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Statistical Tools for Turbulence



Basic Properties of Turbulence

• Consider the velocity field U .

• Since U is a random variable, its value is unpredictable for a
turbulent flow.

• Thus, any theory used to predict a particular value for U will
likely fail.

• As we saw, however, certain statistical measures (histogram)
appear to be reproducible.
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Basic Properties of Turbulence

• Consider the velocity field U .

• In this time trace, notice that velocity is bounded, so there is
some defined measure of turbulence intensity.

• The ability to pick a mean value means that the flow field is
not entirely random.

• The time trace shows the existence of multiple time scales,
which suggests that there are spatial features of different sizes
and durations (i.e. a spectrum)
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Turbulence Spectrum

• Example spectrum of wind speed near the ground

From Stull (1988)
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Turbulence Spectrum

• In the example spectrum, the vertical axis gives the
contribution to the total turbulence energy by a particular
eddy size, while the horizontal axis gives the size of eddies
contained in the spectrum in terms of their duration.

• Peaks show scales with the largest contribution.

• The left peak, associated with a period of 100 hours, is
associated with wind speed variations caused by frontal
passages and weather systems.

• The next peak is at 24 hours, which highlights the diurnal
variations in wind speed.

• The right peak, located between 10 seconds and 10 minutes,
is evidence of small-scale eddies associated with turbulence.
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Turbulence Spectrum

Spectral Gap

• The relative lack of variation between the synoptic and
microscale peaks is called the spectral gap.

• Motions to the left are considered the mean flow, and motions
to the right are considered the turbulent flow.

• The spectral gap allows us to separate the flow into turbulent
and non-turbulent parts.
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Turbulence Spectrum

Mean and fluctuating parts

• To isolate large scales from small scales, we can average over
a period of 30 minutes to 1 hour

• This allows us to average out the positive and negative
fluctuations about the mean

• The mean (U ; more later) is subtracted from the
instantaneous value (U) to obtain the turbulent part

u′ = U − U
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Turbulence Spectrum

Mean and fluctuating parts

• You can think of the turbulent fluctuation u′ as a gust of wind
associated with variations lasting longer than an hour, while
the mean wind U is the part of the wind with variations that
last longer than an hour (or so).

From Stull (1988)

• This underscores the need to describe turbulence statistically.
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Sample Space

• In reality, a velocity field U(~x, t) is more complicated than a
single random variable.

• We need a wide range of statistical tools to characterize
random variables.

• In order to consider more general events, we need to think in
terms of sample space.

• Consider an independent velocity variable V , which is the
sample-space variable for U .
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Sample Space

B ≡ {U < Vb}
C ≡ {Va ≤ U < Vb}

B and C are events (or values) that correspond to different regions
of the sample space (i.e., velocity field).
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Probability

• Using the previous example, the probability of event B is
given as:

p = P (B) = P{U < Vb}

• This is the likelihood of B occurring (U < Vb).

• p is a real number, 0 ≤ p ≤ 1.

• p = 0 is an impossible event.

• p = 1 is a certain event.
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Cumulative Distribution Function

• The probability of any event is determined by the cumulative
distribution function (CDF)

F (V ) ≡ P{U < V }

• For event B:

P (B) = {U < Vb} = F (Vb)

• For event C:

P (C) = {Va ≤ U < Vb} = P{U < Vb} − P{U < Va}
= F (Vb)− F (Va)
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Cumulative Distribution Function

Three basic properties of CDF:

• F (−∞) = 0, since {U < −∞} is impossible.

• F (∞) = 1, since {U >∞} is impossible.

• F (Vb) ≥ F (Va), for Vb > Va, since p > 0. Thus, F is a
non-decreasing function.
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Probability Density Function

The probability density function (PDF) is the derivative of the CDF

f(V ) ≡ dF (v)

dV

Based on the properties of the CDF, it follows that:

• f(V ) ≥ 0

•
∫∞
−∞ f(V )dV = 1

• f(−∞) = f(∞) = 0
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Probability Density Function

The probability that a random variable is contained within a
specific interval is the integral of the PDF over that interval

P (C) = P{Va ≤ U < Vb} = F (Vb)− F (Va)

=

∫ Vb

Va

f(V )dV

Or, for a very small interval dVs:

P (Cs) = P{Va ≤ U < Va + dVs} = F (Va + dVs)− F (Va)

= f(Va)dVs

17 / 55



Probability Density Function

More details about the PDF f(V ):

• f(V ) is the probability per unit distance in the sample space –
hence, the term density.

