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Intro to Turbulence



Leonardo da Vinci and Turbulence

o Lived from 1452-1519.
o First to attempt scientific study of
turbulence (turbolenza).

e He pioneered the notion of flow
visualization to study turbulence.




Leonardo da Vinci and Turbulence
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He let water flow through a square hole into a pool and observed:

Observe the motion of the surface of the water,
which resembles that of hair, which has two
motions, of which one is caused by the weight
of the hair, the other by the direction of the
curls; thus the water has eddying motions, one
part of which is due to the principal current,
the other to random and reverse motion. @



Leonardo da Vinci and Turbulence

In another, he placed obstacles in water:

So moving water strives to maintain the course
pursuant to the power which occasions it, and
if it finds an obstacle in its path it completes
the span of the course it has commenced by a
circular and revolving movement.

Earliest reference to the importance of vortices! @
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Leonardo da Vinci and Turbulence

In another, he placed obstacles in water:

the smallest eddies are almost numberless,
and large things are rotated only by large eddies
and not by small ones, and small things are
turned by small eddies and large.

0

Seems to hint at Richardson’s turbulent cascade!



Why Turbulence?

Why study turbulence?

e Turbulence is everywhere.

e Smoke from a chimney, water flowing in a river, wind across a
rough surface, flow around vehicles, combustion, solar wind.

e Most real flows in environmental and engineering applications
are turbulent.

e |t remains one of the great unsolved problems in physics.



Turbulence is Hard

Werner Heisenberg, maybe:

When | meet God, | am going to ask him two
questions: Why relativity? And why turbu-
lence? | really believe he will have an answer
for the first.

Horace Lamb, maybe:

I am an old man now, and when | die and go to
heaven there are two matters on which | hope
for enlightenment. One is quantum electrody-
namics, and the other is the turbulent motion
of fluids. And about the former | am rather

optimistic. @



What Makes Turbulence Such a Difficult Problem?

Beyond these properties, consider turbulent flow in general.

e To understand turbulence, we must resolve the entire range of
temporal and spatial scales of the flow.

e This range may be described by the Reynolds number
(Re=UL/v) — the ratio of inertia to viscous forces.

e As Re increases, the range of length scales that must be
increases dramatically.
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What Makes Turbulence Such a Difficult Problem?

These scales often fall outside of those conditions that are easily
measured:

e high-velocities (aerodynamics)
e high-temperatures (combustion)
e hazardous substances (nuclear engineering)

e very large scales (geophysics or astrophysics)
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Approaches to Study Turbulence

Some common approaches to studying turbulence

e Analytical
Due to the large range of scales and complexity of the flow, it
is difficult (impossible really) to obtain an analytical solution
e Computational
If we have large enough computing resources to resolve all
scales of motion, we can solve the Navier-Stokes equations
directly (DNS)
e Empirical
Describing turbulence in a statistical framework

12 /40



Approaches to Study Turbulence: Analytical

The Komogorov scales (more later) are defined as

N
= (%)
€

e length scale

e time scale

e velocity scale
L= (e
v=—=(ve
1%

We can relate these to the Reynolds number as

N~ EoRe_%

1

v~ U,Re™ 1
r CRe D)
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Approaches to Study Turbulence: Analytical

e Consider typical atmospheric scales:
Uy~10ms™t, £,~10°m, v~ 1075 m? s7!
e which gives us,

Usly (10 m s~ 1)(10% m)
v 1075 m?2 g1

Re = ~ 10°

e thus,

1 ~ (,Re™1 ~ 0.00018 m
v~ UoRe*i ~0.06 m s~ !

b 1
~ “2Re"% ~ 0.003
T U e S

o

That is quite the range of scales! @
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Approaches to Study Turbulence: Analytical

e Beyond the large range of scales that must be described, think
about the complexity of flows

e For an analytical solution, we would have to understand and
describe all of those situations

e Okay, let's try brute force!
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Approaches to Study Turbulence: Computational

e To capture all of the dynamics (degrees of freedom) in a
turbulent flow, we must consider the required amount of
discrete values needed for an accurate approximation.

e We need a grid fine enough to capture the smallest and the
largest scales of motion (n and £,).
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Approaches to Study Turbulence: Computational

e From K41, we know that ¢,/n ~ Re®/4 and there exists a
continuous range of scales between n and /,.

e We will assume that we need n grid points per increment 7.
Note that n can vary, but a value of 3 to 5 is often suggested.

e Thus, in each direction, the number of required grid points is

Eo =n ~o ~n Re3/4

Ne=Gm ="

e Remember that turbulence is 3D, so the total number of grid
points needed to accurately estimate the flow is

N (nRe)

0
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Approaches to Study Turbulence: Computational

e Let's revisit our example of a typical atmospheric boundary
layer flow:

Uy~10ms™t, £,~10°m, v~ 1075 m? s7!
which gives us,

Uply (10 m s71)(10% m) 9
R = ~ ~ ]_
€ v 1075 m? g1 0

e thus, the number of grid points required to fully resolve this
flow (assuming n = 3) is

Note: current capabilities of modern computing allow for grid
sizes with O(10!!) points. @
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Approaches to Study Turbulence: Computational

e What does a simulation of a typical atmospheric boundary
layer flow using a grid with 1.6 x 10%! points buy? (recall
7 ~ 0.18 mm)

L =n+ (1.6 x 102)"* ~ 2 km

This means we can simulate a 2 km x 2 km x 2 km cube.
Think how about big the atmosphere is and then be depressed.

