, with progressively smaller secondary and tertiary recirculation bubbles in the
corner underneath the step within 0.5h of the step location. The standard dynamic
Smagorinsky SGS model was used with filtering on planes parallel to the bottom
wall and with averaging in the homogeneous spanwise direction.
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Figure 5. Instantaneous span-averaged dynamicκ in Equation (12) used in the TBLE model
versusits standard value of the von Kármán constant.

The wall stress on the bottom wall was computed with a range of models similar
to those used in the channel flow, from wall stress models using stress balance
(equivalent to the log law in attached regions) to the full thin boundary layer
equations (2). The horizontal grid for the inner solution was twice as coarse as
the outer LES grid in each direction, with averaging and interpolation used to pass
information between grids. In addition, simulations using the TBLE wall model
were also run in whichκ in Equation (5) was modified “dynamically” to account
for the fact that the Reynolds stress carried by the nonlinear terms in Equation (2)
is significant [12]. This was done by using the outer flow solution (u) near the wall
to compute the stress predicted by the inner mixing length eddy viscosity model,

κyũτ S̃, where (̃ ) denotes filtering at the horizontal scale of the inner solution; for
simplicity the damping factorD in Equation (5) was set to unity sincey+ � A+
in most instances. This expression was equated in a least-squares sense to the total
resolved and SGS stress at the same horizontal resolution as the inner solution,
−ũ u− τ̃ , hence

κ ∼ −〈y ũτ S̃ : (ũ u+ τ̃)〉/〈y2 ũ
2
τ S̃ : S̃〉, (12)

where〈 〉 denotes averaging in the spanwise direction. Equation (12) yielded values
of κ a factor of two or more lower than the standard value, as shown for one flow
realization in Figure 5. Without this correction it is found that the wall stress dips
about 10% lower in the main recirculation region.

As seen in Figure 6 for the friction coefficientCf along the bottom wall, the
case using the stress balance model produces a prediction ofCf in the reverse flow
that is too low by almost a factor of 2 compared with the wall-resolved calculation,
and the recovery past reattachment is also seen to be too slow. When the wall stress
is predicted by the thin boundary layer equations,Cf is slightly too high in the
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Figure 6. Friction coefficient on the bottom wall behind a step for the wall-resolved LES [2],
wall stress models using stress balance and TBLE with a dynamicκ from Equation (12), and
a global RANSv2f model [18].

Figure 7. Mean streamwise velocity at different stations behind a step for the wall-resolved
LES [2], and stress-balance and TBLE wall stress models. The dashed line is the height of the
first computational cell, about 60 wall units near the exit.

reverse flow region, but the shape of the recovery region is predicted better. The
effect ofCf being slightly too high in the attached exit region may be related the
problem seen in channel flow of too low a slope in the mean streamwise velocity
profile near the wall, which for a fixed free stream value causes the near-wall flow
to be too rapid and gives too high a value of skin friction. In both wall stress model
cases, the reattachment position is in fairly good agreement with the wall-resolved
LES results, as are the mean streamwise velocity profiles shown in Figure 7. On
the other hand, neither of the cases captured any secondary recirculation in the
corner under the step, which may not have been possible anyway on such a coarse



WALL BOUNDARY CONDITIONS IN LES 285

Figure 8. Pressure coefficient on the bottom wall behind a step for the wall-resolved LES [2],
and stress-balance and TBLE wall stress models.

grid. Thev2f RANS model [18], computed for the entire domain, is seen to do
a good job in predicting the correct level and shape of the friction coefficient all
along the bottom wall, including the separation and recovery regions, as seen in
Figure 6; however, the location of the main separation bubble is shifted noticeably.
This occurs primarily because the mean core flow is not predicted accurately. The
pressure coefficient on the bottom wall behind the step shown in Figure 8 is seen to
be slightly lower in the reversed flow region, which reflects the fact that the main
recirculation pattern rotates more rapidly in the cases using wall models.

