Environmental Fluid Dynamics: Lecture 16

Dr. Jeremy A. Gibbs

Department of Mechanical Engineering
University of Utah

Spring 2017

/55



Overview

@ Statistical Tools for Turbulence
Basic Properties of Turbulence
Turbulence Spectrum
Sample Space, CDF, and PDF
The Mean
Reynolds Averaging
Moments
Joint Random Variables
Two-point Statistical Measures
Taylor's Frozen Turbulence Hypothesis



Statistical Tools for Turbulence



Basic Properties of Turbulence

e Consider the velocity field U.

e Since U is a random variable, its value is unpredictable for a
turbulent flow.

e Thus, any theory used to predict a particular value for U will
likely fail.

e As we saw, however, certain statistical measures (histogram)
appear to be reproducible. @
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Basic Properties of Turbulence

e Consider the velocity field U.

e In this time trace, notice that velocity is bounded, so there is
some defined measure of turbulence intensity.
e The ability to pick a mean value means that the flow field is
not entirely random.
e The time trace shows the existence of multiple time scales,
which suggests that there are spatial features of different sizes
and durations (i.e. a spectrum) @
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Turbulence Spectrum

e Example spectrum of wind speed near the ground

]N— Synoplic scales +~E nergy gap —NIQ— Turbulent scales —c|

Relative Spectral Intensity

Large Scales Smalil Scales
Cyclesthour 0.01 0.1 1 10 100 1000
Hours 100 10 1 0.1 0.01 0.001

Eddy Frequency & Time Period

Fig. 2.2 Schematic spectrum of wind speed near the ground estimated
from a study of Van der Hoven (1957).

From Stull (1988) @



Turbulence Spectrum

e In the example spectrum, the vertical axis gives the
contribution to the total turbulence energy by a particular
eddy size, while the horizontal axis gives the size of eddies
contained in the spectrum in terms of their duration.

e Peaks show scales with the largest contribution.

e The left peak, associated with a period of 100 hours, is
associated with wind speed variations caused by frontal
passages and weather systems.

e The next peak is at 24 hours, which highlights the diurnal
variations in wind speed.

e The right peak, located between 10 seconds and 10 minutes,
is evidence of small-scale eddies associated with turbulence.

0

7/55



Turbulence Spectrum

Spectral Gap

e The relative lack of variation between the synoptic and
microscale peaks is called the spectral gap.

e Motions to the left are considered the mean flow, and motions
to the right are considered the turbulent flow.

e The spectral gap allows us to separate the flow into turbulent
and non-turbulent parts.

0



Turbulence Spectrum

Mean and fluctuating parts

e To isolate large scales from small scales, we can average over
a period of 30 minutes to 1 hour

e This allows us to average out the positive and negative
fluctuations about the mean

e The mean (U; more later) is subtracted from the
instantaneous value (U) to obtain the turbulent part

W=U-U



Turbulence Spectrum

Mean and fluctuating parts

e You can think of the turbulent fluctuation u’ as a gust of wind
associated with variations lasting longer than an hour, while

the mean wind U is the part of the wind with variations that
last longer than an hour (or so).

Detailed view of the wind
speed record from Fig. 2.1,

ing u' as the gust or
deviation of the actual
instantaneous wind, u, from
the local mean, u.

From Stull (1988) @
® This underscores the need to describe turbulence statistically.
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Sample Space

e In reality, a velocity field U(Z,t) is more complicated than a
single random variable.

e We need a wide range of statistical tools to characterize
random variables.

e In order to consider more general events, we need to think in
terms of sample space.

e Consider an independent velocity variable V', which is the
sample-space variable for U.
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Sample Space
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B={U <V}

C={V,<U <V}

B and C are events (or values) that correspond to different regions @
of the sample space (i.e., velocity field).
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Probability

e Using the previous example, the probability of event B is
given as:

p=P(B) = P{U < Vi)
e This is the likelihood of B occurring (U < V3).
e pis a real number, 0 <p < 1.
e p =0 is an impossible event.

e p=1Is a certain event.
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Cumulative Distribution Function

e The probability of any event is determined by the cumulative
distribution function (CDF)

FV)y=P{U <V}
e For event B:
P(B) ={U <V} = F(V})
e For event C":

P(C)={Va <U <W} = P{U < W} = P{U < Vu}
:F(VIJ)_F(Va)

