Environmental Fluid Dynamics: Lecture 6

Dr. Jeremy A. Gibbs

Department of Mechanical Engineering
University of Utah

Spring 2017
Atmospheric Thermodynamics: Water Vapor
Moisture Parameters
Saturated Adiabatic Processes
Atmospheric Thermodynamics: Water Vapor
So far we have discussed water vapor in the air through its vapor pressure e

We included its effects on density through the virtual temperature correction

There are many ways in which to describe the amount of water vapor present in the atmosphere - so we will discuss various moisture parameters

What happens when water vapor condenses? We will cover that, too.
Latent Heat of Vaporization/Evaporation

The heat required by a unit mass of material to convert it from the liquid to gas phase without a change in temperature

- At 1 atm and 100 °C (boiling point of water),
 \[L_v = 2.25 \times 10^6 \text{ J kg}^{-1} \]
- The Latent Heat of Condensation has the same value, but heat is released when changing from vapor to liquid
Moisture Parameters: Mixing Ratio

Mixing Ratio

The amount of water vapor in a volume of air expressed as the ratio of the mass of water vapor m_v to the mass of dry air m_d

$$r \equiv \frac{m_v}{m_d}$$

- Usually expressed as $[g_v/\text{kg}_d]$
- Dimensionless for numerical computations $[\text{kg}_v/\text{kg}_d]$
- Ranges from a few $g \text{ kg}^{-1}$ in midlatitudes to 20 g/kg^{-1} in the tropics
- In the absence of condensation/evaporation, an air parcel’s r is constant (conserved)
Moisture Parameters: Mixing Ratio

- We can relate mixing ratio r to T_v
- Let’s recall the notion of partial pressures. The partial pressure of a gas is proportional to the number of moles of that gas present in the mixture

$$ e = \frac{n_v}{n_d + n_v} p = \frac{m_v}{M_w} p = \frac{m_v}{m_d + m_v} p = \frac{1}{\epsilon} \frac{m_v}{m_d} p $$

$$ e = \frac{r}{r + \epsilon} p $$

where, recall, $\epsilon = R_d/R_v = M_w/M_d = 0.622$
Moisture Parameters: Mixing Ratio

\[e = \frac{r}{r + \epsilon p} \]

- Recall from Lecture 4 that
 \[T_v \equiv \frac{T}{1 - \frac{e}{p}(1 - \epsilon)} \]

- Replace \(e/p \) with the expression derived on the previous slide
 \[T_v = \frac{T}{1 - \frac{r}{r + \epsilon(1 - \epsilon)}} = \frac{T}{\frac{r + \epsilon - r + r\epsilon}{r + \epsilon}} = T \frac{r + \epsilon}{\epsilon(1 + r)} \]

Note that \(r \ll 1 \), so we can approximate \((1 + r)^{-1} \sim (1 - r) \)
Moisture Parameters: Mixing Ratio

- Substitution yields

\[T_v = T \left[\left(\frac{r}{\epsilon} + 1 \right) (1 - r) \right] = T \left[\frac{r}{\epsilon} - \frac{r^2}{\epsilon} + 1 - r \right] \]

\[\simeq T \left[1 + r \left(\frac{1}{\epsilon} - 1 \right) \right] = T \left[1 + r(1.61 - 1) \right] \]

\[T_v \simeq T(1 + 0.61r) \]

This is a useful expression to obtain \(T_v \) with just \(T \) and the mixing ratio.

- Remember that virtual temperature is the temperature that dry air would need to attain in order to have the same density as moist air at the same pressure.
Moisture Parameters: Specific Humidity

Specific Humidity

The amount of water vapor in a volume of air expressed as the ratio of the mass of water vapor m_v *to the total mass of the air* $(m_d + m_v)$

$$q \equiv \frac{m_v}{(m_d + m_v)} = \frac{m_v/m_d}{m_d/m_d + m_v/m_d} = \frac{r}{r + 1}$$

- Since r is usually only a few %, then r and q do not differ greatly
Moisture Parameters: Specific Humidity

