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Summation Review



Einstein Summation Review

Consider:

Um ⇒ generic velocity vector

xm ⇒ generic component of distance

em ⇒ generic unit vector

where m = 1, 2, 3. We can write the individual components as:

U1 = u x1 = x e1 = î

U2 = v x2 = x e2 = ĵ

U3 = w x3 = x e3 = k̂

A variable with:

• no free indices is a scalar.

• one free indice is a vector.

• two free indices is a tensor.
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Einstein Summation Review

There are two primary summation operators that we will use:

• Kronecker Delta

δmn =

{
+1, if m = n

0 if m 6= n

• Levi-Civita (Alternating Unit) Tensor

εmnq =


+1, if mnq = 123, 231, 312 even permutation

−1 if mnq = 321, 213, 132 odd permutation

0 if m = n, n = q, q = m any two indices repeated
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Atmospheric Dynamics:

Mechanical Energy Equation



Mechanical Energy Equation

• The mechanical energy equation describes the rate of change
of a fluid element’s kinetic energy.

• To start, we take the dot product of the velocity vector with
our momentum balance equation.

#»

U ·

(
ρ
D

#»

U

Dt︸ ︷︷ ︸
1

= − #»∇p︸ ︷︷ ︸
2

− 2ρ
#»

Ω × #»

U︸ ︷︷ ︸
3

+ ρ #»g︸︷︷︸
4

+µ
#»∇2 #»

U︸ ︷︷ ︸
5

)

• Note: We’ve multiplied the momentum balance equation by ρ

• We will examine each term separately and then put together
for our final expression.

7 / 36



Mechanical Energy Equation

Term 1

#»

U · ρ
D

#»

U

Dt
= ui

(
ρ
∂ui
∂t

+ ρuj
∂ui
∂xj

)
= ρui

∂ui
∂t

+ ρujui
∂ui
∂xj

use product rule

= ρ
∂
(uiui

2

)
∂t

+ ρuj
∂
(uiui

2

)
∂xj

= ρ
∂E

∂t
+ ρuj

∂E

∂xj

where E = u2
i /2 is kinetic energy.
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Mechanical Energy Equation

Term 2

#»

U ·
(
− #»∇p

)
= −ui

∂p

∂xi
use product rule

= −

(
∂(pui)

∂xi
+ p
�
�
��7∂ui

∂xi

)

= −∂(pui)

∂xi
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Mechanical Energy Equation

Term 3
#»

U ·
(
−2ρ

#»

Ω × #»

U
)

Recall that the Coriolis has the following components:

• x: fv

• y: -fu

• z: 0

This corresponds to εij3fuj . So,

#»

U ·
(
−2ρ

#»

Ω × #»

U
)

= εij3fuiuj

However, using the rules of the alternating unit tensor, you can
show this is equal to zero. Alternatively, you know −2ρΩ× #»

U is ⊥
to

#»

U . Thus, their dot product is zero. Why?

Coriolis force does no work!
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Mechanical Energy Equation

Term 4
#»

U · #»g = uigi

But if we assume that gravity only acts in the k̂ direction, then we
can make use of the Kronecker delta:

#»

U · ρ #»g = ρuigiδi3

11 / 36



Mechanical Energy Equation

Term 5

#»

U · ν
#»∇2 #»

U = µui
∂2ui
∂x2

j

= µui
∂

∂xj

∂ui
∂xj

= ui
∂τij
∂xj
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Mechanical Energy Equation

All Together

ρ
∂E

∂t︸ ︷︷ ︸
1

+ ρuj
∂E

∂xj︸ ︷︷ ︸
2

= − ∂(pui)

∂xi︸ ︷︷ ︸
3

+ ρuigiδi3︸ ︷︷ ︸
4

+ui
∂τij
∂xj︸ ︷︷ ︸
5

Terms

1 Storage of kinetic energy

2 Advection of kinetic energy by the bulk flow

3 Work done against gravity

4 Work done against viscous forces
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Mechanical Energy Equation

• Note: we can expand the viscous dissipation term as:

ui
∂τij
∂xj

=
∂uiτij
∂xj

− τij
∂ui
∂xj

=
∂uiτij
∂xj

− τijSij

where Sij is the symmetric part of the velocity gradient.

• The first term is the total rate of work, or molecular diffusion.