0
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Cumulative Distribution Function

Three basic properties of CDF:
e F(—00) =0, since {U < —oo} is impossible.
e F(00) =1, since {U > oo} is impossible.
o F(V) > F(V,), for Vi, >V, since p > 0. Thus, F'is a
non-decreasing function.
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Probability Density Function

The probability density function (PDF) is the derivative of the CDF

dF(v)
dv
Based on the properties of the CDF, it follows that:
e f(V)>0
o ffooo f(WV)dv =1
e f(=00) = f(o0) =0

V) =
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Probability Density Function

The probability that a random variable is contained within a
specific interval is the integral of the PDF over that interval

P(C) = PV, <U < Vi} = F(Vi) — F(Va)
_ " jvyav
Va

Or, for a very small interval dV;:

P(Cs) = P{V, <U < Vo +dVi} = F(Vy +dVi) — F(Va)
= f(Va)dVs
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Probability Density Function

More details about the PDF f(V):

e f(V) is the probability per unit distance in the sample space —
hence, the term density.

e f(V) has dimensions of U~!, while the CDF is dimensionless.
e The PDF fully characterizes the statistics of a signal (random
variable).

e |f two or more signals have the same PDF, then they are
considered to be statistically identical.
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CDF (top) vs. PDF (bottom)
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We can also define a signal by its individual statistics, which
collectively describe the PDF.

The mean (or expected) value of a random variable U is given by:

or in discrete form:

The mean represents the probability-weighted sum of all possible
values of U.

0
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The Mean: Temporal Averaging

e For a continuous function at point in space s = (z,y, z) over
a time period P, where the turbulence is assumed to be
stationary (the statistics are NOT changing over the
averaging period), the time average is given by:

1 t=to+P
—t
u'(s) = B u(t, s)dt

t=to

e For discrete data uniformly spaced in time, where P = NAt:
L
at(s) = ¥ ;u(t, s)

0
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The Mean: Spatial Averaging

e Applies at in instant in time and is given as an integral of the
spatial domain S

1
a1 = / u(t, 5)dS
S Js
e Over some volume S = AzAyAz:

s 1
u’(t) = ArAyAz //S/u(t,x,y,z)da:dydz

e For line averaging uniformly spaced data in space, where
Y = NAy:

y=Y
u’(t) = / u(t, s)dy
Y Jy=o
or discretely

N
@ (1) = % S ult,s) D)
i=1
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The Mean: Ensemble Averaging

e Averaging over a number (V) of experiments at a point in
space. This method of averaging tends to minimize random
experimental errors by repeating an experiment.
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The Mean: Ergodicity

o If the turbulence is both homogeneous and stationary, the
time, space, and ensemble averages should be the same,
namely

t

v =u'=u‘=71u

e homogeneous turbulence = statistics are invariant of
coordinate translation

e stationary turbulence, = the statistics are invariant to the
choice of time window

e In the atmosphere there are many occasions when turbulence
is neither homogeneous (e.g., around trees or buildings) or
stationary (e.g., evening decay of the CBL)

e We must be very careful in applying the various types of

averaging. @
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The Mean: Ergodicity

e Consider this time series of potential temperature during the
evening transition. These data clearly show the diurnal
decrease of temperature in evening.

e |f we choose an averaging time of 1 hr, we will be including
this diurnal variation in our fluctuations.

e This problem may be avoided by using smaller averaging times
or using linear detrending techniques

A

0
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Reynolds Averaging

e We saw that the spectral gap allows the separation of a flow
field into mean and perturbation parts.

e The formal procedure of applying this separation is called
Reynolds decomposition or Reynolds averaging.

e Accordingly, it is important to discuss the properties of the
mean in this context.

e We will use this procedure and rules when deriving the
turbulence equations (next lecture).
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Reynolds Averaging

Rules of averaging:

e ¢ = ¢, where ¢ is a constant

e (cA)=cA
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Reynolds Averaging

e Let's apply these rules to variables that have been split into
their mean and perturbation parts.

elet A=A+d and B=B+V
e Start with A

A=A+d)=A)+d =A+d

The only way this is true is if @’ = 0, which makes sense if we
consider the definition of the mean (i.e., the sum of positive
perturbations from the mean equals the sum of the negative
perturbations).

