Environmental Fluid Dynamics: Lecture 4

Dr. Jeremy A. Gibbs

Department of Mechanical Engineering University of Utah

Spring 2017

1 Atmospheric Thermodynamics Air Temperature and Humidy Gas Laws Hydrostatic Equation

Atmospheric Thermodynamics

Numerous factors influence the vertical distribution of air temperature in the planetary boundary layer (PBL).

- Type of air mass (and its temperature) overlying the PBL depends on large-scale systems
- Thermal characteristics of surface/sub-surface affects diurnal range
- Net radiation the surface and its vertical distribution determines warming/cooling of surface and PBL
- Sensible heat flux at the surface and its vertical distribution determines rate of warming/cooling of air due to flux convergence/divergence

Numerous factors influence the vertical distribution of air temperature in the PBL.

- Latent heat fluxes during evaporation and condensation at the surface and in the air directly influences surface and air temp
- Advection of warm of cold air as a function of height in the PBL
- Depth of PBL confines turbulent exchanges over a particular distance

Likewise, numerous factors influence the vertical distribution of moisture in the PBL.

- Specific humidity of air mass overlying the PBL
- Surface type, temperature, and availability of moisture for evaporation/transpiration
- The rate of evapotranspiration or condensation at the surface and vertical distribution of water vapor flux

Likewise, numerous factors influence the vertical distribution of moisture in the PBL.

- Variation of horizontal water vapor advection with height
- Mean vertical motion in PBL possibilities of cloud formation and precipitation processes
- The depth of the PBL

Goal: introduce fundamental ideas and relationships in thermodynamics and apply them to situations in the atmosphere

- gas laws
- hydrostatic equation
- first law of thermodynamics
- second law of thermodynamics
- entropy

- Pressure, volume, and temperature of a material are described by an **equation of state**
- All gases generally follows the same equation of state the ideal gas law
- We will assume that atmospheric gases obey this law

$$pV = mRT$$

where

- p = pressure (Pa)
- *V* = volume (m³)
- *m* = mass (kg)
- R = gas constant (depends on gas)
- T = absolute temperature (K)

• The ideal gas law

$$pV = mRT$$

- Density $\rho=m/V,$ so we can rewrite the ideal gas law as

$$p = \rho RT$$

• We can also introduce specific volume $\alpha=1/\rho,$ which is the volume occupied by unit mass of the gas

$$p\alpha = RT$$

pV = mRT

• If T is constant, we get Boyle's Law

if the temperature of a fixed mass of gas is held constant, the volume of the gas is inversely proportional to its pressure

• Changes that occur to a body's physical state under constant temperature are called *isothermal*

pV = mRT

- If *m* is fixed and *p* is constant, we get Charles' First Law for a fixed mass of gas at constant pressure, the volume of the gas is directly proportional to its absolute temperature
- If *m* is fixed and *V* is constant, we get Charles' Second Law for a fixed mass of gas held within a fixed volume, the pressure of the gas is proportional to its absolute temperature

- Let's define a kilogram-molecular weight (kilomole; kmol) as the molecular mass M expressed in kilograms
- Example: the molecular weight of water is 18.015, so $1\ \rm kmol=18.015\ \rm kg$
- The number of moles n in mass m [kg] is given by

$$n = \frac{m}{M}$$

- Masses contained in 1 mol of different substances have same ratios to each other as the molecular weights of the substances
- Thus, $1 \ {\rm mol}$ of a subtance contains same numbers of molecules as $1 \ {\rm mol}$ of another substance
- *i.e.*, the number of molecules in 1 mol of a substance is a universal constant
- Avagadro's number $= 6.022 \times 10^{23}$ per mole
- Avagadro's hypothesis

Gases containing the same number of molecules occupy the same volumes at the same temperature and pressure

Dry Air

• We can use the apparent molecular weight of dry air (total mass of the constituent gases in dry air divided by the total number of moles of the constituent gases)

$$M_d = \frac{\sum_i m_i}{\sum_i \frac{m_i}{M_i}} = 29 \text{ kg kmol}^{-1}$$

to obtain the gas constant for dry air

$$R_d = \frac{R_u}{M_d} = \frac{8314}{29} = 287 \text{ J K}^{-1} \text{ kg}^{-1}$$

Dry Air

• Why 29 kg kmol⁻¹ for dry air?