• The second term is the deformation work, or viscous
dissipation.
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Atmospheric Dynamics:

Thermal Energy Equation



Thermal Energy Equation

• We can write the 1st Law of Thermodynamics for an open
unsteady system in words as follows, where total energy =
internal (I) + kinetic (E = V 2/2):{

rate of
total energy

accumulation︸ ︷︷ ︸
1

}
=

{ net rate of
total energy in
by advection︸ ︷︷ ︸

2

}
+

{
net rate of

heat added by
conduction︸ ︷︷ ︸

3

}

+

{
net rate of

heat added by
radiation︸ ︷︷ ︸

4

}
+

{ net rate of
heat added by
phase change︸ ︷︷ ︸

5

}

−

{ net rate of
work done by

fluid on
surroundings︸ ︷︷ ︸

6

}
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Thermal Energy Equation

• This is seen visually as:

Let’s look separately at each term in the previous description.
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Thermal Energy Equation

Term 1

• Rate of accumulation of internal energy per unit volume and
kinetic energy within the element (these are in units of W):

∆x∆y∆z
∂

∂t
(ρI + ρE)
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Thermal Energy Equation

Term 2

• Net rate of advection of internal and kinetic Energy into the
volume element:

∆y∆z {u(ρI + ρE)x+∆x − u(ρI + ρE)x}
+∆x∆z {v(ρI + ρE)y+∆y − v(ρI + ρE)y}
+∆x∆y {w(ρI + ρE)z+∆z − w(ρI + ρE)z}
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Thermal Energy Equation

Term 3

• Net rate of energy input by conduction into the volume
element (molecular):

∆y∆z(qx|x − qx|x+∆x) + ∆x∆z(qy|y − qy|y+∆y)

+ ∆x∆y(qz|z − qz|z+∆z)
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Thermal Energy Equation

Term 4

• Net rate of energy input by all wavelengths of radiation into
the volume element:

∆y∆z(Rnx|x −Rnx|x+∆x) + ∆x∆z(Rny|y −Rny|y+∆y)

+ ∆x∆y(Rnz|z −Rnz|z+∆z)
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Thermal Energy Equation

Term 5

• Net rate of energy input by phase change into the volume
element:

∆x∆y∆z(Lvε)

where Lv(∼ 2.45× 106 J kg−1) is the latent heat of
vaporization/condensation and ε(kg m−3 s−1) is the
evaporation/condensation rate per unit volume.

• Note: this is a body sink/source term.
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Thermal Energy Equation

Term 6

• Net rate of work done by the fluid element against the
surroundings.

• Recall that work rate done by a force is the magnitude of the
force multiplied by the velocity in the direction of the force:

Ẇ =
#»

F ·
#»

U

So we will write the work rates as forces multiplied by
velocities acting on our fluid element.

• The net rate of work will broken into work against body forces
and work against surface forces.
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Thermal Energy Equation

Term 6

• Work against body forces: rate of doing work against the
gravitational force

∆x∆y∆z(ρugx + ρvgy + ρwgz)

• Work against surface forces: rate of doing work against the
pressure at the six faces of a volume element

∆y∆z{(pu)x|x+∆x − (pu)x|x}+ ∆x∆z{(pv)y|y+∆y − (pv)y|y}
+ ∆x∆y{(pw)z|z+∆z − (pw)z|z}

Note that here we take the work rate to be (p · #»ndA) ·
#»

U
where #»n is the outwardly pointing normal vector from the
fluid element.
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Thermal Energy Equation

Term 6
• Work against surface forces: rate of doing work against the

viscous force
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Thermal Energy Equation

Term 6

• Work against surface forces: rate of doing work against the
viscous force

∆y∆z{(τxxu+ τxyv + τxzw)x − (τxxu+ τxyv + τxzw)x+∆x}
+∆x∆z{(τyxu+ τyyv + τyzw)y − (τyxu+ τyyv + τyzw)y+∆y}
+∆x∆y{(τzxu+ τzyv + τzzw)z − (τzxu+ τzyv + τzzw)z+∆z}
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Thermal Energy Equation

All Together

• Now we combine all terms, divide by ∆xδy∆z, and take the
limit as ∆x→ 0, ∆y → 0, and ∆z → 0 to obtain the
complete energy equation:

∂(ρI + ρE)

∂t
=−

(
u
∂(ρI + ρE)

∂x
+ v

∂(ρI + ρE)

∂y
+ w

∂(ρI + ρE)

∂z

)
−
(
∂qx
∂x

+
∂qy
∂y

+
∂qx
∂z

)
−
(
∂pu

∂x
+
∂pv

∂y
+
∂pw

∂z

)
−
(
∂Rnx

∂x
+
∂Rny

∂y
+
∂Rnz

∂z

)
−
(
∂ugx
∂x

+
∂vgy
∂y

+
∂wgz
∂z

)
− Lvε

−
{
∂(τxxu+ τyxv + τzxw)

∂x
+
∂(τxyu+ τyyv + τzyw)

∂y

+
∂(τxzu+ τyzv + τzzw)

∂z

}
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Thermal Energy Equation

All Together

• As with the derivation of the momentum equation, we can
utilize Newtonian expressions to relate the velocity gradients
and stresses, namely:

