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Discrete Time Series Analysis



Discrete Time (or Space) Series

• Consider uniformly spaced data in time (could be space).

• We will call this series discrete because there is a finite
number of data points, which represent a sample of the true
continuously-varying signal.
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Discrete Time (or Space) Series

• N → total number of data points

• to + k∆t → kth data point (0 ≤ k ≤ N − 1)

• A(tk) = A(k) = Ak → notation for sampled series

• T = N∆t → total period of sampling
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Taylor’s Frozen Turbulence Hypothesis

“ If the velocity of the air stream which carries
the eddies is very much greater than the turbu-
lent velocity, one may assume that the sequence
of changes in u at the fixed point are simply
due to the passage of an unchanging pattern of
turbulent motion over the point, i.e. one may
assume that

u = φ(t) = φ
( x
U

)
where x is measured at time t = 0 from the
fixed point where u is measured. ”
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Taylor’s Frozen Turbulence Hypothesis

• As a result turbulence measurements that are made as a
function of time can be translated into a corresponding spatial
measurement.

• This hypothesis is useful for cases where turbulent eddies
evolve with a timescale longer than the time scale it takes the
eddy to be advected past the sensor.
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Taylor’s Frozen Turbulence Hypothesis

• Following Stull (1988), the substantial derivative is zero for
Taylor’s Hypothesis

• Thus,
∂ζ

∂t
= −u∂ζ

∂x
− v ∂ζ

∂y
− w∂ζ

∂z

• If we assume that w = 0 and write U =
√
u2 + v2, then

∂ζ

∂t
= −U ∂ζ

∂xd

where xd indicates along the direction of the wind.
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Taylor’s Frozen Turbulence Hypothesis

• We can also write Taylor’s hypothesis in terms of wavenumber
k and frequency f :

k =
f

U

where k = 2π/λ and f = 2π/T for wavelength λ and wave
period T .

• k has dimensions of radians per unit length.

• f has dimensions of radians per unit time.
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Estimating Dissipation Rate

• Recall when we derived the turbulence kinetic energy balance
equation that dissipation was written as:

ε = ν
∂u′i
∂xj

∂u′i
∂xj

• Assuming homogeneous isotropic turbulence, dissipation may
be estimated as:

ε = 15ν

(
∂u′

∂x

)2

• We can invoke Taylor’s frozen turbulence hypothesis to
rewrite as

ε = 15ν

(
− 1

U

∂u′

∂t

)2

where ∂u′/∂t is approximated, for example, from
measurements.
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Estimating Dissipation Rate

ε = 15ν

(
− 1

U

∂u′

∂t

)2

• Remember that dissipation occurs at very small time and
space scales.

• Thus, our measurement probes must be small and sample at
high frequencies.

• Examples are sonic anemometers or hot-wire probes.
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Autocorrelation

• Consider the discrete autocorrelation, which measures the
persistence of a wave within the duration of a discrete series.

• Existence of persistent features may point to particular
physical phenomena (e.g., eddy).

RAA(L) =

N−j−1∑
k=0

[(
Ak −Ak

) (
Ak+j −Ak+j

)]
[
N−j−1∑
k=0

(
Ak −Ak

)2]1/2 [N−j−1∑
k=0

(
Ak+j −Ak+j

)2]1/2

where the lag L = j∆t
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Autocorrelation

• Note that we use two different means depending on where we
are in the time series

Ak =
1

N − j

N−j−1∑
k=0

Ak Ak+j =
1

N − j

N−j−1∑
k=0

Ak+j

• If we assume that the data is stationary (homogeneous in
space):

RAA(L) '
A′kA

′
k+j

σ2A

• As lag increases, we use less of the series and so the statistical
significance of RAA decreases.

• Thus, we compute RAA for the range of lags (j = 0 to
j = N/2).
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Autocorrelation

• Autocorrelation can aid in showing the persistence of an eddy
• Integral scale `o =

∫∞
0 RAA(L)dL is a measure of the area

over which a signal is correlated with itself (indicates largest
eddies in the flow).