Component	Volume Ratio	$\mathbf{M_{i}}$	Molecular Mass
Oxygen	0.2095	32.00	6.704
Nitrogen	0.7809	28.02	21.88
Carbon Dioxide	3×10^{-4}	44.01	0.013
Hydrogen	5×10^{-7}	2.02	0
Argon	$9.3 imes 10^{-3}$	39.94	0.373
Neon	$1.8 imes 10^{-5}$	20.18	0
Helium	5×10^{-6}	4.00	0
Krypton	1×10^{-4}	83.8	0
Xenon	9×10^{-8}	131.29	0
Apparent Molecular Weight $\mathbf{M}_{\mathbf{d}}$			28.97

Water Vapor

• We can apply to individual components of air, for instance water vapor

$$e\alpha_v = R_v T$$

where

- e = water vapor pressure
- $\alpha_v = \text{specific volume of water vapor}$
- R_v is the gas constant for water vapor
- Since molecular weight of water is $M_w = 18.016$, then

$$R_v = \frac{R_u}{M_w} = \frac{8314}{18.016} = 461.5 \text{ J K}^{-1} \text{ kg}^{-1}$$

• We can combine the two expressions to show that

$$\frac{R_d}{R_v} = \frac{M_w}{M_d} \equiv \epsilon = 0.622$$

• Since air is a mixture of gases, it follows Dalton's Law of Partial Pressures

the total pressure exerted by a mixture of gases that do not interact chemically is equal to the sum of the partial pressures of the gases

$$p = \sum_{i} p_i$$

Moist Air

- Moist air has a smaller molecular weight than dry air
- Thus, moist air will have a larger gas constant than dry air
- it is inconvenient, however, to use the gas constant for moist air because it depends on amount of water vapor in air (variable, hard to measure)
- Optional idea is to use R_d with an ad-hoc temperature variable that accounts for moisture effects
- We will call this virtual temperature

Virtual Temperature

• The density of moist air is given by

$$\rho = \frac{m_d + m_v}{V} = \rho'_d + \rho'_v$$

where

- $\rho_d' = {\rm density\ that\ the\ mass\ of\ dry\ air\ would\ have\ if\ occupied\ all\ of\ the\ volume$
- $\rho_v^\prime = {\rm density} \ {\rm that} \ {\rm the} \ {\rm mass} \ {\rm of} \ {\rm moist} \ {\rm air} \ {\rm would} \ {\rm have} \ {\rm if} \ {\rm occupied} \ {\rm all} \ {\rm of} \ {\rm the} \ {\rm volume}$
- We call these partial densities
- Note: moist air is less dense than dry air!

Virtual Temperature

• Gas law for dry air and water vapor

$$e = \rho'_v R_v T$$
$$p'_d = \rho'_d R_d T$$

 $e \ {\rm and} \ p_d'$ are partial pressures.

From Dalton's Law

$$p = p'_d + e$$

Recall that

$$\rho=\rho_d'+\rho_v'$$

Virtual Temperature

• Combine these expressions

$$\rho = \rho'_d + \rho'_v$$

$$\rho = \frac{p'_d}{R_d T} + \frac{e}{R_v T}$$

$$\rho = \frac{p - e}{R_d T} + \frac{e}{R_v T}$$

$$\rho = \frac{p}{R_d T} \left[1 - \frac{e}{p} (1 - \epsilon) \right]$$

This can be rewritten as

$$p = \rho R_d T_v$$

where

$$T_v \equiv \frac{T}{1 - \frac{e}{p}(1 - \epsilon)}$$

Virtual Temperature

the virtual temperature is the temperature that dry air would need to attain in order to have the same density as the moist air at the same pressure

- Recall that moist air is less dense than dry air for the same ${\cal T}$ and p
- Thus, T_v is always greater than T
- In the case of a very warm and moist air, $T_{\boldsymbol{v}}$ is only slightly larger than \boldsymbol{T}

