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PREFACE

HE process of forecasting, which has been carried on in London for many years,

may be typified by one of its latest developments, namely Col. E. Gold's Index
of Weather Maps*. It would be difficult to imagine anything more immediately
practical. The observing stations telegraph the elements of present weather. At the
head office these particulars are set in their places upon a large-scale map. The index
then enables the forecaster to find a number of previous maps which resemble the
present one. The forecast is based on the supposition that what the atmosphere did
then, it will do again now. There is no troublesome calculation, with its possibilities
of theoretical or arithmetical error. The past history of the atmosphere is used, so to
speak, as a full-scale working model of its present self.

But—one may reflect—the Nautical Almanac, that marvel of accurate forecasting,
is not based ou the principle that astronomical history repeats itself in the aggregate.
It would be safe to say that a particular disposition of stars, planets and satellites
never occurs twice. Why then should we expect a present weather map to be exactly
represented in a catalogue of past weather? Obviously the approximate repetition
does not hold good for many days at a time, for at present three days ahead is about.
the limit for forecasts in the British Isles. This alone is sufficient reason for presenting,
in this book, a scheme of weather prediction, which resembles the process by which
the Nautical Almanac is produced, in so far as it is founded upon the differential
equations, and not upon the partial recurrence of phenomena in their ensemble.

The scheme is complicated because the atmosphere is complicated. But it has been
reduced to a set of computing forms. These are ready T to assist anyone who wishes to
make partial experimental forecasts from such incomplete observational data as are
now available. In such a way it is thought that our knowledge of meteorology might
be tested and widened, and concurrently the set of forms might be revised and
simplified. Perhaps some day in the dim future it will be possible to advance the
computations faster than the weather advances and at a cost less than the saving to
mankind due to the information gained. But that is a dream.

The present distribution of meteorological stations on the map has been governed
by various considerations : the stations have been outgrowths of existing astronomical
or magnetic observatories ; they have adjoined the residence of some independent
enthusiast, or of the only skilled observer available in the district ; they have been set
out upon the confines of the British Isles so as to include between them as much
weather as possible ; or they have been connected with aerodromes in order to

* Meteor. Office Geophysical Memotr, No. 16, deals mainly with types of pressure distribution but fore-

shadows a more general indexing. ]
t+ Printed blank forms may be obtained from the Cambridge University Press, Fetter Lane, E.C. 4.

498216



viii PREFACE

exchange information with airmen. On the map the dots representing the positions of
the stations look as if they had fallen from a pepperpot. The nature of the atmosphere,
as summarized in its chief differential equations, appears to have been without
influence upon the distribution. We shall examine in Ch. VII what would happen
if these differential equations were the sole consideration. The result is represented
in the frontispiece.

The extensive researches of V. Bjerknes and his School are pervaded by the idea
of using the differential equations for all that they are worth. I read his volumes on
Statics and Kinematics* soon after beginning the present study, and they have
exercised a considerable influence throughout it; especially, for example, in the
adoption of conventional strata, in the preference for momentum-per-volume rather
than of velocity, in the statical treatment of the vertical column, and in the forced
vertical motion at the ground. But whereas Prof. Bjerknes mostly employs graphs,
I have thought it better to proceed by way of numerical tables. The reason for this
is that a previous comparisont of the two methods, in dealing with differential
equations, had convinced me that the arithmetical procedure is the more exact and
the more powerful in coping with otherwise awkward equations. Graphical methods
are sometimes elegant when the problem involves irregularly curved boundaries. But
the atmospheric boundary, at the earth, nearly coincides with one of the coordinate
surfaces, so that graphs would have no advantage over arithmetic in that respect.

It bas been customary to regard line-squalls and other marked discontinuities as
curious exceptions to the otherwise smoothly gradated distribution of the atmosphere.
But in the last two years Prof. V. Bjerknes and his collaborators J. Bjerknes,
H. Solberg and T. Bergeron at Bergen have enunciated the view, based on detailed
observation, that discontinuities are the vital organs supplying the energy to cyclones .
The question then arises: how are we to deal with discontinuities by finite differences ?
For such purposes graphs have a special facility which numerical tables lack. But it
is not to be expected that a knowledge of the position and motion of surfaces of
discontinuity will prove to be sufficient for forecasting, any more than ¢ vital ” organs
alone would suffice to keep an animal alive. So probably the most thorough treatment
will be reached by tabulating quantities numerically, where they vary continuously,
and by drawing a line on the table where there is a discontinuity. The line will be a
notification to the computer that one may interpolate up to it from either side, but not
across it. )

This investigation grew out of a study of finite differences and first took shape in
1911 as the fantasy which is now relegated to Ch. 11/2. Serious attention to the
problem was begun in 1913 at Eskdalemuir Observatory with the permission and
encouragement of Sir Napier Shaw, then Director of the Meteorological Office, to
whom I am greatly indebted for facilities, information and ideas. I wish to thank

* (Carnegie Institution, Washington, 1910, 1911.

+ L. F. Richardson, Phil. Mag. Feb. 1908; Proc. Roy. Soc. Dublin, May 1908 ; Phil. Trans. A, Vol. 210,

p. 307 (1910); Proc. Phys. Soc. London, Feb. 1911.
1 Q. J. R. Met. Soc. 1920 April, and Nature, 1920, June 24.
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Mr W. H. Dines, F.R.S., for his interest in some early arithmetical experiments, and
Dr A. Crichton Mitchell, F.R.S.E., for some criticisms of the first draft. The arith-
metical reduction of the balloon, and other observations, was done with much help
from my wife. In May 1916 the manuscript was communicated by Sir Napier Shaw
to the Royal Society, which generously voted £100 towards the cost of its publica-
tion. The manuscript was revised and the detailed example of Ch. IX was worked out
in France in the intervals of transporting wounded in 1916—1918. During the battle
of Champagne in April 1917 the working copy was sent to the rear, where it became
lost, to be re-discovered some months later under a heap of coal. In 1919, as printing
was delayed by the legacy of the war, various excrescences were removed for separate
publication, and an introductory example was added. This was done at Benson, where
I had again the good fortune to be able to discuss the hypotheses with Mr W. H.
Dines. The whole work has been thoroughly revised in 1920, 1921. As the cost of
printing had by this time much increased, an application was made to Dr G. C. Simpson,
F.R.S., for a further grant in aid, and the sum of fifty pounds was provided by
the Meteorological Office. For the construction of the index we are indebted to
Mr M. A. Giblett, M.Sc. The discernment and accuracy with which the Cambridge
Press have set the type have been constant sources of satisfaction.

L. F. R.

LoNpoN
1921 Oct. 10



GUIDING SIGNS

For finding one’s way about this book it is most helpful to realise that:—

(i)
(ii)
(ii)

(iv)

A complete list of symbols and notation is given in Ch. XII at the end of the
book.

An impression such as (Ch. 9/12/3) is intended to refer the reader to the
3rd subdivision of the 12th division of Chapter IX.

The mark # is used to refer to equations, expressions, or statements which
have had numbers assigned to them in the right-hand margin. Thus
(Ch. 9/12/3 # 16) means the equation, expression or statement numbered 16
in the aforesaid subdivision. The mark # is often omitted where the meaning
is plain without it.

The physical units are those of the centimetre-gram-second system, unless a
different unit is expressly mentioned. Temperatures are in degrees centigrade
absolute. Energy, whether by itself or as involved in entropy or specific
heats, is expressed in ergs not in calories.



CHAP.

II.
IT1.

IN'A

VI.

CONTENTS

PREFACE .
GUIDING SIGNS : : :
LIST OF CONTENTS . 3 . 4 P

SUMMARY
INTRODUCTORY EXAMPLE

THE CHOICE OF COORDINATE DIFFERENCES

3/1. Existing practice

3/2. The division into honzontal ]ayers :

3/3. Effect of varying the size of the finite dlﬁ'erences
3/4. The pattern on the map g

3/5. Devices for maintaining a nearly squzue chequer
3/6. Summary on coordinate differences

3/7. The origin of longitude

THE FUNDAMENTAL EQUATIONS .

4/o. General !

4/1. Characteristic cquatlons of dry and mmst air
4/2. The indestructibility of mass

4/3. Conveyance of water .

4/4. Dynamical equations .

»°

4/5. Adiabatic transformation of energy Lntropy (See aIso Ch 8/2/6)

4/6. Uniform elouds and precxpltatlon

4/7. Radiation

4/8. The effects of eddy motlon (See also Ch 11/4)
4/9. Heterogencity o

4/10. Beneath the earth’s smface

FINDING THE VERTICAL VELOCITY

5/0. Preliminary

5/1. Deduction of a general equat:on

5/2. Simplifieation by approximation
5/3.- Method of solving the equation .
5/4. Illustrative special cases

5/5. Further varieties of the simplified general equa,tlon .

