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Summation Review



Einstein Summation Review

Consider:

U,, = generic velocity vector
Ty = generic component of distance

em = generic unit vector

where m = 1,2,3. We can write the individual components as:

U =u T = el = i
Us=v To =1 eg = j
Us=w T3 =1 e3 =k
A variable with:
e no free indices is a scalar.
e one free indice is a vector. @
e two free indices is a tensor.



Einstein Summation Review

There are two primary summation operators that we will use:

e Kronecker Delta

5o +1, fm=n
S ) ifm#mn

¢ Levi-Civita (Alternating Unit) Tensor

+1, if mng =123,231,312 even permutation
€mng = § —1 if mng = 321,213,132 odd permutation

0 if m=mn,n=¢q,g=m any two indices repeated

0



Atmospheric Dynamics:

Mechanical Energy Equation



Mechanical Energy Equation

e The mechanical energy equation describes the rate of change
of a fluid element’s kinetic energy.

e To start, we take the dot product of the velocity vector with
our momentum balance equation.

e Note: We've multiplied the momentum balance equation by p

e We will examine each term separately and then put together
for our final expression.
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Mechanical Energy Equation

Term 1

7 pDU o <p3ui+pu.3“i>
Dt “\" ot T 0x;
ou; ou;
ot —I—pu]ula z)
COICY
8t J 8,1?]'

_F  ..BE
~ Pt TP g,

= pu;— use product rule

where E = u?/2 is kinetic energy.



Mechanical Energy Equation

Term 2
U. < — Vp) = —uia use product rule
Zi
B J(pu;) o
- < 8%1 +p xX;
d(pui)
al’i




Mechanical Energy Equation

Term 3 R L
U. (—2pQ X U)
Recall that the Coriolis has the following components:
o 1: fv
e y: -fu
e 2: 0

This corresponds to €;;3 fu;. So,

[7. (—2p§xﬁ) =

However, using the rules of the alternating unit tensor, you can
show this is equal to zero. Alternatively, you know —2p) x Uis L
to U. Thus, their dot product is zero. Why?

Coriolis force does no work! @
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Mechanical Energy Equation

Term 4 N
U-§ = ugi

But if we assume that gravity only acts in the k direction, then we
can make use of the Kronecker delta:

U-pd =[puigidia]
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Mechanical Energy Equation

Term 5
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Mechanical Energy Equation

All Together
= o 050 . J
P ot + pu; (%cj oz + puigioi3 + u; 833']
~— N——— H{_/ ~—— ——
2 5
Terms

@ Storage of kinetic energy
® Advection of kinetic energy by the bulk flow
© Work done against gravity

O Work done against viscous forces
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Mechanical Energy Equation

e Note: we can expand the viscous dissipation term as:

8Tij 8U¢Tij 8u1
(7 = — Tiji
al‘j 81,‘j al‘j
8um~
J
= — TijSZ"
aCCj

where S;; is the symmetric part of the velocity gradient.
e The first term is the total rate of work, or molecular diffusion.

e The second term is the deformation work, or viscous
dissipation.

0
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Atmospheric Dynamics:

Thermal Energy Equation



Thermal Energy Equation

e We can write the 15t Law of Thermodynamics for an open
unsteady system in words as follows, where total energy =
internal (I) + kinetic (F = V?/2):

rate of net rate of net rate of
{ total energy } = {total energy in } + { heat added by }

accumulation by advection conduction
1 2 3
net rate of net rate of
+ { heat added by } + { heat added by }
radiation phase change
4 —
net rate of
work done by
fluid on
surroundings @
N———

6
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Thermal Energy Equation

e This is seen visually as:

wlol +pE]
al,,.
T |
Aol +pB) ——» ol +0E),,
RN x —t—Pp — R-’V|x+m
Z t ]
y |
q,
w(pI + ,OE ]Z

Let's look separately at each term in the previous description. @
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Thermal Energy Equation

Term 1

e Rate of accumulation of internal energy per unit volume and
kinetic energy within the element (these are in units of W):

AmAyAzaat (pI + pE)
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Thermal Energy Equation

Term 2

e Net rate of advection of internal and kinetic Energy into the
volume element:

AyAz{u(pl + pE)sine — u(pl + pE)z}
+AzAz{v(pl + pE)ysny — v(pl + pE)y}
+AzAy {w(pl + pE)zya. — w(pl + pE)}
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Thermal Energy Equation

Term 3

e Net rate of energy input by conduction into the volume
element (molecular):

AyAZ(Qx’m - qgc|a:—|—Ax) + AxAz(Qy|y - Qy|y+Ay)
+ AfEAy(QZ|z - QZ|z+Az)
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Thermal Energy Equation

Term 4

e Net rate of energy input by all wavelengths of radiation into
the volume element:

AyAz(Rugls — Bnglotaz) + AzAz(Ruyly — Royly+ay)
+ A$Ay(an|z - an’z—i—Az)
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Thermal Energy Equation

Term 5

o Net rate of energy input by phase change into the volume
element:
AzxAyAz(Lye)

where L,(~ 2.45 x 105 J kg~!) is the latent heat of
vaporization/condensation and e(kg m~3 s7!) is the
evaporation/condensation rate per unit volume.

¢ Note: this is a body sink/source term.
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Thermal Energy Equation

Term 6

o Net rate of work done by the fluid element against the
surroundings.

e Recall that work rate done by a force is the magnitude of the
force multiplied by the velocity in the direction of the force:

W=F.U

So we will write the work rates as forces multiplied by
velocities acting on our fluid element.

e The net rate of work will broken into work against body forces
and work against surface forces.