Specific Humidity

The amount of water vapor in a volume of air expressed as the ratio of the mass of water vapor m_v to the total mass of the air $(m_d + m_v)$

$$q \equiv \frac{m_v}{(m_d + m_v)} = \frac{m_v/m_d}{m_d/m_d + m_v/m_d} = \frac{r}{r + 1}$$

- Since r is usually only a few %, then r and q do not differ greatly
Moisture Parameters: Absolute Humidity

Absolute Humidity

The mass of water vapor \(m_v \) per unit volume of moist air

\[
\rho_v = \frac{m_v}{V}
\]

- Also referred to as vapor density
- Because \(\rho_v \) is not conservative w.r.t. adiabatic expansion or compression, it is not commonly used in atmospheric sciences
Moisture Parameters: Saturation Vapor Pressure

Consider a small closed box whose floor is covered by pure water at temperature T

Let’s assume that the air is initially completely dry

Evaporation begins and the number of water molecules in the box (thus e) increases

As e gets larger, the fast water condense back into liquid form

From Wallace and Hobbs (2006)
Moisture Parameters: Saturation Vapor Pressure

- If the rate of condensation > rate of evaporation, then the box is **unsaturated** at T
- If the rate of condensation = rate of evaporation, then the box is **saturated** at T
- The pressure exerted by the water vapor in the box is called the **saturation vapor pressure** e_s

From Wallace and Hobbs (2006)
Saturation Vapor Pressure Deficit

The difference between the saturated vapor pressure at a particular temperature and the water vapor pressure

\[VPD = e_s(T) - e \]

- \(VPD \) is sometimes referred to as the “drying power” of air in ecology problems.
Moisture Parameters: Saturation Vapor Pressure

A quick aside

- You might hear phrases like

```
"The air is saturated with water vapor
Warm air holds more wv than cold air
The air cannot hold more wv"
```

These suggest that air absorbs water vapor like a sponge.

Wrong! Stop That!
A quick aside

- Recall Dalton’s Law of Partial Pressures - the total pressure is equal to the partial pressure of each constituent.
- Thus, the phase change of water between liquid and vapor form is independent of air.
- Water vapor that is in equilibrium with water at T should more appropriately called the *equilibrium vapor pressure*.
Moisture Parameters: Saturation Vapor Pressure

- Recall Dalton’s Law of Partial Pressures - the total pressure is equal to the partial pressure of each constituent
- Thus, the phase change of water between liquid and vapor form is independent of air
- Water vapor that is in equilibrium with water at T should more appropriately called the \textit{equilibrium vapor pressure}
Moisture Parameters: Saturation Vapor Pressure

- How do we find $e_s(T)$? By using the Clausius–Clapeyron equation
- It relates the saturation vapor pressure to temperature
- From Maxwell’s Equations (2nd Law of Thermodynamics)

$$\frac{de_s}{e_s} = \frac{L_v}{R_v} \frac{dT}{T^2}$$

where
- e_s is saturation vapor pressure
- L_v is the latent heat of vaporization
- T is temperature
- R_v is the gas constant for water vapor
Moisture Parameters: Saturation Vapor Pressure

- We integrate from state 1 to state 2

\[
\int_{S_1}^{S_2} \frac{d e_s}{e_s} = \int_{S_1}^{S_2} \frac{L_v}{R_v} \frac{dT}{T^2}
\]

\[
\ln \left(\frac{e_s(S_2)}{e_s(S_1)} \right) = \frac{L_v}{R_v} \left(\frac{1}{T(S_1)} - \frac{1}{T(S_2)} \right)
\]

\[
\ln \left(\frac{e_s}{e_{s0}} \right) = \frac{L_v}{R_v} \left(\frac{1}{T_0} - \frac{1}{T} \right)
\]

where we let \(S_1 \) represent a reference state (denoted with subscript 0)

- \(T(S_1) = T_0 = 273.1 \) K

- Experimental data has shown \(e_s(S_1) = e_{s0} = 6.11 \) hPa
Moisture Parameters: Saturation Vapor Pressure