Pressure

- Atmospheric pressure at a given height is the due to the weight of the air overlying that height
- Thus, pressure decreases with increasing altitude
- For a thin slice of air, there is upward pressure exerted by pressure gradient force (high to low pressure)
- This is generally close in magnitude to the downward force caused by gravitational acceleration
- If upward = downward, then we say that the atmosphere is in *hydrostatic balance*

From Wallace and Hobbs (2006)

- Consider column of air w/unit cross-sectional area
- Mass of air between z and $z+\delta z$ is $\rho\delta z$
- Downward force due to gravity is $g\rho\delta z$

From Wallace and Hobbs (2006)

- Change in pressure between z and δz is δp
- Since pressure decreases with height, $\delta p < 0$, and upward force on bottom is slight bigger than downward force on top
- Thus, net vertical force due to pressure is $-\delta p$

From Wallace and Hobbs (2006)

• If in hydrostatic balance

 $-\delta p = g\rho\delta z$

or in limit of $\delta z \rightarrow 0$

$$\frac{\partial p}{\partial z} = -\rho g$$

the so-called hydrostatic equation

$$\partial p/\partial z = -\rho g$$

• Above a fixed point on Earth

$$-\int_{p(z)}^{p(\infty)} dp = \int_{z}^{\infty} \rho g dz$$

Since $p(\infty) = 0$, we have

$$p(z) = \int_z^\infty \rho g dz$$

- Thus, the pressure at height z is the weight of the air in the vertical column above it
- The ideal sea level pressure (assumes mass of atmosphere distributed evenly) is 1.013×10^5 Pa = 1013 hPa 1 atmsophere

at a point it is the work required to be done against gravity to raise a mass of 1 $\rm kg$ from seal level to that point

- In other words, the geopotential Φ is the gravitational potential per unit mass
- Units = $[J~{\rm kg^{-1}}]$ or $[m^2 {\rm s^{-2}}]$

- Force acting on 1 kg at height z is equal to g
- Thus, work required to raise that from z to z + dz is gdz
- Accordingly

$$d\Phi \equiv gdz$$

• So, the geopotential at a given height is

$$\Phi(z) = \int_0^z g dz$$

• We can defined geopotential height as

$$Z \equiv \frac{\Phi(z)}{g_0} = \frac{1}{g_0} \int_0^z g dz$$

where g_0 is a globally-averaged gravitational acceleration (9.81 m s⁻²)

- Generally in the areas of meteorological importance, $g\approx g_0$ and so $z\approx Z$

Table 3.1 Values of geopotential height (*Z*) and acceleration due to gravity (g) at 40° latitude for geometric height (z)

<i>z</i> (km)	<i>Z</i> (km)	g (m s ⁻²)
0	0	9.81
1	1.00	9.80
10	9.99	9.77
100	98.47	9.50
500	463.6	8.43

Wallace and Hobbs (2006)

• Inconvenient to deal with ρ .

$$\frac{\partial p}{\partial z} = -\rho g = -\frac{pg}{RT} = -\frac{pg}{R_d T_v} \Rightarrow gdz = -R_d T_v \frac{dp}{p}$$

Substitute into geopotential formulation

$$d\Phi = gdz = -R_d T_v \frac{dp}{p}$$

Geopotential

$$d\Phi - R_d T_v \frac{dp}{p}$$

- Let's integrate between two pressure levels p_1 and $p_2,$ with geopotentials Φ_1 and Φ_2

$$\int_{\Phi_1}^{\Phi_2} = -\int_{p_1}^{p_2} R_d T_v \frac{dp}{p} \Rightarrow \Phi_2 - \Phi_1 = -R_d \int_{p_1}^{p_2} T_v \frac{dp}{p}$$

• Divide by g_0 and reverse limits of integration

$$\frac{\Phi_2}{g_0} - \frac{\Phi_1}{g_0} = \frac{R_d}{g_0} \int_{p_2}^{p_1} T_v \frac{dp}{p} \Rightarrow Z_2 - Z_1 = \frac{R_d}{g_0} \int_{p_2}^{p_1} T_v \frac{dp}{p}$$

• $Z_2 - Z_1$ is called the **geopotential thickness** between levels p_2 and p_1