5/6. The influence of eddies

SPECIAL TREATMENT FOR THE STRATOSPHERE

6/0. Introduction

6/1. Integrals of pressure and denalty

6/2. The continuity of mass in the stratosphere
6/3. Extrapolating observations of wind

6/4. The horizontal dynamical equations in the stratosphere

6/5. Radiation in the stratosphere
6/6. Vertical velocity in the stratosphere .

6/7. Dynamical changes of temperature in the stratosphcrc

6/8. Summary

PAGE
vii

xi

16

16
16
18
18
19
19
20

21

21
23
23
25
30

43
46
65
94
104

115

115
116
118
119
119
123
124

125
125
126
127
127
132
134
135
140
147



xii

CHAP.

VIIL

VIIL

IX.

XII.

CONTENTS

THE ARRANGEMENT OF POINTS AND INSTANTS

7/o. General 2 .

7/1. The simplest arrangement of pomts ¢

7/2. The arrangement of instants o

7/3. Statistical boundaries to uninhabited regions .

7/4. Joints in the lattice at the borders of sparsely inhabited regions
7/5. The polar caps . 5 ¥ 5 . 0 ; 5

REVIEW OF OPERATIONS IN SEQUENCE

8/o. General

8/1. Initial data. 4

8/2. Operations centered in columns 1na1kcd “1’ ” on the map .

8/3. Operations centered in eolumns marked “H” on the chessboard map
8/4. Coneluding remarks

AN EXAMPLE WORKED ON COMPUTING FORMS

9/o. Introduction

9/1. Initial distribution obscrved at 1910 May 20 D 7 H G M. T

9/2. Deductions, made from the observed initial distribution, and set out
on the eomputing forms .

9/3. The convergenee of wind in the plecedmg example

SMOOTHING THE INITIAL DATA

SOME REMAINING PROBLEMS .

11/0. Introduetion 3
11/1. The problem of obtaining mmal obsel vatlons o
11/2. Speed and organization of computing

11/3. Analytical transformation of the equations
11/4. Horizontal diffusion by large eddies .

11/5. A survey of reflectivity

UNITS AND NOTATION

12/1. Units

12/2. List of symbols, .

12/3. Relationships between certain symbolx
12/4. Subscripts for height

12/5. Veetor notation

INDEX OF PERSONS 5
INDEX OF SUBSIDIARY SUBJECTS

ERRATA

5, 1. 14.  For longitude read latitude

. 27, equation (8). In the coefficient of tan ¢, for My read My
. 44, 1. 14, For C. M. K. Douglas read C. K. M. Douglas
57,1 256. For M. A. Boutarie read A. Boutaric

64, 1. 30. For M. A. Boutaric read A. Boutaric

65, 1. 8 from bottom. For eonventional read convectional
. 87, 1. 14.  Lor Regers read Regers’

. 105, 1. 10,  For 1:92 read 172

. 107,). 7. For Rothamstead read Rothamsted

. 110, 1. 9 and 1. 4 from foot. For Calendar read Callendar
. 126, footnote. For M. G. Gouy read G. Gouy

<

MmEE T TS T T T T

PAGE
149
149
149
150
153
153
155

156
156
157
157
1§79
180

181

181
181

186
212

214

217
217
217
219
220
220
222
223
223
223
228
228
229

230
231



CHAPTER I

SUMMARY

Finite arithmetical differences have proved remarkably successful in dealing with
differential equations; for instance, approximate particular solutions of the equation
for the diffusion of heat 2°6/0x*=026/0t can be obtained quite SImply and without any
need to bring in Fourier analysis. An example is worked out in a paper published in
Phil. Trans. A, Vol. 210%. In this book it is shown that similar methods can be extended
to the very complicated system of differential equations, which expresses the changes
in the weather. The fundamental idea is that atinospheric pressures, velocities, etc.
should be expressed as numbers, and should be tabulated at certain latitudes, longitudes
and heights, so as to give a geneml account of the state of the atmosphere at any
instant, over an extended reglon up to a height of say 20 kilometres. The numbers in
this table are supposed to be given, at a certain initial instant, by means of observations.

Tt is shown that there is an arithmetical method of operating upon these tabulated
numbers, so as to obtain a new table representing approximately the subsequent state
_of the atmosphere after a brief interval of time, 8 say. The process can be repeated

ADDITIONAL ERRATA
p. 9, equation 8. For cot ¢ read ‘—:%;is.
p- 42, equation 13. The value of a, is wrong. Please refer to pp. 158 to 162, especially to p. 161,

2
p. 77, equation 22. For ——l‘,lz(vb read + :lm‘O

p. 77, footnote. After “a wrong sign” insert the words “before the second term of (5-2) and (5°3) and.”

p- 89. Please refer to Ch. 8/2/15 beginning on p. 171.
p. 136, equation 9. The last form should read
= (_1_>__l°°“¢
adp \singp/  asing’
p. 136, equation 8. Add to the second member the term
_tang g alog0<k h——)

¢ 2wsing’

p- 137, equation 10. Chauge the sign of the last form of the second member,

The two foregoing corrections in Ch. 6/6 # 8 and 10 imply that the expression = qi;: e

it occurs in Ch. 6 should be replaced by co(tbq&‘ This change is necessary in Ch. 6/6 # 11, 17, 18, 22, 23 ; in
Ch. 6/7/2 # 15, 18 and again on the computing form P x1v on page 201.

8100 9'8109'112 JSrom plus o minus.

p. 138, equation 22. Change the sign in front of i

L. F. Richardson. Weather Prediction by Numerical Process.

wherever
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CHAPTER I

SUMMARY

FiniTe arithmetical differences have proved remarkably successful in dealing with
differential equations ; for instance, approximate particular solutions of the equation
for the diffusion of heat 2°6/0x*=26/ot can be obtained quite simply and without any
need to bring in Fourier analysis. An example is worked out in a paper published in
Phil. Trans. A, Vol. 210*. In this book it is shown that similar methods can be extended
to the very complicated system of differential equations, which expresses the changes
in the weather. The fundamental idea is that atimospheric pressures, velocities, ete.
should be expressed as numbers, and should be tabulated at certain latitudes, longitudes
and heights, so as to give a general account of the state of the atmosphere at any
instant, over an extended region, up to a height of say 20 kilometres. The numbers in
this table are supposed to be given, at a certain initial instant, by means of observations.

It is shown that there is an arithmetical method of operating upon these tabulated
numbers, so as to obtain a new table representing approximately the subsequent state
of the atmosphere after a brief interval of time, 8¢ say. The process can be repeated
so as to yield the state of the atmosphere after 28¢, 38t and so on. There is a limit
however to the possible number of repetitions, because each table is found to be smaller
than its predecessor, in longitude and latitude, having lost a strip round its edge. Only
if the table included the whole globe could the repetitions be endless. Also the errors
increase with the number of steps.

In Ch. 2 the working of the method is shown by its application to a specially
simplified case. In Ch. 3 the coordinate differences are considered in relation to the
average size of European cyclones, and the following differences are provisionally selected :
in time 6 hours, in longitude the distances between 128 equally spaced meridians,
in latitude 200 kilometres of the earth’s circumference, and in height the intervals
between fixed heights nearly corresponding to the normal pressures of 8, 6, 4,
2 decibars. Thus small-scale phenomena, such as local thunderstorms, have to be
smoothed out.

In Ch. 4 the fundamental equations are collected from various sources, set in
order and completed where necessary. Those for the atmosphere are then integrated
with respect to height so as to make them apply to the mean values of the pressure,
density, velocity, etc., in the several conventional strata. Incidentally certain con-
stants relating to friction and to radiation are collected from observational data. It
is found to be necessary to eliminate the vertical velocity from all the equations, and in
Ch. 5 it is shown how this can be done. Special difficulties arise in connection with the
uppermost stratum on account of its great thickness and the enormous ratio of density

_ % pp. 312, 313.
1



T R SUMMARY Cn. 1

between its upper and lower surfaces. These difficulties are removed in Ch. 6, as far
as high latitudes are concerned. In particular it is shown how the total mass transport
above any level may be deduced from a pilot balloon observation which extends well
into the stratosphere.

In Ch. 7 the arrangement of the tabular numbers in space and time is discussed
with a view to securing the best representation of differential coefficients by difference
ratios.