• Rearranging gives e_s for any T

$$e_s = 6.11 \exp \left[\frac{L_v}{R_v} \left(\frac{1}{273.1} - \frac{1}{T} \right) \right]$$

• From this, we can solve for the vapor pressure e from measurements of RH and T by way of

$$RH = 100 \frac{e}{e_s}$$
Moisture Parameters: Saturation Vapor Pressure

- The evaporation rate increases with increasing temperature
- Thus, e_s increase with increasing temperature
- Its magnitude only depends on temperature

From Wallace and Hobbs (2006)
Saturation Mixing Ratio

The amount of water vapor in a volume of air that is saturated, expressed as the ratio of the mass of water vapor m_{vs} to the mass of dry air m_d

$$r_s \equiv \frac{m_{vs}}{m_d}$$

- Both water vapor and dry air obey the ideal gas law

$$r_s = \frac{\rho'_{vs}}{\rho'_d} = \frac{e_s}{R_v T} = \frac{R_d}{R_v} \frac{e_s}{p - e_s} = \epsilon \frac{e_s}{p - e_s}$$
• Given typical values in the atmosphere, $p \gg e_s$, so

$$r_s = \epsilon \frac{e_s}{p - e_s} \simeq \frac{\epsilon e_s}{p}$$

$$r_s \simeq 0.622 \frac{e_s}{p}$$

• Thus, r_s is inversely proportional to total pressure at a given temperature

• Since $e_s = e_s(T)$, then $r_s = r_s(p, T)$

• This can be seen on a skew T-ln p chart
Moisture Parameters: Saturation Mixing Ratio

- For constant T, r_s increases with decreasing p
- For constant p, r_s increases with increasing T
Relative Humidity

The ratio of the mixing ratio to the saturation mixing ratio at the same temperature and pressure

\[RH \equiv 100 \frac{r}{r_s} \simeq 100 \frac{q}{q_s} \simeq 100 \frac{e}{e_s} \]

Dew Point Temperature

The temperature to which air must be cooled at constant pressure for it become saturated w.r.t water

\[T_d = T(r_s = r) \]

\[T_d \simeq T - \frac{100 - RH}{5} \]
Moisture Parameters: Lifting Condensation Level

Lifting Condensation Level (LCL)

The level to which a moist unsaturated air parcel can be lifted adiabatically before becoming saturated

- As the parcel rises, r and θ remain constant while r_s decreases until it equals r (at the LCL)
- The LCL is located where dry adiabat and r_s line intersect
Saturated Adiabatic Processes

- When an air parcel rises in the atmosphere, T decreases with increasing height until it becomes saturated.
- Condensation of liquid water occurs as the parcel is lifted further, which releases latent heat.
- Thus, the lapse rate of the rising parcel is reduced.
Saturated Adiabatic Processes

- If all the condensation remains in the air parcel, the process is considered reversible and thus adiabatic.
- Although latent heat is released, as long as it remains within the confines of the air parcel then the parcel underwent a **saturated adiabatic process**.
- If the condensation falls out of the parcel then the process is irreversible because condensation carries heat - so not really adiabatic.
- In this case, it is called a **pseudoadiabatic process** (in practice the saturated adiabatic and pseudoadiabatic lapse rates are approximately the same).
• We won’t derive this in class, but for posterity here is the saturated adiabatic lapse rate

\[\Gamma_s \simeq \frac{\Gamma_d}{1 + \frac{L_v}{c_p} \left(\frac{\partial r_s}{dT} \right)_p} \]

• Note that the denominator is > 1, so \(\Gamma_d > \Gamma_s \), which agrees with our expectation

• Values range from 4 K kg\(^{-1}\) near the ground in warm moist air to 6-7 K kg\(^{-1}\) in the middle portion of the troposphere
Saturated Adiabatic Lapse Rate

• We won’t derive this in class, but for posterity here is the equivalent potential temperature θ_e

• Just as dry adiabats are lines of constant θ, moist adiabats are lines of constant θ_e

\[\theta_e \simeq \theta \exp \left(\frac{L_v r_s}{c_p T} \right) \]
Saturated Adiabatic Processes