To test the sensitivity of the results in the reverse flow region, exact wall stress
data was recorded from the wall-resolved simulation and used as the wall stress
model on the coarse gird for a short time. Very little difference in the results was
found between doing this and using the TBLE wall model, indicating that the
discrepancies in the coarsely resolved flow were due to other factors, such as an
inaccurate SGS model near the wall and errors due to the numerical scheme at
very coarse resolutions.

The superior skin friction predictions in the reattachment and recovery regions
by the thin boundary layer equations compared with the stress balance model are
largely the result of having more detailed information about balances between ad-
vective terms and large pressure gradients. All the different terms in the momentum
equation are comparable at various points around the separated region and the cor-
rect balance is required to determine the wall stress accurately. However, the fact
that the thin boundary layer equation model is as successful as it is in the primary
separated region is somewhat fortuitous, since it describes the inner velocity profile
there as a modified log law as a result of the mixing length eddy viscosity imposed,
whereas in reality this rapid reverse flow resembles a near-wall jet. In fact, the peak
of this “large-scale”, jet-like flow feature in the reverse flow region near the wall
was not even resolved in the coarse LES (Figure 7). In order to represent this region
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more accurately, the peak of this profile should be properly resolved, and, to obtain
better wall stress predictions, more appropriate models should be used, e.g., based
on wall jet scaling relations (cf. [30]).

Simple stress balance models, with and without the pressure gradient, have also
been applied to trailing edge flow over a hydrofoil, which features a mild separa-
tion, with fairly good results [46]. The separation point is well predicted compared
with a wall-resolved LES and experimental data, although there are some discrep-
ancies in the mean velocity profiles in the separated region. Adding the pressure
gradient term to the stress balance was found to improve the skin friction results in
the adverse pressure gradient region; but, as in the case of the flow behind the step,
a more accurate allowance for balancing advection terms in this region is needed
for further improvements.

In flow simulations of this type, the issue of providing consistent inflow condi-
tions also arises. To avoid large transients in the inlet region, which can adversely
affect results downstream and make it difficult to compare with other simulation or
experimental data with any consistency, the inflow conditions should be as com-
patible as possible with the LES simulation, preferably computed with the same
resolution, numerical scheme, and SGS and wall models. The problem also remains
that the near-wall momentum predicted on coarse LES grids tends to be too high
relative to the free stream, which could act to delay separation.

3.3. MODEL DEVELOPMENT STRATEGIES USING OPTIMAL CONTROL

TECHNIQUES

Because there are many modelling inaccuracies near the coarsely resolved wall in
addition to errors from the numerical scheme, it is not surprising that the flow
develops a spurious transition zone, even if the exact wall stresses were used.
Nicoud et al. [37, 38] posed the question: What wall stresses would actually be
required in channel flow to obtain a good mean velocity profile? A suboptimal
control strategy [10] was used to determine the wall stresses that would match a
predefined log law in channel flow with Reτ = 4000 and 20000 on a very coarse
grid (323 computational cells with a second-order finite difference scheme). The
scheme wassuboptimalin that it enforced the log law at each time step rather than
in the mean.

The resulting wall stresses were subjected to a linear regression scheme similar
to [7] which correlated them to the velocity field in the near-wall region. This
scheme showed that the optimized wall stresses seemed to be correlated with ve-
locity gradients that have no obvious physical interpretation in terms of strain or
vorticity. The pattern of wall stresses does not exhibit the streaky structure found
in well resolved near-wall regions at physical scales or in poorly resolved near-
wall regions at grid scales. The correlations were found to be largely dependent
on the grid rather than physical scales, which is not surprising considering the
large influence of numerical errors in this region. More surprising was the finding
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Figure 9. Comparison of channel flow results for an optimized wall stress model [37, 38]
(open symbols) and the shifted log law wall stress model [40] (solid symbols) for LES on a
323 mesh at Reτ = 4000: (a) mean streamwise velocity in wall units, with the log law (Equa-
tion (1)) usingκ = 0.41 andB = 5.1 for comparison (dotted line); (b) resolved streamwise
and wall-normal velocity fluctuation intensities.

that, when the leading correlation terms are used in actual simulations, good mean
velocity profiles are predicted for a wide range of Reynolds numbers (Reτ = 180–
20000) even when the wall stresses were “trained” for one particular Reynolds
number. The mean velocity profile using the wall stress models based on the op-
timized stresses and Piomelli et al.’s [40] shifted log law model are compared in
Figure 9a. The optimized wall stresses contain a very high level of fluctuations
that also translates into overly high velocity fluctuations near the wall, as seen in
Figure 9b for the resolved velocity fluctuation intensities.

