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Similarity Theory



Similarity Theory

• Goal: We want to describe physical processes in the ABL.

• Problem: We lack understanding of the underlying physics.

• Solution: Derive empirical relationships b/t ABL variables.

• Tool: Similarity theory - group variables, create relationships.
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Similarity Theory

• Similarity theory is based on placing variables into
dimensionless groups.

• We will use Buckingham Pi theory to do this.

• The goal is to properly group the variables such that we can
create universal relationships between them.
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Similarity Theory

Four Steps to Develop Similarity Theory

• Choose relevant variables

• Organize variables into dimensionless groups

• Use experimental data to determine values of dimensionless
groups

• Create bets-fit curve to describe the relationship between the
variables
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Similarity Theory

• Result is an empirical equation or curves that show the same
shape (i.e., they look self-similar - thus, similarity theory).

• We hope the result is universal so that we can apply it to
other situations different to our experiment.

• The derived equations are called similarity relationships.

• These relationships are usually applied to steady-state
situations.

• Think of similarity theory as a zero-order closure - we can use
them to diagnose values of mean wind, temperature, and
moisture as a function of height without making any
assumptions regarding turbulence closure
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Buckingham Pi Theory

• Buckingham (1914) proposed a systematic approach for
dimensional analysis.

• Buckingham Pi Theory represents an optimal approach to
determine a dependent variable in a physical problem.

• If we can identify m− 1 parameters that govern a dependent
variable, and if n is the number of dimensions, then:

• m− n independent dimensionless quantities (π groups) are
formed (cannot be made from other π groups)

• m− n independent dimensionless quantities are functionally
related so that the dependent variable can be taken as a
function of the governing parameters.

• The requires a grasp of a problem’s physics.
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Buckingham Pi Theory

Buckingham Pi Theory - A procedure to group variables into
dimensionless groups

1 Select variables relevant to the problem

2 Find the dimensions of each variables and express in terms of
fundamental dimensions: (e.g., length, mass, time, temp.)

3 Count the number of fundamental dimensions

4 Pick subset of the original variables as “key” variables, subject
to these restrictions:

• The number of key variables must be equal to the number of
fundamental dimensions.

• All fundamental dimensions must be represented in the key
variables

• No dimensionless group may be possible from any combination
of the key variables
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Buckingham Pi Theory

Buckingham Pi Theory - A procedure to group variables into
dimensionless groups

5 Form dimensionless equations of the remaining variables in
terms of the key variables

6 Solve for powers of the terms in the equations to yield
dimensionally consistent equations

7 Divide the left hand side of each equation by the right to get
dimensionless (π) group. The number of π groups will always
equal the number of variables minus the number of
dimensions.
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Buckingham Pi Theory: Example

Consider flow through a pipe. How does τ vary?

1 We hypothesize that the important variables are fluid density,
dynamic viscosity, velocity, shear stress, pipe diameter, and
pipe roughness

2 The fundamental dimensions of these variables are:

fluid density ρ M L−3

dynamic viscosity µ M L−1 T−1

velocity U L T−1

shear stress τ M L−1 T−2

pipe diameter D L

pipe roughness z0 L
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Buckingham Pi Theory: Example

Consider flow through a pipe. How does τ vary?

3 There are 3 fundamental dimensions: M,L,T

4 We need 3 key variables. Let’s choose ρ, D, and U .

5 Now we form dimensionless equations for µ, τ , and z0 in
terms of ρ, D, and U

τ = ρaDbU c

µ = ρdDeUf

z0 = ρgDhU i
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Buckingham Pi Theory: Example

Consider flow through a pipe. How does τ vary?

6 Now we solve for the exponents. Let’s look at τ :

τ = ρaDbU c

M L−1 T−2 = (M L−3)a(L)b(L T−1)c

M L−1 T−2 = Ma L−3a+b+c T−c

We must match dimensions

M : 1 = a L : −1 = −3a+ b+ c T : −2 = −c

We solve for the unknowns to yield:

a = 1 b = 0 c = 2
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Buckingham Pi Theory: Example

Consider flow through a pipe. How does τ vary?

6 Thus, our dimensionally consistent equation is:

τ = ρ1D0U2 = ρU2

Similarly, we find that:

µ = ρUD z0 = D

7 Now we divide the left by the right side to get our π groups

π1 =
τ

ρU2
π2 =

µ

ρUD
π3 =

z0
D

Note that π1 is the drag coefficient CD, π2 is inverse
Reynolds number Re, and π3 is relative roughness.
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Scaling Variables

• For similarity theory, we want variables that represent forcings
on the boundary layer (e.g., fluxes).

• Some key variables appear often and are called scaling
variables.

• Generally, we want one length scale, one velocity scale, and if
needed a temperature/moisture scale (usually no time scale
since it can be made from length and velocity scales).

• Some variables always appear grouped, which allows for the
creation of new scaling variables based on their combination.
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Scaling Variables

• Some common scaling variables for the atmosphere:

u∗ = (−w′u′)1/2

θ∗ =
−(w′θ′)
u∗

θv∗ =
−(w′θ′v)
u∗

q∗ =
−(w′q′)
u∗

b∗ =
−(w′b′)
u∗

16 / 28



Scaling Variables

• Let’s consider the signs of these scaling variables depending
on static stability:

unstable→ w′b′ > 0, ∂b/∂z < 0, b∗ < 0

neutral→ w′b′ = 0, ∂b/∂z = 0, b∗ = 0

stable→ w′b′ < 0, ∂b/∂z > 0, b∗ > 0

• Notice how the scaling terms are aligned with the gradients.
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Monin-Obukhov Similarity Theory

• Theory developed for the atmosphere by Monin-Obukhov
(1954) based on dimensional analysis.