In Ch. 8 the whole system of arithmetical operations is reviewed in order. With
regard to the horizontal differential coeflicients the general method may be briefly
described in the following four sentences: Take the differential equations and replace
everywhere the infinitesimal operator @ by the finite difference operator 3. Use arith-
metic instead of symbols. Attend carefully to the centering of the differences. Leave
the errors due to the finiteness of the differences over for consideration at the end of
the process. With regard to the vertical differential coefficients, on the contrary, it is
often possible to effect an exact transformation to differences, by means of a vertical
integration. In arranging the computing, it has constantly to be borne in mind that the
rate of change with time of every one of the discrete values of the dependent variables
must be calculable from their instantaneous distribution in time and space, excepting’
only those values near the edge of the horizontal area represented in the table. We
may refer to this necessary property by saying, for brevity, that the system must be
“Jattice-reproducing.”

In Ch. 9 will be found an arithmetical table showing the state of the atmosphere
observed over middle Europe at 1910 May 20d. 7 h. c.m.7. This region and instant
were chosen because the observations form the most complete set known to me at the
time of writing, and also because V. Bjerknes has published large scale charts of the
isobaric surfaces, together with collated data for wind, cloud and precipitation. Starting
from the table of the initially observed state of the atmosphere at this instant, the
method described in the preceding paragraphs is applied, and so the rates of change of
the pressures, winds, temperatures, etc. are obtained. Unfortunately this “ forecast ” is
spoilt by errors in the initial data for winds. These errors appear to arise mainly from
the irregular distribution of pilot balloon stations, and from their too small number.

In Ch. 10 the smoothing of initial observations is discussed.

In Ch. 11 is a collection of problems still waiting to be solved, with some suggestions
for their treatment.

Ch. 12 is a list of Notation.

Pressures fictitiously “reduced to sea-level ” are not used in the present method.
Instead, the varying height of the land is dealt with by the variation of the lower
limit of an integral with respect to height. See Ch. 4/2, Ch. 4/4.

The problem of weather prediction is of the ‘“marching” variety. To explain
this statement it should be pointed out that the ease or difficulty with which
physical problems involving differential equations can be solved, depends on very
different things according to whether symbolic methods or arithnetical differences are
to be employed. In the former case the main facts in the situation are the ‘ order”



Ch. 1 PROPERTIES OF FINITE DIFFERENCES 3

and “degree” of the equations and whether they are ordinary or partial. In the latter
case what usually matters most is the relation of the “body equation ” to the boundary
conditions. By “body equation” is here meant the differential equation which holds
throughout the region of space and the interval of time with which we have to deal.
The “boundary ” must be understood to be the limits of either this time or this space.
According to the relation between the body equation and the boundary conditions,
problems are divided into:

(i) “Jury” problems in which the integral must be determined with reference to
the boundary as a whole: for instance the problem of a stone thrown from a given
point to hit another given point; or that of the stresses inside a loaded dam. Cases
like these frequently require troublesome successive approximations, before a statement
is obtained with which the “jurymen,” seated round the boundary, will all agree.

(1) “Marching” problems in which the integral can be stepped out from a part of the
boundary : for instance the problem of a stone thrown with given initial vector-velocity,
or that of the cooling of a body with given initial and superficial temperatures. Other
things being equal, these problems are much more easily solved than those in division (i)
above. Weather prediction falls into the “marching” category.

Whilst dealing with the general subject of finite differences it may be well to
mention two important properties brought to notice by Mr W. F. Sheppard.

(«) The great gain in accuracy, in the representation of a differential coeflicient,
when the differences are centered instead of progressive; a gain secured by a slight
increase of work.

(b) That the errors due to centered differences, when small enough, are proportional
to the square of the coordinate difference. This fact provides a universal means of
checking and correcting the errors.

For further information about centered differences the reader is referred to ““Central-
Difference Formulae,” by W. F. Sheppard, Proc. Lond. Math. Soc. Vol. XXXI. (1899)
and to “The Approximate Arithmetical Solution by Finite Differences of Physical
Problems,” by L. F. Richardson, Phil. Trans. A, Vol. 210, p. 307 (1910).



CHAPTER 11

INTRODUCTORY EXAMPLE

Berore attending to the complexities of the actual atmosphere and their treatment by
this numerical method, it may be well to exhibit the working of a much simplified
case. Lest the reader, catching sight of numbers of 7 digits, should suppose that these
are necessary, let me at once point out that they have been introduced in order to
measure the errors due to finite differences, which in this example are very small. An
intelligible picture of the sequence of phenomena would remain after the last 4 places
of digits had been cut off everywhere.

Suppose now that there is no precipitation, clouds or water vapour, neither solar nor
terrestrial radiation, no eddies, and no mountains or land, but an atmosphere in which
we can ignore or summarize variations with height moving upon a globe covered by
sea. Further to simplify the problem, let us neglect all the quadratic terms in
the dynamical equations. Then, in order to summarize the vertical velocity and the
density, let us perform an integration with respect to height upon the horizontal
dynamical equations and upon the equation of continuity of mass. If the limits of
integration are sea-level, and a height so great that the density there is negligible, we
thus arrive at a set of equations similar to those used by Laplace in his discussion of
Tides on a Rotating Globe (vide Lamb, Hydrodynamics, 4th ed. § 214):

oM d .
= -l -la’e€+2w gt . S L ¥ e (1)
aﬂ[ 7 a .

e -%G—zw T R PRI e (2)
e oMz oMy Mytand
_at_ == e { ae . + ——a—;)’ — _T} ........................ (3)

oM, i) .
=~ {_Beﬂ + a6 on (M cos qS)} LN Wby s B (3a)

Here My, My are the components of the whole momentum of the column of atmo-
sphere standing upon a horizontal square centimetre at_sea-level, p, is the pressure at
sea-level, ¢ 1s gravity, ¢ is time, ¢ is latitude, a is the radius of the earth, w its angular
velocity, e and on are distances to east and to north, and 7”is an empirical height, used
to convert fh ol dh into H’a—{?-q.

neo 0OC ae
ence of pressure between cyclones and anticyclones up to 14 km, and at 20 km, when
combined with the extrapolation into the stratosphere according to the method to be
described in Ch. 6 below, indicate that H' =92 kin =092 x 10° ¢, on the average.

Proof of (1), (2), (3) is not here given, because at this stage we are more concerned

The data given by Mr W. H. Dines for the differ-
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with the procedure of solving these equations, than with their naturalness. Let it
suffice to point out that this is a set of three simultaneous equations, involving three
dependent variables My, My and pg and three independent variables, time, latitude
and longitude.

The atmospheric pressure at sea-level, pg, plays the same réle in these equations
as does the elevation of the sea above its equilibrium level in the tidal equations.
Much of tidal theory* is directly applicable, but its interest has centered mainly in
foreed and free oscillations, whereas now we are concerned with unsteady circulations.

The free periods of oscillation of the hypothetical atmosphere governed by equa-
tions (1), (2), (3) are the same as those of an ocean ef uniform depth H’ in which the
particles of water do not attract one another to an appreciable extent.

To proceed to the numerical solution of (1), (2) and (3) we take a piece of paper
ruled in large squares, like a chessboard, and let it represent a map. The lines forming
the squares are taken as meridians and parallels of longitude—an unusual thing in
map projection. Next, we lay down the convention that all numbers written inside a
square relate to the latitude and longitude of its centre. The longitude of the centres
of the squares is written down at the top of the table, and the latitude along the left-
hand margin. The difference 8 is constant and equal to 400 km between the points
where like quantities such as p and p, or M and M, are tabulated, although the squares
are only 200 km in the side. The distance 8¢, between the points where like quan-
tities are tabulated, is that between meridians equally spaced at the rate of 64 to the
equator ; it is nearly 400 km in latitude 50°.

The symbols pg, My, My are written in the squares in the places shown in the
table. It is seen that pressure and momentum alternate in a pattern, which is such
that, if a chessboard had been used, the pressures would all appear on the red squares,
and the momenta all on the white ones, or vice versa. The reason for this pattern will
appear as we go on.

Now to represent the initial observations of pressure we are at liberty to write
down any arbitrary set of numbers, at the points of the map where pg is required, only
with this qualification : that if the assumed pressure gradients be unnaturally steep,
the consequent changes will be perplexingly violent. Since p, enters the equations
only by way of its differential, we may dispense with superfluous digits by tabu-
lating differences of pressure from any standard value such as the general mean. These
differences are here denoted by Apg.