• f(V ) has dimensions of U−1, while the CDF is dimensionless.

• The PDF fully characterizes the statistics of a signal (random
variable).

• If two or more signals have the same PDF, then they are
considered to be statistically identical.
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CDF (top) vs. PDF (bottom)
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The Mean

We can also define a signal by its individual statistics, which
collectively describe the PDF.

The mean (or expected) value of a random variable U is given by:

U ≡
∫ ∞
−∞

V f(V )dV

or in discrete form:

U ≡ 1

N

N∑
i=1

Vi

The mean represents the probability-weighted sum of all possible
values of U .
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The Mean: Temporal Averaging

• For a continuous function at point in space s = (x, y, z) over
a time period P , where the turbulence is assumed to be
stationary (the statistics are NOT changing over the
averaging period), the time average is given by:

ut(s) =
1

P

∫ t=t0+P

t=t0

u(t, s)dt

• For discrete data uniformly spaced in time, where P = N∆t:

ut(s) =
1

N

N∑
i=1

u(t, s)
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The Mean: Spatial Averaging

• Applies at in instant in time and is given as an integral of the
spatial domain S:

us(t) =
1

S

∫
S
u(t, s)dS

• Over some volume S = ∆x∆y∆z:

us(t) =
1

∆x∆y∆z

∫ ∫
S

∫
u(t, x, y, z)dxdydz

• For line averaging uniformly spaced data in space, where
Y = N∆y:

us(t) =
1

Y

∫ y=Y

y=0
u(t, s)dy

or discretely

us(t) =
1

Y

N∑
i=1

u(t, s)
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The Mean: Ensemble Averaging

• Averaging over a number (N) of experiments at a point in
space. This method of averaging tends to minimize random
experimental errors by repeating an experiment.

ue(t, s) =
1

N

N∑
i=1

ui(t, s)
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The Mean: Ergodicity

• If the turbulence is both homogeneous and stationary, the
time, space, and ensemble averages should be the same,
namely

ut = us = ue = u

• homogeneous turbulence ⇒ statistics are invariant of
coordinate translation

• stationary turbulence, ⇒ the statistics are invariant to the
choice of time window

• In the atmosphere there are many occasions when turbulence
is neither homogeneous (e.g., around trees or buildings) or
stationary (e.g., evening decay of the CBL)

• We must be very careful in applying the various types of
averaging.
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The Mean: Ergodicity

• Consider this time series of potential temperature during the
evening transition. These data clearly show the diurnal
decrease of temperature in evening.

• If we choose an averaging time of 1 hr, we will be including
this diurnal variation in our fluctuations.

• This problem may be avoided by using smaller averaging times
or using linear detrending techniques
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Reynolds Averaging

• We saw that the spectral gap allows the separation of a flow
field into mean and perturbation parts.

• The formal procedure of applying this separation is called
Reynolds decomposition or Reynolds averaging.

• Accordingly, it is important to discuss the properties of the
mean in this context.

• We will use this procedure and rules when deriving the
turbulence equations (next lecture).
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Reynolds Averaging

Rules of averaging:

• c = c, where c is a constant

• (c A) = c A

• (A) = A

• (A B) = A B

• (A+B) = A+B

•

(
dA

dt

)
=
dA

dt
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Reynolds Averaging

• Let’s apply these rules to variables that have been split into
their mean and perturbation parts.

• Let A = A+ a′ and B = B + b′

• Start with A

(A) = (A+ a′) = (A) + a′ = A+ a′

The only way this is true is if a′ = 0, which makes sense if we
consider the definition of the mean (i.e., the sum of positive
perturbations from the mean equals the sum of the negative
perturbations).
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Reynolds Averaging

• Consider another example:

(B a′) = B a′ = B · 0 = 0

• Similarly, (A b′) = 0

• Lastly:

A B = (A+ a′)(B + b′) = A B +A b′ + a′ B + a′ b′

= A B + A b′︸︷︷︸
=0

+B a′︸︷︷︸
=0

+a′ b′

= A B + a′ b′

Where a′ b′ is covariance (more later), or variance if a′ = b′.
Note: although a′ = 0 and b′ = 0, a′ b′ is not necessarily 0.
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Variance

Recall that a fluctuation (or perturbation) from the mean:

u′ ≡ U − U

The variance is just the mean-square fluctuation:

σ2u = var(U) = u′2

=

∫ ∞
−∞

(V − U)2f(V )dV

Or, in discrete form:

σ2u =
1

N − 1∗

N∑
i=1

(Vi − U)2

Variance essentially measures how far a set of (random) numbers
are spread out from their mean.