It would be interesting to extend this work by optimizing stresses not only at
the wall but distributed throughout the near-wall region in an attempt to address the
deficiencies in the SGS models, and to determine if there is any useful near-wall
model that could be constructed from the results.

4. Conclusions

Results from large-eddy simulations of turbulent wall-bounded flow on very coarse
grids with second-order finite-difference schemes using wall stress models have
been reviewed. The results in the core of the flows are generally quite good when
the mean wall stresses are predicted with sufficient accuracy, despite the low order
of the numerical scheme, as seen in simulations of the flow over a step in Sec-
tion 3.2. Some outer flow features, like the wake profiles in channels, require more
resolution to be predicted accurately. In general there must be sufficient resolution
to capture scales containing most of the energy, Reynolds shear stresses, and en-
ergy transfer. Such resolution requirements are exacerbated in low-order numerical
schemes because the high wavenumbers are contaminated by dispersion errors.
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There are some perhaps unavoidable discrepancies in the mean flow predictions
in the first few off-wall grid points, where current subgrid-scale models are inad-
equate and numerical errors are large. Despite the success of wall models based
on the law of the wall to predict wall stresses in some separated flow cases, im-
provements are still needed in the modelling of wall stresses in flows experiencing
separation, reattachment, and recovery, since standard RANS models based on a
law of the wall eddy viscosity are clearly invalid there. A simple “engineering”
solution for general flow conditions may be to use several different scaling laws
for different flow regimes, which are patched together and activated through some
detection mechanism of outer flow conditions. Another solution is to apply much
more sophisticated RANS models to determine the wall stresses.

One of the most glaring problems that arises is the inability to predict the
near-wall subgrid-scale stresses in the outer flow reliably using standard models,
including the dynamic procedure. The reasons for this are: standard SGS models
are designed for isotropic flows in which the large, energy-containing scales are
resolved adequately, and the physically unrealistic flow that develops on the coarse
near-wall mesh cannot be used as a basis for constructing any model quantit-
ies, even dynamic coefficients, accurately. Even if accurate model stresses were
supplied in the near-wall region, numerical errors from the second-order finite-
differencing method degrade the effective resolution to a point where the accuracy
of the first few off-wall points is degraded. Solutions for mean flow quantities
throughout the near-wall region – not only wall stresses – will need to be computed
from trustworthy RANS solutions matched to the core flow beyond this contam-
inated region. In simple flows like the channel, these quantities can be determined
a posteriori. For flows with developing boundary layers or separated flow, or in
other cases where the flow depends more critically on the near-wall behaviour,
an iterative strategy may be required in which a RANS model, matched to long-
time averages of the outer flow, is computed occasionally to correct the mean wall
stresses.

Wall modelling studies are still needed using simulations with high fidelity
numerical methods (e.g., spectral-spline [27]) to separate issues of numerical res-
olution and errors from actual wall model performance. There is also ample high
Reynolds number data from turbulent pipe flow experiments for both smooth and
rough walls [1, 39, 49], and it would be useful to test the performance of coarse LES
in these flows using low-order finite-difference as well as higher fidelity numerical
methods. We may also be able to gain some insight from the experimental data
into the general effects of wall models by observing the effects of wall roughness.
Ultimately, we want to incorporate wall roughness effects in an accurate way into
the wall models.

The overarching question of whether wall models in LES can be considered
to be successful or not at this time is rather subjective, since what is deemed
acceptable depends on the flow problem at hand, the quantities one is interested in,
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and one’s tolerance for error. But, with regard to numerical resolution, it appears
in many cases that the old adage, “you get what you pay for”, still applies.
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