When the pressure distribution has been chosen, we have next to represent the
initial observations of momentum-per-area by writing down numbers in the alternate
chequers. These numbers might have been chosen independently of the pressure, and
in fact quite arbitrarily, with a qualification similar to that mentioned above. But it
has been thought to be more interesting to sacrifice the arbitrariness in order to test
our familiar idea, the geostrophic wind, by assuming it initially and watching the
ensuing changes.

* E.g. Lamb, /ydrodynamics, 4th ed. §§ 213 to 223 and 314 to 316. Vide also Gold in M. O. publica-
tion 203 on diurnal variation of the trade winds of the Atlantic Ocean.
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In order to convince the reader of the reliability of the numerical method, a
problem has been selected which has been solved analytically. This has imposed a
further great restriction on the arbitrariness. One of the most powerful of analytie
methods is that of expansion in a series, by Maclaurin’s Theorem. (Vide Forsyth'’s
Dyifferential Equations.) But in order that this method may be applicable, the initial
distribution must be free from discontinuities even in remote regions. To get isobars
running partly north and south, we may try p;=sin A, where X is longitude eastward.
To avoid a discontinuity of pressure at the pole we can multiply by cos ¢. To avoid
an infinite geostrophic wind at the equator we can multiply by (sin ¢).

So the selected form of the initial pressure distribution has been

Apg=sin Xk cos ¢ (sin p)* x 10° dynes em™, ......ccoveriernnens (4)

where Apg signifies the deviation from the general mean.
The isobars are shown in Fig. 1 on the map of the globe. The equator and the
meridian of Greenwich are isobars. There is high pressure over Asia, and over the
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Fig. 1. Isopleths of sin I cos ¢ (sin ¢)? corresponding to the isobars of the initial distribntion studied in Chapter IL

south Indian Ocean. Low pressure is at the antipodes of each high. The maxima and
minima of pressure occur in latitude 54°-7, that is 6:08 x 10° em from the equator, and
amount to 385 millibars above or below the mean. '

A small portion of this distribution of pressure near England is entered numerically
on the table. X

To find the geostrophic momenta-per-area, we next insert the above value of Apg
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in equations (1) and (2), at the same time putting 9My/ot=0; 0Myfot=0. Then it
follows that initially

¥ [ -
= ——— 2 F.gn PO o ST T o
My 5 11 A{E+3cos 24} x 10°grm sec™ cm ™, (5)
ﬂ_[ e ¢ ]]/ )\ i 105 = =i
¥=+5 - cos Asin el O%anei SRESRAIN AT . . L3l (6)

These initial momenta-per-area, expressed in numbers, are entered at the appropriate
points of the numerical table.

Next, inserting the numbers from the table into equations (1), (2), (3), and treating
difference-ratios as if they were differential coeflicients, we get the rates of increase
of My, My, ps. These rates have been multiplied by a 8¢ equal to 2700 seconds, that
is by £ hour, in order to get the increases in that time. An example of the calculation
of the increase of Mj will now be given at the point having longitude — 38\, latitude
64 x 10° cm from equator, which will be found in the top left-hand corner of the table
of initial data:

M, =8275786 grm cm™'sec”,

20 sin ¢ . 8t = 03324746, a pure number ;
multiplying these together we get
wsing. My = +275148'9 grm cm™ sec™’,
Nearest Ap; to east = —3744°11 gﬁn cm™ sec™?
Nearest Apg to west= —745217 .

difference +3708:06

!
but S—tS—eH = 474'17322 seconds;

»

multiplying, we get
— = —2750388 grm cm ™ sec”’;

adding, we get from equation (1),
?ng' dt= 41101 grm em™’ sec™™.

This change of 1101 is entered on the initial table in parenthesis under the value of
M. Its value is, in this case, a measure of the error due to the finite difference, for
we took My such as to make M /ot vanish, when the calculation was performed exactly
by analysis. It is seen that the error is in this example quite small, being only 1/7000
of the resultant of M and My. That is why such large numbers of digits have been
taken. The changes in M at other points are all worked in the same way, but of
course the coefficients vary with latitude. The computation of &¢.9My /ot from equation
(2) is so similar that it need not be illustrated.

Next, as to the pressure changes : it happens conveniently that cos ¢ .8n is a fixed
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Ch. 2 INADEQUACY OF GEOSTROPHIC WIND 9

multiple of 3¢, so that by combining the multiplier with My cos ¢, the arithmetic is
considerably shortened. Equation (3a) may then be written

5 5
b pa= 5" {SEME+ Sy <MN 3‘2)} sl o)

where the suffixes in §,, §,, Sy indicate the variable which alone is varied. As an
example of the computation of these pressure-changes we may take the-following,
which refers to the point at longitude — 88\, latitude 62 x 10° em north.

Cm from equator  10°x 64 l 10°X% 6°2 1 10°x6°0
My 8275786 | — | 792967°7 grm em ™ sec™?
My 3:85 6928731 7282730 . ,, e
86 | -1 -1
Sy MN% — 353999 grm cm ' sec
SE‘ZI[E ‘ = 5019'_8_ 2 3
Sum —30380.1 3 2

Sum x —g.0t/8e= + 228589 =8, p expressed in dynes em™* per 2700 secs.

This time-change is written in parenthesis under the initial pressure. The pressure-
changes at all the points are worked in the same way, except that the coetlicients vary
with latitude. The advantage of the chessboard pattern is now seen to be that
the time-rates are given at the points at which the variables are initially tabulated.
By adding the changes in § hour we obtain a new table which has the same pattern
as the initial one, so that it can in turn be taken as a starting-point. In this way the
process can be continued with no limit; except that set by the loss of a strip, round
the edge of the map, at every step. ‘

If we had begun with pgy, My, My all three tabulated in every square, the distri-
bution might have been regarded as two interpenetrating chessboard patterns. In
the subsequent steps these interpenetrating systems would have been propagated quite
independently of each other.

Let us now compare with observation the result so far obtained. In this deduction
the distribution distorts and moves west. Actual cyclones move eastward. It is
natural to expect a slip of a sign in the process, but that expectation may be very
simply disposed of. For, substitute the geostrophic momenta from (1) and (2) into (3),
then there results d

pe g g

2o = e g} o L T S (8)
The deduction of this equation has been abundantly verified. It means that where
pressure increases towards the east, there the pressure is rising if the wind be
momentarily geostrophic. This statement may be taken as a criticism of the geostrophic
wind as an adequate idea when pressure-changes have to be deduced.

The same point was brought to notice by Sir Napier Shaw in his Principia
Atmospherica. But he was able to escape from the dilemma by supposing that the

R. 2
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congestion of air in a northward wind was somehow relieved in an upper level. Here
we are dealing with the effect of all levels combined by integration, and the dilemma
remains.

I am indebted to Dr E. H. Chapman for a value of the correlation between opg/ot
and dpgfoe. Taking 8pg/8t for 12 hours at Pembroke and representing 3pg/de by the
excess of pressure at Bath over that at Roche’s Point, an interval of space which has
Pembroke nearly at its centre, he finds for observations at 7" and 18" on 1915 July 1st
to 26th a correlation of — 0-5,, the negative sign of which is in direct conflict with the
equation above.

These facts bring one into sympathy with the view emphasized by Dr Harold
Jeffreys (Phil. Mag. Jan. 1919) that, to understand cyclones, it is essential that the
small terms in the equations be taken into account. But owing to treating latitude
as constant in deducing his equation (9) from his (6), Dr Jeffreys concludes that a
geostrophic wind implies no change of pressure. The success of Sir Napier Shaw’s
comparison between theory and the weather map for the case of a rigid portion of air,
moving like a wheel with its hub rolling along a parallel of latitude (Manual of
Meteorology, 1v, Ch. 9), again turns on the fact that he has taken exact account of
the small terms in the dynamical equations.