0
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Thermal Energy Equation

Term 6

e Work against body forces: rate of doing work against the
gravitational force

AzAyAz(pug, + pvgy + pwg.)

e Work against surface forces: rate of doing work against the
pressure at the six faces of a volume element

AyAZ{(pu)a|z+as — (Pw)zlst + AzAZ{(pv)yly+ay — (PV)yly}
+ AzAy{(pw):|z+a: — (pw)2]:}

Note that here we take the work rate to be (p-WdA) - U
where 77 is the outwardly pointing normal vector from the

fluid element. @
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Thermal Energy Equation

Term 6
e Work against surface forces: rate of doing work against the
viscous force
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Thermal Energy Equation

Term 6

e Work against surface forces: rate of doing work against the
viscous force

AYAZ{(Togt + Toyt + TozW) g — (Toal + Tay¥ + T W)z Azt
+ATAZ{(Typtt + Tyy + Ty W)y — (Tyzl + TyyV + Ty W)yt Ayt

+AwAy{(7—z:cu + Toyv + Tzzw)z - (szu + Ty + Tzzw)z—I—Az}

0
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Thermal Energy Equation

All Together

e Now we combine all terms, divide by AzdyAz, and take the
limit as Az — 0, Ay — 0, and Az — 0 to obtain the
complete energy equation:

d(pl +pE) O(pI + pE) O(pI + pE) d(pl + pE)

a0 \" e T ey YT e
_(94z | 94y | O4) (Opu  Opv Opw
<6x+6y+8z) (5‘x+3y+8z)

- OR,z OR,y, OR,. B oug, . Ovgy = Owg.
<8x+8y+8z> (6$+8y+8z

— L,e
O(Toat + TyaV + ToaW)  O(Tayl + Tyyv + Toyw)
_ ! + ! ! !
Or dy
O(Tptt + Tyv + Toow)
+
0z

0
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Thermal Energy Equation

All Together
e As with the derivation of the momentum equation, we can
utilize Newtonian expressions to relate the velocity gradients
and stresses, namely:

ou 2 = - ou Ov
Tox = _2#782’; + g,u(V . U) Txy = Tyw =—u (ay + 833)

o 2 - - ou Ow
T = P, F gV U) T =T = <a+ax>

ow 2 = - ow Ov
Tzz = _2M7(92’ + gM(VU) Toy = Tyz = — (83/ + 82)

Or more compactly:

2 - —
mij = =283 + (V- V)b {u}
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Thermal Energy Equation

All Together

e We now subtract the E equation (slide 13) from the complete
energy equation to yield the thermal energy equation:

Terms (per unit volume)
@ Rate of gain of internal energy
® Rate of internal energy input by conduction
© Reversible rate of internal energy increase by compression
O Rate of internal energy input by net radiation
@ Rate of internal energy input by phase change

@ Irreversible rate of internal energy increase by viscous @
dissipation
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Thermal Energy Equation

The viscous term written out in full is:

2 - —
o, = —Q,USZ‘]‘SZ']‘ + gu(v . U)2

The thermal energy equation is written in terms of internal
energy.

However, we want to express the equation in terms of
temperature and heat capacity.

Let's work to relate I to 1", 6 and cp, c,.

30/36



Thermal Energy Equation

e Recall from thermodynamics that I = I(a, T'), where « is the
specific volume and 7' the absolute temperature.

e Thus,
oI 8]

e Multiplying by the density and considering the substantial
derivatives:

DI (oI Da+ DT
Pt = \oa ).’ Dt TP Dr

where ¢, is the specific heat of the fluid at constant volume.

0
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Thermal Energy Equation

e Writing the specific volume as the inverse of the density and
using the product rule of calculus:

p

"Dt ~ Dt

D D /1 1D 1> -
- ( ) =_-=f V.U
e Then for incompressible flow where V.U =0 we have:

DT =2 _ - —>
pcvﬁz—v- d — VR + Lye + ud,

where the viscous dissipation term simplifies to:

(I>l, = —Q/LSijSij
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Thermal Energy Equation

e Using Fourier's Law of Heat Conduction allows us to write the
second term as a function of temperature:

q = kYT
where k is the thermal conductivity of the fluid. Thus,
—6?}’ = H?-?T = /a@)QT
e Substitution yields the thermal energy equation in terms of T":

DT —> - —>
pcvﬁ = kV?T =V R, + Lye + ;L(I)i,
This equation yields temperature changes from heat
conduction, radiation divergence, phase change, and viscous

heating
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Thermal Energy Equation

e For a constant pressure fluid we can make the following

substitution:
dl = —pda + cpdT

which for an incompressible fluid leads to

DT

pcpﬁ = KV2T — €-ﬁ+Lve+ﬂ@fj

which is essentially stating that we can switch between ¢, and

cp, which is justified when the pressure terms are neglected in
a gas flow energy equation.

0
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Thermal Energy Equation

e The expression is approximately an enthalpy change:

DT = 1l > — L @/
Lo Erp o S VR, 4+
Dt pey PCp PCp  PCp
e |f viscous heating is small and we define thermal diffusivity as
K =k/c,T
DT L
= KT - 9. R4
Dt PCp pcp

or for potential temperature:

D70:K$2 1 VR, Lye

Dt PCp PCp : :
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We have now derived the following basic equations of atmospheric
dynamics, assumptions, approximations, and specific cases of their
application:

Conservation of momentum

Assumptions and approximations to the momentum equation
Ekman layer

Taylor-Proudman Theorem

Thermal wind

Mechanical energy equation

Thermal energy equation
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