0
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Reynolds Averaging

e Consider another example:

(Ba)=Bd =B-0=0

|
<
N—
I
o

e Similarly, (
o Lastly:

Where a’ V/ is covariance (more later), or variance if ' = ¥'.
Note: although o’ =0 and & =0, a’ b’ is not necessarily 0. @
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Variance

Recall that a fluctuation (or perturbation) from the mean:
W=U-U
The variance is just the mean-square fluctuation:
o2 =var(U) = u?
o0 p—
- [ w-vrrway
—0o0

Or, in discrete form:

N

1 _
2 _ - _T7)\2
%—N_F;m U)

Variance essentially measures how far a set of (random) numbers
are spread out from their mean. @

*note the (N — 1). This is the Bessel correction — used to correct for bias.
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https://en.wikipedia.org/wiki/Bessel%27s_correction

Standard Deviation

The standard deviation, or root-mean square (rms) deviation, is
just the square-root of the variance:

ou = sdev(U) = /02 = Vu?

The standard deviation basically measures the amount of variation
of a set of numbers.

0
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Other moments

The nt" central moment is defined as:

== [ T WOy vy
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Standardized Moments

It is often advantageous to express variables as standardized
random variables. These standardized variables have zero mean
and unit variance.

The standardized version of U (centered and scaled) is given by:

i

U —

Ou

U

Accordingly, the nt* standardized moments are expressed as:

-om 0o A .
i = L “":/ Vi (v)av

n n
UU O-’LL —00
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Other moments

Different moments each describe an aspect of the shape of the
PDF:

e 111 = mean (expected value)

e 15 = variance (spread from the mean)

e [i3 = skewness (asymmetry of PDF)

e iy = kurtosis (sharpness of the PDF peak)
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Example PDFs

Read Pope (Chapter 3.3) for descriptions of different PDFs.

Examples include:

e uniform

exponential

e Gaussian

log-normal
e gamma

Delta-function

Cauchy
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Joint Random Variables

So far, our statistical description has been limited to single random
variables. However, turbulence is governed by the Navier-Stokes
equations, which are a set of 3 coupled PDEs.

We expect this will result in some correlation between different
velocity components.
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Joint Random Variables

Example: turbulence data from the ABL.: scatter plot of horizontal
(u) and vertical (w) velocity fluctuations.

1.5

0.5

-1

=15 -
-3 -2 =1 1] 1 2 3

u [m/s] :: :

The plot appears to have a pattern (i.e., negative slope).
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Joint Random Variables - Sample Space

We will now extend the previous results from a single velocity
component to two or more.

The sample-space variables corresponding to the random variables
U = {Uy,Us,Us} are given by V = {V, Vs, V3}.
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Joint Random Variables - CDF

The joint CDF (jJCDF) of the random
variables (U1, Us) is given by: 0s
Fio(V1, Vo) = P{U; < V1,Us < Va} Vo©

This is the probability of the point
(V1, V2) lying inside the shaded region




Joint Random Variables - CDF

The jCDF has the following properties:

o Fio(Vi 4+ 0Vi, Vo + 8Va) > Fi2(Vh, V) (non-decreasing)
for all V7 >0, 6V >0

o Fio(—o0, Vo) = P{U; < —00,Us < V2} =0
since {U; < —oo} is impossible.

° Flg(oo,‘/g) = P{Ul < OO,U2 < VQ} = P{U2 < VQ}
Fia(00, Vo) = Fy(Va), since {U; < oo} is certain.

In the last example, F» (V%) is called the marginal CDF.

0
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Joint Random Variables - PDF

The joint PDF (jPDF) is defined as:
2

fiz(V1, Vo) = av.av;

————F12(V1, Va)

If we integrate over V7 and V5, we get the probability:
Vib Vb

P{Vig Ui < Vip, Vog < Uz < Vi } = f12(Va, Va)dVadVy
Via Voa

0
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Joint Random Variables - PDF

Based on the jCDF, the jPDF has the following properties:
o fi2(V1,V2) >0

o [% fr2(Vi,Va)dVi = fo(Va)
o [Z [ fro(Vi, Vo)dVidVa =1

In the middle example, fo(V3) is called the marginal PDF.
Practically speaking, we find the PDF of a time (or space) series
by:

e Create a histogram of the series(group values into bins)

e Normalize the bin weights by the total # of points

0
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Joint Random Variables - Means

Similar to the single variable form, if we have Q(Uy, Us):

QUL,Usp) = /_OO /_OO Q(V1, V2) f12dV2dVy

We can use this equation to define a few important statistics.
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Joint Random Variables - Covariance

We can define covariance as:
cov(Uy, Up) = uiudly
= /Z /OO (Vi = U1)(Va — ) f12(V1, Vo) dVadVA
Or for discrete data
cov(Uy,Us) = m

N
ZVU—UI (Vo — U2)
-1

Covariance is basically a measure of how much two random
variables change together. @
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Joint Random Variables - Covariance

Example: cov(w,f) = w'¢’. This is the eddy flux concept.