0’ A £ : . 0
(8¢y 5 (of initial distribution) with, written below, (8t)3a_ﬁ’ of the same
-3\ — 26\ l - oA 0 A 26N 30N
64 | M, -785% M, 1855
M0 |
_ M/-15759| ., . (42551)| .o M, 15759
s My 131884 Po =043 |y oisenrg | Po O3 v 131884
' (0:0) [
| M -17869 M," 7869
s P S (4081-4)|  pg" 0:00 (4081+4)| .. ! ,
60 | M,"12826:0\ pg"—064 | 3 vioogred | (- 7819)| M, 12047-4 | Po 004 | M, 12826:0
(2563) (-256°3)
M 0
M —15748] £ " M, 15748
58 M. 126009 - e R gl ( ’g‘l):g‘;) M 12600-9
(+494:3) )| M+ 12 (00) (- 494'3)
M —7891 M, 7891
i P S e (37067)|  p.” 0:00 (B7067) | . \ _
56 | My 10032 | p =057 | 4 W STEET P e | ar o tassed | pe 0T (M, 122132
(244-4) (- 244-4)
’ M 0
M 15792 ¥ M, 15792
54 z, "_0-26 3521-2 "0-26 5,
M, 11967-4| Pe MN"§2027'0) Ps M, 119674
52 M- 1916 M, 7916
!
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12 INTRODUCTORY EXAMPLE Ch. 2

But it is quite possible that the present discrepancy may arise from treating /'
as a constant height, while in reality it may be ditferent in different portions of the
pressure dlstrlbutlon

Nevertheless it is generally agreed that the terms on the left-hand sides of our
equations (1), (2), (3) are far larger than the terms which have been neglected.
On this account it will be of interest, in spite of the disagreement with observation,
to make several further time-steps in order to observe the errors which arise from
finite differences and from the curtailment of digits. The ordinary procedure would
be to add to the initial distribution the changes in the first interval of time, so as to
obtain a complete new distribution; and then to find its rate of change. If the non-
linear terms had been included in the dynamical equations, that would probably have
been the best way. But here, as.equations (1), (2), (3) are linear in Mz, My, pg we
can simplify the process, because the second time-rates 0°M /o', "M y[oF, Opefot are
given by inserting, in the equations, the first time-rates 0.3 z/ct, oM y/ot, 9pg/fot in place
of My, My, pg respectively. This would not have been the case if the squares and
products of My, My had been retained. By taking advantage of this fact we save
arithmetic. The result is a set of tables of successive time-rates, all referring to the
initial instant. The unit for ¢ is taken as 1 second throughout. But as one second is an
uncomfortably small unit of time, for this purpose, the nth time-rates have been mul-
tlphed by (8t)" where 8t=$ hour = 2700 seconds. The actual progress of the variables
in time is easily obtained from Maclaurin’s expansion.

Now let us put the foregoing solution by finite differences to the test, by com-
paring it with the analytical solution. To obtain the latter we expand My, My, pg
separately in powers of the time by Maclaurin’s Theorem. For instance, if suffix zero
denote values at the initial instant, then

oMy oMy Mz
ME*(ME)‘,H( )+21<'atz >o+3,< 7 >+etc ............ (9)
And there are similar series for My and py. -Now (2Mgfot), is given by the left-hand
side of (1) when the initial values are assigned to pg and M. Next by differentiating (1)

oM 0 ; oM.
( at2E> - -—.H’ <§tG) +2w sin ¢< at—N>o, .................. (10)

and the differential coefficients on the left of (10) are supplied by equations (2) and (3).
If the expansions of My, My, ps be worked simultaneously, all the differential coeffi-
cients come to hand as they are required, those of any order being derived from those
of the next lower order, which in turn have already been expressed in terms of the
initial distribution. For the special initial distribution defined by (4), (5), and (6) the
expansions are set out in the adjoining table (p. 11), which goes as far as the sixth power.

Looking at these coefficients in the Maclaurin expansion we see that, broadly
speaking, they describe the following succession of atmospheric changes in the neigh-
bourhood of England. The isobars initially run north and south, and the high pressure
is to the east. The winds at first do not change because they are geostrophic and
because non-linear terins are omitted from the dynamical equations. But the pressure
rises, especially in the south, so that the isobars swing round in the sense of “veering.”




Ch. 2 ERRORS DUE TO FINITE DIFFERENCES 13

The greater increase of pressure to the south subsequently produces an increase in the
northward component of the wind *, while there is-still no eastward component across
the meridian of Greenwich. The pressure changes continue at first at a uniform rate,
because at first the winds have not changed. The wind begins to veer perceptibly only
when the effect of the coefficient of ¢'/3 ! begins to show itself; and there is a corre-
sponding slowing down of the rate of rise of pressure.

The numerical constants which occur in the coefficients of these expansions have
been given precisely the same values as those used in the finite difference solution,
namely: the earth is taken as a sphere having a circumference of 4 x 10° centim,

H' =092x10°cm, g=979 cm sec™®, 20=1+458423 x 10 *sec™".

The numbers obtained by finite and infinitesimal differences are contrasted in the
tables below. Bearing in mind that the resultant momentum is of the order of a million,
it is seen that the discrepancies are relatively very small. The finite-difference
equivalent for 9°pg/ot’ is small, where it should be zero. The higher differential coeffi-
cients change signs at the central meridian in the proper way. The errors are small
chiefly because the initial distribution varies slowly with latitude and longitude. If
an ordinary cyclone were analysed in this way, the errors would be much greater;
though still, I think, within the useful limit.

The error due to the curtailment of digits can be recognised in the finite difference
tables as the cause of the irregularities in the last digit or two digits. The calculations
were performed by a Mercedes-Euklid multiplying machine lent by the Statistical
Division of the Meteorological Office.

TABLES OF EXPANSIONS IN POWERS OF ¢/2700
WHERE, AS USUAL, ¢ IS IN SECONDS, SO THAT ¢/2700 BECOMES UNITY AFTER § HOUR

For My, My, at the centre of the region, in longitude 0°, latitude 58 10°cm
north from the equator.

Expansion of Mg Expansion of My
Cosflidient of |~ o uite 2 by finite | by
i differences | infinitesimals l differences ‘ infinitesimals

¢/2700 ! 97-9 7610 zero zero
3 ;
71 (¢/2700)* ' Zero ‘ zero 12662-7 12684-53
1 ,
37 (4/2700)" : 3058 | 39467 zero zero
4% (¢/2700) zero zero —1623-8 - 16390
5l' (¢/2700) unfindable —-6124 unfindable zero
&1 /2700y | unfindable zero | unfindable |  219-53

J ey b oo Wi

Note: The resultant initial momentum is here as large as 800000 roughly. The higher
coefficients are unfindable because of the limited extent of the initial table.

* Since the geostrophic condition is only initial.
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To show up the terms in sin A the following comparison has been made at a point
away from the origin of longitude.

At longitude — 8\; Latitude 60X 10° cm north of equator

Expansion of My Expansion of My
Coefficient of
by differences | by differentials | by differences | by differentials
¢/2700 + 1025 Zero -60 zero
—21—1 (¢/2700) — 7869 — 7877 +12947-4 12971-7
Il -
33 (¢/2700)° 4081-4 41324 256-3 2509

Note: The resultant initial momentum s here about 800000.
To test the progress of pg, a comparison has been made as follows:

At longitude — 8\; Latitude 5°8 X 10° em north of equator

Expansion of Apg
Coefficient of
Finite Infinitesimal

¢/2700 251716 251862
1 2
57 (¢/2700) -0:34 zero
1
33 (t/2700)3 —81:53 —81+61

Note: The maximum initial Ap, 18 as large as 38500, but occurs in a distant part of the globe.

There are many alternative ways of utilizing these successive differential coeffi-
cients in order to obtain a chart of the progress of the variables. The discussion as to
which way is the neatest may be left over to Ch. 7.

Enough has been done to show the power and the limitations of arithmetical
finite differences in dealing with a set of simultaneous differential equations known to
resemble those of the weather.

It has been made abundantly clear that a geostrophic wind behaving in accord-
ance with the linear equations (1), (2), (3) cannot serve as an illustration of a cyclone.
These equations are of the same form as those which successfully describe free Tidal
oscillations. We may question whether the inadequacy resides in the equations
(1), (2), (8) or in the initial geostrophic wind, or in both. In any case we receive a
hint that it would be well to analyse weather maps more closely, in order to find out
what are the real relationships.
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Before leaving equations (1), (2), (3), it may be noted that on eliminating My, My
they yield what purports to be the general equation for an isobaric map at sea-level.

It runs
— o 2 apG Z 2 2a.pG H"2w 2>a_pG'
' g[at*'m] R <8t2+ﬂ>v %" o 6t“+ﬂ o\

e "pe 2wsin¢8pg>
——a~8w Sln¢'cos¢<at8¢_Tos¢'5x )

where Q = 2w sin ¢ and V* stands for

No wonder that isobaric maps look complicated, if this be their differential equation,
derived from most stringently restricted hypotheses.

I am indebted to Mr W. H. Dines, F.R.S., for having read and criticised the
manuscript of this chapter.