∗note the (N − 1). This is the Bessel correction – used to correct for bias.
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Standard Deviation

The standard deviation, or root-mean square (rms) deviation, is
just the square-root of the variance:

σu ≡ sdev(U) =
√
σ2u =

√
u′2

The standard deviation basically measures the amount of variation
of a set of numbers.
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Other moments

The nth central moment is defined as:

µn ≡ u′n =

∫ ∞
−∞

(V − U)nf(V )dV
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Standardized Moments

It is often advantageous to express variables as standardized
random variables. These standardized variables have zero mean
and unit variance.

The standardized version of U (centered and scaled) is given by:

Û ≡ U − U
σu

Accordingly, the nth standardized moments are expressed as:

µ̂n ≡
u′n

σnu
=
µn
σnu

=

∫ ∞
−∞

V̂ nf̂(V̂ )dV̂
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Other moments

Different moments each describe an aspect of the shape of the
PDF:

• µ1 = mean (expected value)

• µ2 = variance (spread from the mean)

• µ̂3 = skewness (asymmetry of PDF)

• µ̂4 = kurtosis (sharpness of the PDF peak)
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Example PDFs

Read Pope (Chapter 3.3) for descriptions of different PDFs.

Examples include:

• uniform

• exponential

• Gaussian

• log-normal

• gamma

• Delta-function

• Cauchy
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Joint Random Variables

So far, our statistical description has been limited to single random
variables. However, turbulence is governed by the Navier-Stokes
equations, which are a set of 3 coupled PDEs.

We expect this will result in some correlation between different
velocity components.
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Joint Random Variables

Example: turbulence data from the ABL: scatter plot of horizontal
(u) and vertical (w) velocity fluctuations.

The plot appears to have a pattern (i.e., negative slope).
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Joint Random Variables - Sample Space

We will now extend the previous results from a single velocity
component to two or more.

The sample-space variables corresponding to the random variables
U = {U1, U2, U3} are given by V = {V1, V2, V3}.
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Joint Random Variables - CDF

The joint CDF (jCDF) of the random
variables (U1, U2) is given by:

F12(V1, V2) ≡ P{U1 < V1, U2 < V2}

This is the probability of the point
(V1, V2) lying inside the shaded region
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Joint Random Variables - CDF

The jCDF has the following properties:

• F12(V1 + δV1, V2 + δV2) ≥ F12(V1, V2) (non-decreasing)
for all δV1 ≥ 0, δV2 ≥ 0

• F12(−∞, V2) = P{U1 < −∞, U2 < V2} = 0
since {U1 < −∞} is impossible.

• F12(∞, V2) = P{U1 <∞, U2 < V2} = P{U2 < V2}
F12(∞, V2) = F2(V2), since {U1 <∞} is certain.

In the last example, F2(V2) is called the marginal CDF.

40 / 55



Joint Random Variables - PDF

The joint PDF (jPDF) is defined as:

f12(V1, V2) ≡
∂2

∂V1∂V2
F12(V1, V2)

If we integrate over V1 and V2, we get the probability:

P{V1a ≤ U1 < V1b, V2a ≤ U2 < V2b} =

∫ V1b

V1a

∫ V2b

V2a
f12(V1, V2)dV2dV1
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Joint Random Variables - PDF

Based on the jCDF, the jPDF has the following properties:

• f12(V1, V2) ≥ 0

•
∫∞
−∞ f12(V1, V2)dV1 = f2(V2)

•
∫∞
−∞

∫∞
−∞ f12(V1, V2)dV1dV2 = 1

In the middle example, f2(V2) is called the marginal PDF.
Practically speaking, we find the PDF of a time (or space) series
by:

• Create a histogram of the series(group values into bins)

• Normalize the bin weights by the total # of points
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Joint Random Variables - Means

Similar to the single variable form, if we have Q(U1, U2):

Q(U1, U2) ≡
∫ ∞
−∞

∫ ∞
−∞

Q(V1, V2)f12dV2dV1

We can use this equation to define a few important statistics.
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Joint Random Variables - Covariance

We can define covariance as:

cov(U1, U2) ≡ u′1u′2

=

∫ ∞
−∞

∫ ∞
−∞

(V1 − U1)(V2 − U2)f12(V1, V2)dV2dV1

Or for discrete data

cov(U1, U2) ≡ u′1u′2

=
1

N − 1

N∑
j−1

(V1j − U1)(V2j − U2)

Covariance is basically a measure of how much two random
variables change together.
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Joint Random Variables - Covariance

Example: cov(w,θ) = w′θ′. This is the eddy flux concept.