ZA

V4) A

“ | B\

Bl

Under convective conditions
o Parcel A: w' < 0and @ <0 — w6 >0 (positive heat flux) @
o Parcel B: w' > 0and § >0 — w6 >0 (positive heat flux)
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Joint Random Variables - Correlation Coefficient

The correlation coefficient is given by:

!,
U7 U
P12 = ———e
u’12 u’22
Correlation coefficient has the following properties:
e —1<pp<1

Positive values indicate correlation.

Negative values indicate anti-correlation.
e p1o = 1 is perfect correlation.

e pio = —1 is perfect anti-correlation.
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Two-point Statistical Measures

Autocovariance measures how a variable changes with different
lags, s.
R(s) = u(t)u(t + s)

or the autocorrelation function

u(t)u(t + s)

p(s) ()2

Or for the discrete form

N—j—1
N — Zk:oj (Ukuk+j)
p(sj) = N—-1, 9
k=0 (Uk)
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Two-point Statistical Measures

Notes on autocovariance and autocorrelation

e These are very similar to the covariance and correlation
coefficient

e The difference is that we are now looking at the linear
correlation of a signal with itself but at two different times (or
spatial points), i.e. we lag the series.

e We could also look at the cross correlations in the same
manner (between two different variables with a lag).

e p(0) = 1 and |p(s)| < 1
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Two-point Statistical Measures

e In turbulent flows, we
expect the correlation to
diminish with increasing
time (or distance)

between pOI nts Pract?cally a statistical significance
level is usually chosen

e We can use this to define
an integral time (or
space) scale. It is defined Integral
as the time lag where the
integral [ p(s)ds
converges.

y.

e [t can also be used to
define the largest scales

of motion (statistically). @
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Two-point Statistical Measures

The structure function is another important two-point statistic.

Dn(’l”) = [Ul(.fl} + r, t) — Ul(.il?, t)]n

e This gives us the average difference between two points
separated by a distance r raised to a power n.

e In some sense it is a measure of the moments of the velocity
increment PDF.

e Note the difference between this and the autocorrelation
which is statistical linear correlation (i.e., multiplication) of
the two points.

0
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Taylor's Frozen Turbulence Hypothesis

e It is very difficult to produce highly spatially resolved
measurements of temperatures and velocities over a large
spatial region at one instant in time

e Thus, we sually measure over large time periods at very few
points in space (i.e., a sonic anemometer mounted on a tower
or a hot-wire probe in a wind tunnel).

e G.I. Taylor (1938) proposed an idea that for some special
cases, turbulence might be considered “frozen” as it advects
pass our measuring device.
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Taylor's Frozen Turbulence Hypothesis

e As a result turbulence measurements that are made as a
function of time can be translated into a corresponding spatial
measurement.

e This hypothesis is useful for cases where turbulent eddies
evolve with a timescale longer than the time scale it takes the
eddy to be advected past the sensor.

0
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Taylor's Frozen Turbulence Hypothesis

u
_

N\ O
RN O

e Consider schematic of turbulence in a boundary layer.

e One way to measure the velocities along the line shown at an
instant in time, would be to place sensors all along the line.
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Taylor's Frozen Turbulence Hypothesis

220D

(
X

e Another way would be to move the probe very quickly through
the flow at some known velocity assuming the flow doesn’t
change much while you traverse it.
e One other way would be to leave the probe in one place and
allow the fluid to advect past the probe.
e The last two ways utilize Taylor's Frozen Turbulence
hypothesis @
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Taylor's Frozen Turbulence Hypothesis

e Following Stull (1988), the substantial derivative is zero for
Taylor's Hypothesis

e Thus,
o _ 9 o &

ot~ “ou ”Fy Yo,
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