CHAPTER III

THE CHOICE OF COORDINATE DIFFERENCES

THE choice would have to be guided by four considerations : (1) the scale of variation
of atmospheric disturbances, (2) the errors due to replacing infinitesimals by finite
differences, (3) the accuracy which is necessary in order to satisfy public require-
ments, (4) the cost, which increases with the number of points in space and time that
have to be dealt with.

Ca. 3/1. EXISTING PRACTICE

In general the distance apart of telegraphic stations in the existing distribution
is the safest guide to the required scale of proceedings. In a “ Map showing the
position of the Meteorological Stations, the observations from which are used in the
preparation of the daily weather report Jan.—June 1918,” the mean distance between
a station and its immediate neighbours appears to be about 130 kilometres, if we
confine attention to the British Isles, to which the map principally relates. Or to
put it another way: the number of stations marked on the British Isles is 32, and the
area of the polygon formed on the map by stretching a string round the outermost
stations is about 56 x (100 km)’. So that if the stations were, in imagination, re-
arranged in rectangular order, there would be enough of them to put one at the centre
of each square of 132 kilometres in the side.

From the open sea there are indeed valuable wireless reports of observations on
ships (see International Section of Darly Weather Report of Meteor. Office). But, in
comparison with reports coming from land stations, they are scarce and irregular, and
refer only to surface conditions.

With regard to time intervals, the existing practice of making observations for
telegraphic purposes every 12 hours, or sometimes every 6 hours, is again our safest
guide. :

CH. 3/2. THE DIVISION INTO HORIZONTAL LAYERS

In making a conventional division of the atmosphere into horizontal layers the
following considerations have to be borne in mind. It is desirable to have one con-
ventional dividing surface at or near the natural boundary between the stratosphere
and troposphere, at an average height of 10°5 km* over Europe. Secondly, that to
represent the convergence of currents at the bottom of a cyclone and the divergence
at the topt, the troposphere must be divided into at least two layers. Thirdly, that
the lowest kilometre is distinguished from all the others by the disturbance due to the

* B. Gold, Geophys. Mem. v.; W. H. Dines, Geophys. Mem. 11.
+ W. H. Dines, @. J. R. Met. Soc. 38, pp. 41—50.
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ground. Thus it appears desirable to divide the atmosphere into not less than 4 layers.
If the layers are of equal or approximately equal mass the treatment of many parts of
the subject is greatly simplified, e.g. radiation, atmospheric mixing, ete. To facilitate
comparison with V. Bjerknes’ charts and tables, I have chosen 5 strata divided at
approximately 2, 4, 6, and 8 decibars.

This being granted, there are various ways in which the divisions may be taken :

(1) Divisions at the instantaneous pressures of 2, 4, 6, 8 decibars. This is
Bjerknes’ system, except that he takes 10 sheets, not 5. The heights of the isobaric
surfaces become the dependent variables in place of the pressures. This system
readily yields elegant approximations. But it entails the inconveniences of deformable
coordinates, for it is equivalent to taking p as an independent variable in place of A.
The corresponding alterations in the equations can be carried out by means of the
following set of substitutions.

Let 4 be any variable and let the suffixes denote the quantities which remain
constant during the differentiations.

Then when ¢ and ¢ are constant,

ook () -G ),

There is a sinilar equation in 8¢ when A and ¢ are constant.
Also when X\, ¢ and ¢ are constant,

d__ o
on~ 9P op’

Also when X and ¢ are constant,

() - (4], - () )

The result of these substitutions is to produce a large number of terms. The
additional terms are small, but they are not always negligible in comparison with the
errors of observations. As observations improve they are likely to become more
significant. On this account I have preferred to use instead the following system :

(2) The divisions between the five conventional strata are taken at fixed heights
above mean sea-level, so chosen as to correspond to the mean heights of the 2, 4, 6
and 8 decibar surfaces. These mean positions* are at about 2°0, 4'2, 72, 11-8 kilo-
metres over Europe.

Gravity has a small north-south component parallel to a surface at a fixed height
above sea-level, which is taken into account. The “horizontal” components of wind
are taken parallel to the sea surface in the theory, which in this particular is much
too good for the observations.

(3) Another alternative, and a rather tempting one, would have been to have
taken the divisions between the strata at fixed values of the gravity potential corre-
sponding to mean pressures of 2, 4, 6, 8 decibars. This system would be particularly

* W, H. Dines, Geophys, Mem. 2. Also Bjerknes’ synoptic charts.
3
R.
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elegant in the stratosphere. The horizontal components of wind would be defined as
at right angles to the force of gravity. The variation of the thickness of a stratum
with latitude .could be taken into account in the equation of continuity of mass.
Analytically ¢ would be an independent variable in place of /.

Cu. 3/3. EFFECT OF VARYING THE SIZE OF THE FINITE DIFFERENCES

The reduction of the differences of latitude and longitude in the ratio n would
multiply by 7’ the number of stations falling on any territory. The cost of maintain-
ing observing stations is but little affected by a change in the number of points in a
vertical line at which observations are required, and would only be affected by a re-
duction of the interval of time, if this necessitated an extra shift of observers, as for
instance a night-shift. Together we may reckon the effect of reducing both 84 and &t
in the ratio n, as increasing the cost perhaps in the ratio » instead of »’. We have then

Cost of stations = An’,
Cost of computing = Bn',

where A and B are constants.

Administrative expenses would contain an element C independent of =, as well
as other parts which may be debited to the stations and to the computing, by changing
the constants A and B to 4’ and B’. The whole cost would then be of the form

A'n*+ B'n*+ C.
Next, as to the accuracy obtained : it has been shown* that in the representation
of a smooth continuous function by finite differences, which are in any case sufficiently
small, the finite size of the differences produces errors proportional to 1/n’.

Thus as n varied, the errors would be inversely as the square root of the cost of
computing alone. The relation to the whole cost

A'n*+ B+ C

cannot be simply expressed until we know the values of 4’, ¥/, C.

CH. 3/4. THE PATTERN ON THE MAP

As has already been illustrated in the introductory example, it is very desirable
to arrange pressure and momentum in a special pattern like that of a chessboard.
The consideration of this question is deferred to Ch. 7 as it cannot be properly dis-
cussed until we have the full differential equations before us. Suffice it to point out
here, that the pattern is such that the least difference in latitude or longitude between
similar quantities, such as pressure and pressure, or wind and wind, is twice the least
difference between dissimilar quantities, such as pressure and wind. To what then are
we to compare the distance of 130 km, which we have seen is the mean distance
between existing British telegraphic stations? If we take 130 km as more than one
alternative and as less than the other, we arrive at approximately 100 km between
dissimilar and 200 km between similar stations, for a densely populated area.

* L. F. Richardson, Phil. Trans. A, Vol. 210, 1910, p. 310.
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Ch. 3/s. DEVICES FOR MAINTAINING A NEARLY SQUARE CHEQUER

There is some advantage in a chequer which is nearly a square; for the degree
of detail with which it is desirable to study the weather, is roughly the same in all
directions at any fixed point. A square-shaped chequer might be maintained in all
latitudes by making 6n decrease towards the poles in proportion to cos¢. But then
the treatment would be the more detailed in the high uninhabited latitudes where
detail matters less. A more economical plan would be to maintain én at the same
value in all inhabited latitudes and to make it increase in the uninhabited polar zones ;
and, when the chequers became too elongated, on-approaching the poles, to omit
alternate meridians. To make this possible right up to the poles, it would be necessary
that the number of meridians used on the equator should be divisible by 2 many
times over. For instance, instead of 120 meridians 3° apart it would be better to have

2" =128 meridians 2° 48’ 45”0 = 00490874 radian apart.

Unfortunately this was not thought of, until after the 8° difference of longitude had
been used in the example of Ch. 9.

Ch. 3/6. SUMMARY ON COORDINATE DIFFERENCES

The adopted size of chequer might be a compromise between that indicated by
the existing practices on land and on sea; for abundance of observations on the former
does not compensate for scarcity of observations on the latter.

A satisfactory arrangement would appear to be to divide the surface into chequers by
parallels of latitude separated by 200 km and by meridians spaced uniformly at the
rate of 128 to the whole equator. The chequer is then nearly a square of 200x200 km
in latitude 50°. At the equator even, it is not too elongated, as it measures there
313:09 kin east X200 km north. In latitude 63° the chequer is about 142 km from
east to west. As 3%42=.J1/2 this would be the latitude for the first omission of
alternate meridians. The discussion of the polar caps is deferred to Ch. 7. In the
example of Ch, 9 the width of the chequers is taken as 3° of longitude ; but that must
be considered as an inferior choice. The centres of the chequers are supposed to be the
points for observing and recording the meteorological elements. If we imagine the
chequers to be coloured alternately red and white, so as to produce a pattern resembling
a chessboard, then it will be shown in Ch. 7 below, that the red chequers should bear
the pressure, temperature and humidity, and the white chequers should bear the two
components of momentum ; or vice versa.