• Kolmogorov microscale is found by fitting a parabola to the
near-origin points (see Tennekes and Lumley) and locating the
x-intercept. This measures the smallest eddies that are
dynamically significant in the flow.
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Discrete Fourier Transform

There are several ways to describe the frequency of our series.

• n = number of cycles per time period (from 1 to N − 1)

• ñ = cycles per second: n/T = n/(N∆t)

• f = radians per second: 2πn/T = 2πn/(N∆t)

Frequency values mean different things

• n = 0→ mean value

• n = 1→ fundamental frequency (one wave fills T )

• n > 1→ harmonics of the fundamental frequency
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Discrete Fourier Transform

• We can represent our series as the superposition of sine and
cosine waves via Euler’s formula [exp(ix) = cos(x) + i sin(x)]

Ak =

N−1∑
k=0

FA(n)ei2πnk/N

where FA(n) is the discrete Fourier transform.

• FA(n) is a complex number where the real part is the
amplitude of the cosine waves and the imaginary part is the
amplitude of the sine waves.

• FA(n) is a function of frequency because waves of different
frequencies have to be multiplied by different amplitudes to
reconstruct the signal.
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Discrete Fourier Transform

• If we have the discrete series, we can solve for the Fourier
coefficients

FA(n) =

N−1∑
k=0

(
Ak
N

)
e−i2πnk/N

• This is the forward transform, which converts from physical to
phase space.

• Another name for this expression is Fourier decomposition.
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Discrete Energy Spectrum

• We are interested in how much variance of a discrete series is
associated with a particular frequency.

• We are not interested in the phase of the waves

• In fact, we expect that a turbulent signal does not behave
physically like a wave at all.

• It is still useful to break the turbulent signal into components
of different frequencies, which we associate with eddies of
different sizes.

• i.e., large eddies have low frequency and small eddies have
high frequency
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Discrete Energy Spectrum

• Note that the signal power (power at different frequencies) is
defined as:

P =
1

T

∫
A2(t)dt

• So we need to find the square of the norm of our transform

FA(n) = Fr︸︷︷︸
real

+ iFi︸︷︷︸
imag

F ∗A(n) = Fr − iFi︸ ︷︷ ︸
complex conjugate

|FA(n)|2 = FA(n)F ∗A(n)

= (Fr + iFi)(Fr − iFi)
= F 2

r − FriFi + FriFi + F 2
i

= F 2
r + F 2

i
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Discrete Energy Spectrum

• In Matlab:

|Fu(n)|2 =

[
fft(u)

length(u)

]
. ∗ conj

[
fft(u)

length(u)

]
• If we sum up |FA(n)|2 from n = 1 to N − 1, we get the total

biased variance

N−1∑
n=1

|FA(n)|2 =
1

N

N−1∑
k=0

(Ak −Ak)2 = σ2A

• Thus, we say that the |FA(n)|2 is the portion of variance
explained by waves of frequency n.

• Note: we don’t sum over n = 0 because that represents the
mean value of the signal, which does not contribute to the
variation of the signal about the mean.
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Discrete Energy Spectrum

• If we define GA(n) = |FA(n)|2, then:

GA(n)

σ2A

describes the fraction of the variance explained by frequency
n. In this sense, it is analogous to the correlation coefficient.

• We can write the discrete spectral energy EA(n) as:

EA(n) = 2|FA(n)|2

for n = 1 to nf when N is odd, or

EA(n) = 2|FA(n)|2

for n = 1 to nf − 1 and

EA(n) = |FA(n)|2

at n = nf when N is even.
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Discrete Energy Spectrum

• The discrete spectral energy may be used for variables such as
temperature, humidity, and velocity in order to separate the
total variance into contributions by different frequencies.

• Be careful not to assume that spectra of temperature and
humidity relate to eddy motions since variations of these
variables can persist in a non-turbulent flow as a “footprint”
of previous turbulent activity.

• An example is the residual layer that persists after sundown,
when the gradients of moisture and temperature can maintain
their shapes that were created during the convective boundary
layer.

• The variance of velocity fluctuations u′ has the same units as
turbulence kinetic energy per unit mass - thus, the spectrum
of velocity is often called the energy spectrum.
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Spectral Density

• Several theories use continuous spectra instead of discrete
spectra.