τxx = −2µ
∂u

∂x
+

2

3
µ(

#»∇ ·
#»

U ) τxy = τyx = −µ
(
∂u

∂y
+
∂v

∂x

)
τyy = −2µ

∂v

∂y
+

2

3
µ(

#»∇ ·
#»

U ) τxz = τzx = −µ
(
∂u

∂z
+
∂w

∂x

)
τzz = −2µ

∂w

∂z
+

2

3
µ(

#»∇ ·
#»

U ) τzy = τyz = −µ
(
∂w

∂y
+
∂v

∂z

)

Or more compactly:

τij = −2µSij +
2

3
µ(

#»∇ ·
#»

U )δij
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Thermal Energy Equation

All Together

• We now subtract the E equation (slide 13) from the complete
energy equation to yield the thermal energy equation:

ρ
DI

Dt︸ ︷︷ ︸
1

= − #»∇ · #»q︸ ︷︷ ︸
2

− #»∇ · (p
#»

U )︸ ︷︷ ︸
3

− #»∇ ·
#  »

Rn︸ ︷︷ ︸
4

+ Lvε︸︷︷︸
5

+µΦν︸︷︷︸
6

Terms (per unit volume)

1 Rate of gain of internal energy

2 Rate of internal energy input by conduction

3 Reversible rate of internal energy increase by compression

4 Rate of internal energy input by net radiation

5 Rate of internal energy input by phase change

6 Irreversible rate of internal energy increase by viscous
dissipation
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Thermal Energy Equation

• The viscous term written out in full is:

Φν = −2µSijSij +
2

3
µ(

#»∇ ·
#»

U )2

• The thermal energy equation is written in terms of internal
energy.

• However, we want to express the equation in terms of
temperature and heat capacity.

• Let’s work to relate I to T , θ and cp, cv.
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Thermal Energy Equation

• Recall from thermodynamics that I = I(α, T ), where α is the
specific volume and T the absolute temperature.

• Thus,

dI =

(
∂I

∂α

)
T

dα+

(
∂I

∂T

)
α

dT

• Multiplying by the density and considering the substantial
derivatives:

ρ
DI

Dt
=

(
∂I

∂α

)
T

ρ
Dα

Dt
+ ρcv

DT

Dt

where cv is the specific heat of the fluid at constant volume.
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Thermal Energy Equation

• Writing the specific volume as the inverse of the density and
using the product rule of calculus:

ρ
Dα

Dt
= ρ

D

Dt

(
1

ρ

)
= −1

ρ

Dρ

Dt
= −1

ρ

#»∇ ·
#»

U

• Then for incompressible flow where
#»∇ ·

#»

U = 0 we have:

ρcv
DT

Dt
= − #»∇ · #»q − #»∇ ·

#  »

Rn + Lvε+ µΦ′ν

where the viscous dissipation term simplifies to:

Φν = −2µSijSij
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Thermal Energy Equation

• Using Fourier’s Law of Heat Conduction allows us to write the
second term as a function of temperature:

#»q = −κ #»∇T

where κ is the thermal conductivity of the fluid. Thus,

− #»∇ · #»q = κ
#»∇ ·

#»∇T = κ
#»∇2T

• Substitution yields the thermal energy equation in terms of T :

ρcv
DT

Dt
= κ

#»∇2T − #»∇ ·
#  »

Rn + Lvε+ µΦ′ν

This equation yields temperature changes from heat
conduction, radiation divergence, phase change, and viscous
heating
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Thermal Energy Equation

• For a constant pressure fluid we can make the following
substitution:

dI = −pdα+ cpdT

which for an incompressible fluid leads to

ρcp
DT

Dt
= κ

#»∇2T − #»∇ ·
#  »

Rn + Lvε+ µΦ′ν

which is essentially stating that we can switch between cv and
cp, which is justified when the pressure terms are neglected in
a gas flow energy equation.
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Thermal Energy Equation

• The expression is approximately an enthalpy change:

DT

Dt
=

κ

ρcp

#»∇2T − 1

ρcp

#»∇ ·
#  »

Rn +
Lvε

ρcp
+
µΦ′ν
ρcp

• If viscous heating is small and we define thermal diffusivity as
K = κ/cpT :

DT

Dt
= K

#»∇2T − 1

ρcp

#»∇ ·
#  »

Rn +
Lvε

ρcp

or for potential temperature:

Dθ

Dt
= K

#»∇2θ − 1

ρcp

#»∇ ·
#  »

Rn +
Lvε

ρcp
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Summary

We have now derived the following basic equations of atmospheric
dynamics, assumptions, approximations, and specific cases of their
application:

• Conservation of momentum

• Assumptions and approximations to the momentum equation

• Ekman layer

• Taylor-Proudman Theorem

• Thermal wind

• Mechanical energy equation

• Thermal energy equation
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