Horizontally the atmosphere may conveniently be divided into five conventional
strata at the fixed heights of 20, 4-2, 72, 11'8 km above mean sea-level, heights
which correspond to mean pressures of 8, 6, 4, and 2 decibars. Ten layers would give
four times the accuracy obtained with these five layers. A technically more perfect
division would be to take the separating surfaces at constant gravity potential instead
of, as in this book, at constant height.

The interval of time 8¢ has usually been taken in what follows, as 6 hours.
3—2
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Cu. 3/7. THE ORIGIN OF LONGITUDE

This might be determined so as to get the greatest number of stations on land, or
on steamship routes. If the whole world were considered, the origin would be a matter
of indifference, as the coast lines are so irregular. For a small group of islands like the
British Isles, if they could be treated as independent (as they certainly cannot), choice
of origin would be important. Thus taking Greenwich as origin and meridians spaced
equally at the rate of 128 to the equator, we find two stations about 50 kilometres
west of the Irish coast, and three others at a like distance west of the Hebrides; of the
Isle of Man and of Cornwall. By shifting the origin to longitude 2° W. of Greenwich
these five stations come on land, or within about 10 kilometres of it; while only one
other, which moves from Flamborough Head into the North Sea, is lost. The arrange-
ment with the origin at 2° W. of Greenwich is shown in the frontispiece. The stations
are supposed to be at the centres of the chequers.

Postscript: A study of turbulence, in Ch. 4/8, has disclosed several reasons for
taking thinner strata near the ground. The divisions might for example be at heights
of 50, 200 and 800 metres. The dividing surfaces would need to follow, more or less,
the slope of the land.

Again difficulties connected with the stratosphere in the tropics may make it
necessary to divide the atmosphere above 118 km into two conventional layers.



CHAPTER 1V

THE FUNDAMENTAL EQUATIONS

Cu. 4/o. GENERAL

THERE are four independent variables :
t time.
h height above mean sea-level.
A longitude, reckoned eastward.
¢ latitude, reckoned negative in the southern hemisphere.

Seven dependent variables have been taken, namely :

vz velocity horizontally towards the east.

Uy ) 2 ” 2 north.
Vy ,»  vertically upwards.
p density.

p joint mass of solid, liquid and gaseous water per mass of atmosphere.
¢ temperature absolute centigrade.
p pressure, expressed in dynes em ™.

If an eighth dependent variable had been taken, it might perhaps have specified the
amount of dust in the air.
The rates of change of the seven dependent variables are given by the following

seven main equations. The “tributaries” in the table supply the values of certain terms
oceurring in the main equations.

( Main equations . Tributaries
dvg/ot | eastward dynamical equation ... .o« | eddy-viscosity
dvy/ot | northward 5 b e il .
dvy/ot | upward n " ... | eddy-conduction of heat
dp/at | indestructibility of mass ... ... | precipitation
du/d¢ | conveyance of water .. | precipitation, stirring
@0/ot | conveyance of heat ... | precipitation, stirring, radiation and clouds
p/dt | characteristic gas equation, 26/3¢ and Gp/ot

One of the first questions which had to be decided was whether to-eliminate any
of the dependent variables before proceeding to the numerical process. Now if a
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variable be eliminated between two differential equations the resulting equation is
usually more complicated, so that the saving in arithmetical toil due to the absence of
a variable, is partly or entirely compensated by the increase in toil due to the com-
plication. There is also a clear advantage in keeping to the familiar variables which
are observed, to the avoidance of stream-functions and other quantities which cannot
be observed. Therefore I decided to do without analytical preparation of this kind
except in two cases:

(i) To eliminate temperature between the characteristic equation p = bpd and any
other equations in which # occurs. This introduces no complications, because the
characteristic equation is not differential.

(ii) To solve for the vertical velocity. This is necessary, because sufficient obser-
vations of the vertical velocity are not available, nor likely to become so. The solution
can be obtained because the vertical equilibrinm can be treated as a static one, that is
to say Dvy/Dt can be neglected. It is done in Ch. 5.

After this change vy is given in terms of mixing, precipitation, and radiation, and of
the instantaneous values of the five remaining variables vz, vy, p, o, p. The time rates
of the remaining variables are then given by the following five equations :

Main equations Tributaries

2 (va)/Bt} two horizontal dynamical equations, | vy, eddy-viscosity

2 (pvy)/ot modified by equation continuity | vy, eddy-viscosity
op/ot indestructibility of mass’' ... «es | vy, precipitation
Aot conveyance of water ... |vg, precipitation, mixing
oplat vertical static ... | vy and dpfat

i

The equations are further modified so as to make them apply to conventional strata.
The way in which they then fit and lock together will be explained in detail in Ch. 8.
As the arithmetical method allows us to take account of the terms which are
usually neglected, many of these terms have been included. But as all terms cannot
be treated with equally small time- and space-differences (see Ch. 7), they cannot all be
treated with equal accuracy, and so it is necessary to know beforehand which terms are
likely to be the more important. Some figures, representing the extreme values ordinarily
attained by the various terms, are set out underneath certain of the equations. These
figures have been obtained by a casual inspection of observational data and they may
be uncertain except as to the power of ten. They are expressed in c.6.s. units. They
relate only to the large-scale phenomena which can be represented by the chosen
coordinate differences of 200 kilometres horizontally, one-fifth of the pressure ver tlcally
and by the time step of six hours*. i

* Very much fuller data concerning the size of terms has been collected by Hesselberg and Friedmann
Geoph. Inst., Leipsig, Spezialarb. Ser. 2, Heft 6.



Cu. 4/1, 2 THE EQUATION OF CONTINUITY OF MASS 23

Cu. 4/1. CHARACTERISTIC EQUATIONS OF DRY AND MOIST AIR

The units in the following are c.c.s. centigrade throughout. The equations are
taken from Hertz's* paper. Dry air

P8O0 X N0P@h, i o bunr st i Bl Mia. ks (1)
moist unsaturated air
P=(2870+ 1T46p)X10%00, .o veerrerreerracrenrrnnen. (2)
saturated with liquid water or with ice
(= pL)=2870XVOML & p)pl) ..o iiviiiminiiinnanan. (3)

here p,, is the saturation pressure of vapour in equilibrium with water or with ice.
A table of p,,, iIn 10° dynes/cm® as unit, is given in Sir Napier Shaw’s Principia Atmo-
spherica.

For our purposes it is convenient to employ w,, the density of the saturated vapour,
instead of p,. On taking account of the relative densities of air and water-vapour
equation (3) yields the following equation in w,,

p=0{p(1—p)x2:87x10°+w,x4616 x 10°%}. ...cc.oeeeeeee. (4)

We shall frequently require to find @ from the characteristic equations, being given
ps ps p. Now in order to find § we must know whether to use equation (4) or
equation (2), that is to say we must know whether the air is saturated or not. For this
purpose we require the relation between p, p and u when the air is just saturated.
This relation is to be found by treating (2) and (4) as simultaneously true, and ‘then
eliminating 6 between them. Thus solving (2) for 6, and substituting in (4), there
results
(TS ES [0, 1 5500090080 B 0G0 Cp 0 AB 00D P TP (5)

in which it is important to notice that w, corresponds to the temperature given by (2).

If the numerical values of p, p, u are such as to make (5) an identity, then the
air is just saturated. If w,1s too large to fit in (5), then the air is unsaturated and the
temperature already found from (2) is correct. If on the other hand w, is too small to
fit in (5), then the air is saturated, and both w, and @ must be recalculated by solving (4).

CH. 4/2. THE INDESTRUCTIBILITY OF MASS

This principle leads to the well-known ““equation of continuity (of mass).”

Let v be the vector velocity, p be the density, so that vp is the momentum-per:
volume, which for brevity we denote by m. Then the equation runs as follows, in
vector notation

%
o~
or when expanded in spherical coordinates on a globe of radius « :

=div (pv) =divm=vVp+pdivy, ......o..cviiuneann.nn. (1)

op Omp  Omy mytand omgyg 2my (2)
e o = v = PR ERITIPPITPRIS
10 107 107  10-8tang <107  10-10 -

* Miscellaneous Papers, No. x1x. (Macmillan & Co.).