Under convective conditions

• Parcel A: w
′
< 0 and θ

′
< 0→ w′θ′ > 0 (positive heat flux)

• Parcel B: w
′
> 0 and θ

′
> 0→ w′θ′ > 0 (positive heat flux)
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Joint Random Variables - Correlation Coefficient

The correlation coefficient is given by:

ρ12 ≡
u′1u

′
2√

u′1
2 u′2

2

Correlation coefficient has the following properties:

• −1 ≤ ρ12 ≤ 1

• Positive values indicate correlation.

• Negative values indicate anti-correlation.

• ρ12 = 1 is perfect correlation.

• ρ12 = −1 is perfect anti-correlation.
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Two-point Statistical Measures

Autocovariance measures how a variable changes with different
lags, s.

R(s) ≡ u(t)u(t+ s)

or the autocorrelation function

ρ(s) ≡ u(t)u(t+ s)

u(t)2

Or for the discrete form

ρ(sj) ≡
∑N−j−1

k=0 (ukuk+j)∑N−1
k=0 (u2k)
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Two-point Statistical Measures

Notes on autocovariance and autocorrelation

• These are very similar to the covariance and correlation
coefficient

• The difference is that we are now looking at the linear
correlation of a signal with itself but at two different times (or
spatial points), i.e. we lag the series.

• We could also look at the cross correlations in the same
manner (between two different variables with a lag).

• ρ(0) = 1 and |ρ(s)| ≤ 1
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Two-point Statistical Measures

• In turbulent flows, we
expect the correlation to
diminish with increasing
time (or distance)
between points

• We can use this to define
an integral time (or
space) scale. It is defined
as the time lag where the
integral

∫
ρ(s)ds

converges.

• It can also be used to
define the largest scales
of motion (statistically).
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Two-point Statistical Measures

The structure function is another important two-point statistic.

Dn(r) ≡ [U1(x+ r, t)− U1(x, t)]n

• This gives us the average difference between two points
separated by a distance r raised to a power n.

• In some sense it is a measure of the moments of the velocity
increment PDF.

• Note the difference between this and the autocorrelation
which is statistical linear correlation (i.e., multiplication) of
the two points.
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Taylor’s Frozen Turbulence Hypothesis

• It is very difficult to produce highly spatially resolved
measurements of temperatures and velocities over a large
spatial region at one instant in time

• Thus, we sually measure over large time periods at very few
points in space (i.e., a sonic anemometer mounted on a tower
or a hot-wire probe in a wind tunnel).

• G.I. Taylor (1938) proposed an idea that for some special
cases, turbulence might be considered “frozen” as it advects
pass our measuring device.
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Taylor’s Frozen Turbulence Hypothesis

• As a result turbulence measurements that are made as a
function of time can be translated into a corresponding spatial
measurement.

• This hypothesis is useful for cases where turbulent eddies
evolve with a timescale longer than the time scale it takes the
eddy to be advected past the sensor.
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Taylor’s Frozen Turbulence Hypothesis

• Consider schematic of turbulence in a boundary layer.

• One way to measure the velocities along the line shown at an
instant in time, would be to place sensors all along the line.
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Taylor’s Frozen Turbulence Hypothesis

• Another way would be to move the probe very quickly through
the flow at some known velocity assuming the flow doesn’t
change much while you traverse it.

• One other way would be to leave the probe in one place and
allow the fluid to advect past the probe.

• The last two ways utilize Taylor’s Frozen Turbulence
hypothesis
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Taylor’s Frozen Turbulence Hypothesis

• Following Stull (1988), the substantial derivative is zero for
Taylor’s Hypothesis

• Thus,
∂ζ

∂t
= −u∂ζ

∂x
− v ∂ζ

∂y
− w∂ζ

∂z
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