• Monin-Obukhov Similarity Theory (MOST) suggests that
there are four parameters governing quasi-steady-state
turbulence immediately above a flat, horizontally-
homogeneous surface

` = κz length scale of turbulence

u∗ friction velocity

B0 = w′b′ buoyancy flux

∂u/∂z velocity gradient

• Note: κ is the von Kármán “constant”, which is a
dimensionless constant of proportionality introduced to relate
the turbulence length scale and height above the surface. A
typical value is κ = 0.4.
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Monin-Obukhov Similarity Theory

It is also important to consider what we ignored:

• boundary layer depth: assume largest eddies do not greatly
influence eddies near the surface

• mean wind : turbulence must be invariant to Galilean
transformations, and the mean wind is not

• rotational effects: turbulence Coriolis force is very small

• molecular effects: turbulence Reynolds number is very large

• roughness elements z0: assume z � z0
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Monin-Obukhov Similarity Theory

• The fundamental dimensions of our governing variables are:

turbulence length scale ` L

friction velocity u∗ L T−1

buoyancy flux B0 L2 T−3

velocity gradient ∂u/∂z T−1

• So we have m = 4 paramters and n = 2 dimensions.

• Accordingly, we expect to have m− n = 2 π groups.

• We take group as a non-dimensionalized dependent variable
and the other as the independent variable.
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Monin-Obukhov Similarity Theory

• Let’s fidn the non-dimensionalized dependent variable
• There are 2 fundamental dimensions: L,T
• We need 2 key variables. Let’s choose u∗ and κz.
• Form a dimensionless equation for ∂u/∂z in terms of u∗ and
κz:

∂u/∂z = ua∗ (κz)
b

• Now we solve for the exponents.

∂u/∂z = ua∗ (κz)
b

T−1 = (L T−1)a (L)b

T−1 = La+b T−a

We must match dimensions

L : 0 = a+ b T : −1 = −a
We solve for the unknowns to yield:

a = 1 b = −1
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Monin-Obukhov Similarity Theory

• Thus, our dimensionally consistent equation is:

∂u/∂z = u1∗ (κz)
−1

• Now we divide the left by the right side to get our π groups

π1 =
κz

u∗

∂u

∂z

• This represents the non-dimensional dependent variable
(vertical gradient of velocity)
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Monin-Obukhov Similarity Theory

• Now, let’s find the independent variable.
• There are 2 fundamental dimensions: L,T
• We need 2 key variables. Let’s choose u∗ and B0.
• Form a dimensionless equation for ` in terms of u∗ and B0:

` = κz = ua∗B
b
0

• Now we solve for the exponents.

κz = ua∗B
b
0

L = (L T−1)a (L2 T−3)b

L = La+2b T−a−3b

We must match dimensions

L : 1 = a+ 2b T : 0 = −a− 3b

We solve for the unknowns to yield:

a = 3 b = −1
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Monin-Obukhov Similarity Theory

• Thus, our dimensionally consistent equation is:

κz = u3∗ B
−1
0

• Now we divide the left by the right side to get our π groups

π2 =
κzB0

u3∗

• Remember that we said some scaling variables always appear
in a particular grouping? Here we define a new scaling
variable called the Obukhov length,

L = − u3∗
κB0

• Thus,
π2 = −

z

L
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Monin-Obukhov Similarity Theory

Aside: Obukhov Length

• |L| is interpreted as the height at which buoyancy effects
become dynamically important.

• Neutral conditions: L→∞⇒ z/L = 0

• Stable conditions: L > 0

• Unstable conditions: L < 0

• In the absence of surface stress (no mean flow), L = 0
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Monin-Obukhov Similarity Theory

• The two π groups are functionally related, thus

κz

u∗

∂u

∂z
= φm

( z
L

)
where φm is a universal function of ζ = z/L

• Similarly, we can show that

κz

θ∗

∂θ

∂z
= φh (ζ)

κz

θv∗

∂θv
∂z

= φv (ζ)

κz

b∗

∂b

∂z
= φb (ζ)

κz

q∗

∂q

∂z
= φq (ζ)

Often we assume that φh = φv = φb = φq

• Thus, when normalized by z, L, u∗, θ∗, θv∗, b∗, q∗, gradients of
mean turbulent quantities are functions of only ζ = z/L!
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Monin-Obukhov Similarity Theory

• We need formulations for our universal similarity functions
• Many empirical forms have been formulated using data from

the famous 1968 Kansas experiment.

From Wyngaard (2010)
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Monin-Obukhov Similarity Theory

• Although many forms exist, your professor prefers the
functions proposed by Dyer (1974) because they are compact

neutral φm = 1 φh = 1

unstable φm = (1− 16ζ)−1/4 φh = (1− 16ζ)−1/2

stable φm = 1 + 5ζ φh = 1 + 5ζ

• Thus, MOST allows us to determine turbulent fluxes from the
mean gradients

28 / 28


	Similarity Theory
	Overview
	Buckingham Pi Theory
	Scaling Variables
	Monin-Obukhov Similarity Theory