0

19 /40



Approaches to Study Turbulence: Statistical

Okay, direct computational methods are out, that leaves the
statistical approach

e “Separate” the flow into “mean” and “turbulent” parts
(Reynolds decomposition, more later)

e Will require the use of averaging procedures (more later)
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Basic Properties of Turbulent Flows
u WWWN e Unsteady
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Basic Properties of Turbulence

e Turbulence is random
The properties of the fluid (p, P, u) at any given point (&,t)
cannot be predicted. But statistical properties — time and
space averages, correlation functions, and probability density
functions — show regular behavior. The fluid motion is
stochastic.

e Turbulence decays without energy input
Turbulence must be driven or else it decays, returning the
fluid to a laminar state.
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Basic Properties of Turbulence

e Turbulence displays scale-free behavior
On all length scales larger than the viscous dissipation scale
but smaller than the scale on which the turbulence is being
driven, the appearance of a fully developed turbulent flow is
the same.

e Turbulence displays intermittency
“Outlier” fluctuations occur more often than chance would
predict.

e Turbulence is non-linear
Growth of small perturbations, non-linear vortex stretching
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Basic Properties of Turbulent Flows

e Large vorticity

e Vorticity describes the tendency of something to rotate.

w=VX1u
0

= ik g, 19k
(2
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Vortex stretching can and does create small scale circulations
that increases the turbulence intensity I, where:

Ou

' {u}
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Basic Properties of Turbulent Flows

e Mixing effect

Turbulence mixes quantities (e.g., pollutants, chemicals,
velocity components, etc)., which acts reduce gradients. This
lowers the concentration of harmful scalars, but increases drag.

¢ A continuous spectrum (range) of scales.

Range of eddy scales

Integral Scale Q O/ Kolmogorov Scale
—
S
— (Richardson, 1922)

“a

Energy production ——> (Energy cascade)—> Energy dissipation @
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Random Nature of Turbulence



Random Nature of Turbulence
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Sonic anemometer data at 20Hz taken in the ABL.

This velocity field exemplifies the random nature of turbulent flows.
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Random Nature of Turbulence

e The signal is highly disorganized and has structure on a wide
range of scales (that is also disorganized).

Notice the small (fast) changes verse the longer timescale
changes that appear in no certain order. @
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Random Nature of Turbulence
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e The signal appears unpredictable.

Compare the left plot with that on the right (100 s later).

Basic aspects are the same but the details are completely

different. From looking at the left signal, it is impossible to

predict the right signal. @
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Random Nature of Turbulence

e Some of the properties of the signal appear to be reproducible.

The reproducible property isn't as obvious from the signal.
Instead we need to look at the histogram. @
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Random Nature of Turbulence
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Notice that the histograms are similar with similar means and
standard deviations.

31/40



Random Nature of Turbulence
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The left panel shows concentration in a turbulent jet, while the
right shows the time history along the centerline (see Pope). @
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Random Nature of Turbulence

1.0
(U
(Upo
0.0 L—— '
0.2 0.0 0.2
Xy 1 Xy
Normalized mean axial velocity in a turbulent jet (see Pope). @

33/40



Random Nature of Turbulence

e The random behavior observed in the time series can appear
to contradict what we know about fluids from classical
mechanics.

e The Navier-Stokes equations are deterministic (i.e., they give
us an exact mathematical description of the evolution of a
Newtonian fluid).

e Yet, as we have seen, turbulent flows are random.

e How do we resolve this inconsistency?
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Random Nature of Turbulence

Question: Why the randomness?

e There are unavoidable perturbations (e.g., initial conditions,
boundary conditions, material properties, forcing, etc.) in
turbulent flows.

e Turbulent flows and the Navier-Stokes equations are acutely
sensitive to these perturbations.

e These perturbations do not fully explain the random nature of
turbulence, since such small changes are present in laminar
flows.

e However, the sensitivity of the flow field to these
perturbations at large Re is much higher.

0
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Random Nature of Turbulence

e This sensitivity to initial conditions has been explored
extensively from the viewpoint of dynamical system. This is
often referred to as chaos theory.

e The first work in this area was carried out by Lorenz (1963) in
the areas of atmospheric turbulence and predictability.
Perhaps you have heard the colloquial phrase, the butterfly
effect.

e Lorenz studied a system with three state variables z, y, and z
(see his paper or Pope for details). He ran one experiment
with 2(0) = 1 and another with = 1.000001, while y and z
were held constant.

0
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Random Nature of Turbulence
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Time history of the Lorenz equations.



Random Nature of Turbulence

e The work by Lorenz demonstrates the extreme sensitivity to
initial conditions.

e The result of this sensitivity is that beyond some point, the
state of the system cannot be predicted (i.e., the limits of
predictability).

e In the Lorenz example, even when the initial state is known to
within 1079, predictability is limited to ¢ = 35.

0
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Random Nature of Turbulence

e In the Lorenz example, this behavior depends on the
coefficients of the system. If a particular coefficient is less
than some critical value, the solutions are stable. If, on the
other hand, it exceeds that value, then the system becomes
chaotic.

e This is similar to the Navier-Stokes equations, where solutions
are steady for a sufficiently small Re, but turbulent if Re
becomes large enough.

0
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Random Nature of Turbulence

e We have seen that turbulent flows are random, but their
histograms are apparently reproducible.

e As a consequence, turbulence is usually studied from a
statistical viewpoint.
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