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Integral Flux-Profile Relationships: Overview

e Dimensionless gradients of velocity, temperature, and
moisture are universal functions of ( = z/L.

e We can vertically integrate these gradients to obtain explicit
expressions for their profiles.

e When this is done, we will build in corrections for static
stability.



Integral Flux-Profile Relationships: Momentum

e Integrate flux-profile equation from 21 to zo > 21 in the ASL
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Integral Flux-Profile Relationships: Momentum
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o Let's take z; = 29 (where w=10) and z2 = z > 2z
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e 1, is called the stability correction function and describes the
deviation of the velocity profile from the log-law due to the
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effect of atmospheric stability.

e We generally take v,,(¢p) = 0 and ¥, = ¥, ({o), which gives

the common approximate form
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Integral Flux-Profile Relationships: Momentum

Stable

e Dyers function
$m(C) =145 where (>0

e Stability correction function
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Integral Flux-Profile Relationships: Momentum

Unstable

e Dyers function
dm(C) = (1 —16¢)"/* where ¢ <0
e Stability correction function

Apply a similar procedure and use a standard integral table to
arrive at
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where z = ¢ = (1 —16¢)"/*




Integral Flux-Profile Relationships:

Momentum
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Fig 9.5 from Stull (1988)
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Integral Flux-Profile Relationships: Momentum
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e Deviations from the log-law increase with increasing |(]

e Under stable conditions, the profiles are log-linear and tend to
become linear for large (.

e For unstable conditions, ¥, ¥ > 0, so deviations are
negative. Accordingly, the profiles become increasingly
curvilinear for large [(]. @
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Integral Flux-Profile Relationships: Heat/Moisture

e Integrate flux-profile equation from z; to zo > z; in the ASL
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Integral Flux-Profile Relationships: Heat/Moisture

e Take 91(Cop) = 0 and ¢y, = ¥y (Cog), which gives the common

Yn (C2,C1) :/z

o Let's take z1 = zgg (where 6 =

0(2) = 05 +0[1 (;00 —T/Jh(C,Co)]
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approximate form

e Similarly,
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Integral Flux-Profile Relationships: Heat/Moisture

Stable

e Dyers function
on(C) =1+5¢ where ¢ >0

e Stability correction function

o) = [ 1280y,
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Integral Flux-Profile Relationships: Heat/Moisture

Unstable

e Dyers function
én(¢) = (1 —16¢)"2 where ¢ <0
e Stability correction function

Apply a similar procedure and use a standard integral table to

arrive at
Yn(¢) =2In <1J2ry)

where y = gb,:l =(1- 16{)1/2
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Calculation of Surface Turbulent Fluxes

e Here is a practical guide for how to compute surface turbulent
fluxes in the case of non-coinciding measurements/model
levels.

e In this scenario, we have mean values of u,T'(abs. temp), and
q measured at uy, us at zy1, 2u2, 11 =~ 01,15 =~ 05 at zp1, 242,
and q1,Qq2 at Zql, Zq2-

e p is known at one of measurement level and 5 and p can also
be evaluated.

0
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Calculation of Surface Turbulent Fluxes

@ First approximation: u, 8, and ¢ are neutral and logarithmic

Zu2
us —up = — ln 2=
K Zul
0. 202

6y — 6, = —1n
K 201
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which gives a first guess of the turbulence scales

_ k(ug —uq)

16 /20



Calculation of Surface Turbulent Fluxes

® Based on those scales, evaluate the Obukhov length

u

I =
(B0, + 0.61gqy)

®© If z;,/|L| < 1 (2}, = highest measurement level), the flow is
considered neutral. It is reasonable to take z;,/|L| = 0.01 as
the lower limit for the non-neutral case.

In a near-neutral ASL (z5,/|L| < 0.01), kinematic fluxes are
evaluated based on the computed scales.

2
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W' = —u,0,

@
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Calculation of Surface Turbulent Fluxes

O If z;,/|L| > 0.01, we proceed to new approximations of the
turbulence scales
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making sure to account for the sign of L and applying the @

proper stability correction functions.
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Calculation of Surface Turbulent Fluxes

© Based on the new scales, evaluate the Obukhov length

u

L =
k(B0 + 0.61gq.)

@ Steps 4 and 5 are repeated until the difference between the
new and old values of L reach a minimum threshold (~ 0.01).

@ Based on computed scales, compute kinematic fluxes as

2

wu' = —u;
W' = —u,0,
w'q = —uLqx
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Calculation of Surface Turbulent Fluxes

® Finally, u, 6, and ¢ are obtained at any level z in the ASL:

u
u(z) = up + —
R Zul

In <z> — m(C) + ¢m<cu1>]

0(z) =6, + % In (z:l) —¢Yn(Q) + %(461)]
q(2) = q + % In (;) —¥n(¢) + %(qu)]

Note: In this case, z > zy1, 291, 241. However, you can use
values of u, 0, and ¢ at some height 2,2, 292, 242 to obtain
their respective values at some height 2 < 22, 292, 242

0
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