• Instead of summing discrete spectra over all n to obtain the
total variance, they assume the existence of a spectral
energy density, that can be integrated over n to yield the
total variance:

σ2A =

∫
n
SA(n)dn

• The spectral energy density SA(n) has units of A2 per unit
frequency.

• We can approximate the spectral energy density as:

SA(n) =
EA(n)

∆n
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Spectral Density

SA(n) =
EA(n)

∆n

• ∆n is the difference between neighboring frequencies.
• When n is used to represent frequency, then ∆n = 1. Other

representations, such as f , do not necessarily lead to ∆n = 1.
• The SA(n) points are plotted as curve to represent the

spectrum.

via Stull (1988)
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Spectral Density

via Stull (1988)
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Spectral Density

linear-linear plots

• As in panel (a), area under curve between pair of frequencies
is proportional to the portion of variance explained by that
range of frequencies.

• Visually useless because high-frequency scales are masked by
the large values at low frequencies.

• Alternative are to expand the low-frequency part of the
spectrum (panel b), or to multiply the spectral density by f
(panel c).

• These approaches still focus on the spectral peak and lose
information at high frequencies.
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Spectral Density

semi-log plots

• In this approach (panel d), f ·SA(f) is plotted against log(f)

• Making the x-axis a log scale results in the expansion of the
low-frequency parts of the spectrum.

• Multiplying the spectral density by f results in the expansion
of the high-frequency parts of the spectrum alongt he y-axis.

• The area under any part of the curve is proportional to the
variance.
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Spectral Density

log-log plots

• This presentation (panel e) is logSA(f) vs. log f .

• A wide range of frequencies and spectral densities are
discernible.

• Power laws (such as Kolmogorov’s −5/3 law) appear as
straight lines.

• The area under a curve is no longer proportional to variance.
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Spectral Density

log-log plots

• Another version of the log-log plot (panel f) is log f ·SA(f)
vs. log f .

• Same characteristics of previous log-log plot.

• f ·SA(f) has the same units as variance, which makes
normalization easier.

• The area under a curve is also no longer proportional to
variance.

• One last approach is a normalize (make dimensionless) the
x-axis and y-axis by way of scaling variables (panel g).
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Cross Spectra

• Using the ideas before for one variable, consider the cross
spectra of two variables

GAB = F ∗A(n)FB(n)

= (FAr − iFAi)(FBr + iFBi)

= FArFBr − iFAiFBr + FAriFBi + FAiFBi

= Co − iQ

where the real parts make up the co-spectrum (Co) and the
imaginary parts make up the quadrative (Q) spectrum

Co = FArFBr + FAiFBi

Q = FAiFBr − FARFBi
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Cospectrum

• Like with variance and energy spectrum, the sum over all
frequencies of all co-spectral amplitudes is the covariance of A
and B.

N−1∑
n=0

Co(n) = A′B′

• This is not the same as the spectrum of the time series of
A′B′

• As a result, the co-spectrum can have negative values.

• Recall, energy spectrum cannot (magnitude).
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Discrete Energy Cospectrum

• We can write the discrete cospectral energy EA(n) as:

EAB(n) = 2|Co(n)|2

for n = 1 to nf when N is odd, or

EAB(n) = 2|Co(n)|2

for n = 1 to nf − 1 and

EAB(n) = |Co(n)|2

at n = nf when N is even.
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Cospectral Density

• We can approximate the co-spectral energy density as:

CSAB(n) =
EAB(n)

∆n

• And

A′B′ =

∫
n
CSAB(n)dn

• As CSAB(n)→∞ at high frequency, we have an indicator of
local isotropy.
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Phase Spectrum

• The phase spectrum Φ is defined as:

tan Φ =
Q

Co

• This is interpreted as the phase difference between the two
time series A and Bthat yields the greatest correlation for any
frequency.

• This helps understand the physical structure of the flow.

34 / 34


	Practical Time Series Analysis
	Discrete Time (or Space) Series
	Taylor's Frozen Turbulence Hypothesis
	Estimating Dissipation Rate
	Autocorrelation
	Discrete Fourier Transform Review
	Discrete Energy Spectrum
	Spectral Density
	Two-variable Spectra


