ME EN 7710

Homework #1

Due: January 24th

1.) Arya - Chapter 2, Exercise 5

Explain the following terms or concepts used in connection with the surface energy budget:

- (a) "ideal" surface
- (b) evaporative cooling
- (c) oasis effect
- (d) flux divergence

2.) Arya - Chapter 3, Exercise 2

- (a) Estimate the combined sensible and latent heat fluxes from the surface to the atmosphere, given the following observations:
 - Incoming shortwave radiation = 800 W m^{-2}
 - Heat flux to the submedium = 150 W m^{-2}
 - Albedo of the surface = 0.35
- (b) What would be the result if the surface albedo were to drop to 0.07 after irrigation?

3.) Arya - Chapter 3, Exercise 3

The following measurements or estimates were made of the radiative fluxes over a short grass surface during a clear sunny day:

- Incoming shortwave radiation: 675 W m^{-2}
- Incoming longwave radiation: 390 W m^{-2}
- Ground surface temperature: 35°C
- Albedo of the surface: 0.20
- Emissivity of the surface: 0.92
- (a) From the radiation balance equation, calculate the net radiation at the surface.
- (b) What would be the net radiation after the surface is thoroughly watered so that its albedo drops to 0.10 and its effective surface temperature reduces to 25° C?
- (c) Qualitatively discuss the effect of watering on the other energy fluxes to or from the surface.

4.) Arya - Chapter 3, Exercise 7

Discuss the merits of the proposition that net radiation R_N can be deduced from measurements from solar radiation $R_{S\downarrow}$ during the daylight hours, using the empirical relationship

$$R_N = AR_{s\downarrow} + B$$

where A and B are constants. On what factors are A and B expected to depend?

5.) Boltzmann and Planck

Derive Stefan-Boltzmann's Law from Planck's Law.

6.) Wein and Planck

Derive Wein's Law from Planck's Law.