24 THE FUNDAMENTAL EQUATIONS CH. 4/2

)
The term %’ is small, but the other term involving the vertical velocity is by no

means negligible. The term Zit) is usually small in comparison with either L g—zF or 2_3;%\,;
that is to say, the atmosphere, although compressible, flows almost as if the density were
constant at a fixed point. This is a much better approximation as V. Bjerknes* and
later Hesselberg and Friedmannt have pointed out, than to suppose that the atmo-
sphere moves like a liquid. As cyclones and anticyclones sweep past an observatory,
W. H. Dines has shown that the increases of pressure are compensated by increases
of temperature in the troposphere, so that the density there has a standard deviation,
at a fixed point, as small as 1'5°/, of its mean value. In the stratosphere, up to 13 km
of height, the variation of density at a fixed point is about the same in absolute mag-
nitude as in the troposphere, but therefore much greater relative to its mean}.

The fact that the momentum-per-volume m is nearly a non-divergent vector, has
been the reason for using it in preference to the velocity. However, although dp/ot is
small, it will not be neglected.

To adapt the equation of continuity of mass to our conventional strata let us
integrate it across a stratum with respect to height, and apply the rule for differ-
entiating a definite integral, remembering that all the limits of integration are constant

during 8% and ain except only the limit at the ground ; and that all, without exception,

are independent of time. The limits are denoted by G for the ground and 8, 6, 4, 2
for the conventionally fixed heights which correspond approximately to mean pressures
of 8, 6, 4, 2 decibars. Taking the lowest stratum as example, equation (2) becomes
8 8 8
= % f pih = ;7 f “mgdl+ 5% f mydh+ [
oh oh
+<mE% + "?/N% —mH'>G

8 8
_tand (* hel f il S i (3)
G aje

Now <mEg§+mNg~%—mﬂ> is the scalar product of the vector m and of a vector
g G

at right angles«to the surface of the ground, and therefore it vanishes since the ground
is impervious to the wind. ....iue.as i e d s Uit L RIS I 08 (4)
Now let capital letters denote the integrals, with respect to 4, of the corresponding
small letters across the thickness of the stratum. Here I is taken as corresponding
to p. Then the following equation is precisely true (for a spherical sea-surface). In it

the “differentiations g now follow the stratum as a whole,

oe’ on
oR oMy oM, tanp My 2My
—a_t—_aTe—+W+[’nH]“_ - = 4+ ¢ reeesseernesa (5)

* Dynamic Meteorology and Hydrography, Art. 117.
T Geoph. Inst., Leipsig, Ser. 2, Heft 6, p. 164.
+ 'W. H. Dines, Characteristics of the Free Atmosphere, Meteor. Office, London, 1919, p. 76.
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For any layer, except the lowest, there is a term my at the lower limit to be subtracted
from the right side of this equation. Because they fit in this equation, the quantities
R, M, M, have been chosen as dependent variables throughout this book. I is the
mass per unit horizontal area of the stratum. Mgy, My, M, are the components of the

total momentum of the stratum per unit horizontal area. Since dh = — Z—f: we have

8
s 1 [ el T (7)
9)¢

This formula for M has been used in deriving M, from observations in which a
registering balloon had been followed by a theodolite.

The velocity vz was plotted against p and M, measured as an area on the diagram.
1t is rather difficult to say what is the best way to take account of precipitation in
the continuity of mass. It depends on how one defines my the vertical momentum
per unit volume, when rain is falling. If my is defined to be the total momentum
including that of the rain, as well as that of the air, then the equation of continuity
of mass is correct as it stands. If on the other hand my refers solely to the moist air,
then a correcting term is necessary. This is discussed in Ch. 4/6.

Cu. 4/3. THE CONVEYANCE OF WATER, WHEN MOLECULAR DIFFUSION IS
NEGLECTED, AND EDDIES ARE NOT AVERAGED-OUT

It is a familiar observation that winds coming from over a warm sea bring water
with them. This large-scale conveyance of water will now be put into equations, which
will be equally applicable to small-scale motions provided that the equations are
applied to the actual detailed distribution of the velocities, humidities and the like,
and provided also that the detail is not so small as to bring molecular diffusion into the
question. The modifications introduced, when smoothed velocities replace the actual
velocities, will be considered in the section on eddy-motion. Precipitation will also be
reserved for separate treatment.

Apart from these complications, the air carries the water along with it, so that
the velocity of the water is vy, vy, vy, the same as that of the air. The density of the
water substance is w grams/cc. We have therefore an equation of continuity of mass
of water substance similar in form to the equation of continuity of total mass (Ch. 4/2),
except that w replaces p and that precipitation and convection come im

ow .. increase of water per volume and per time
bl = P e I e i o A 1
ot M { due to convection and precipitation } (1)

This expands in spherical coordinates just as does the corresponding equation in p.
R, : 4
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Now w=pup, where u is the mass of water substance per unit mass of moist atmo-
sphere. So

div (wv) =div (gpv) =div (um) = .cooiiiiii (2)
=mVy + udivm by the well-known vector formula.
But By -%P R I o e (3)
¢
So = + div (wv) = p +va,u, p ( + VVI.L) .................. (4)

Now ~a’—;+va. is the increase in p, following the motion of the fluid, and is cus-

D,
D¢’
equation of continuity of water substance,

.D,L 3;,(, a,L a ap 3
T =5 T VIR =5y H0n5, + Uy o gl =

per unit time by convection and precipitation. ........ cooiiiiiiiiiiiiiiinii e (5)

tomarily denoted by Thus, on dividing through by p, we get a second form of the

rate of increase of water per unit mass and

It 1s in fact immediately obvious that the relative proportions of water and air by

mass do not change during the motion, and therefore that ll—))% =0 except for convection

and precipitation. Thus the equation is confirmed. By working backwards from (5)

to (1) it is found that the second member of (1) is p %- , instead of l()’l“ P) which might
have been erroneously expected.
Equation (1), expanded in spherical coordinates, reads

ow _ 0(wvp)  0(wvy) woytand 9(wvy)  2(wvy)  Dp
R RIS T a TG (g T [y L L (6)
Adaptation to Conventional Strata when W is given

In seeking to adapt equation (6) to conventional strata characterized by My, My, R
we are met by the difficulty that neither w nor the velocity is independent of height ;

so that, for example, |wvzdh, taken between the upper and lower limits of a stratum,

is not simply and accurately expressible in terms of M and f wdh between the same

limits. However w varies* very much more rapidly with height than do vz, vy or v.
Therefore vz, vy are treated as constant across a stratum, when the integral is being
evaluated. Taking the lowest stratum for example and integrating (6) we get

8 8
8_] wdh+ { EI wdh} g2 "’UN U’dh + [wvg s+ we fanh+vNah —vg
% on | 2e " V¥ Ul

tand)v,, wdh+ v,,f wdh = f dh ves s sl ()

* Hann, ﬂ[eteorologze, 3 Auf. pp. 227-234.
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; 0 ) ¢ L L 2
The quantity <vE£+vN a%—m;) vanishes, because the ground is impervious to
G

8

wind. Write f wdh =W so that W 1s the total mass of water-substance, whether
¢

liquid, solid or gaseous, per unit horizontal area of the stratum. Then (7) becomes

a I’V ‘Z‘[EI‘/ J.[ W tan ¢ 'Z;[I] W 2447
3 ae< k)t < R > a ( R >+a””W+[w””]’
=rate of increase of water per unit horizontal area of the stratum, by convection and

precipitation = B %t ...................................................................... (8)

D
In the terms C—"iv,,W and R =X we must take vy and p as mean values for the

Dt
stratum. For any stratum, except the lowest, we must subtract from the left side of (8)

the value of wv; at the lower limit.
Equation (8) is conivenient because it is expressed in terms of W, the mass of water

per horizontal area of stratum. On the other hand, the vertical integrations by which (&)
is derived take no account of the three main statistical facts in this connection, namely:

That for the mean of many occasions log u is nearly a linear* function of height.

That between heights of 0'5 km and 8 km m and my are nearly independent f of

height. This is sometimes known as Egnell’s law. ....c..cooeeiiiiiiininnii, (10)
That log p is also nearly a linear function of height. .................c...one. (11)
Now from (9) and (11) it follows that on the average p=Cp®, ............... (12)

where C' and B are nearly independent of height. We shall probably improve the
accuracy of all our operations with conventional strata if we assume the general type
of relationship (12) to hold in such’a way that C and B are independent of height in
each stratum but vary from one stratum to another. The constants C and B are then
to be determined, for each occasion, from the instantaneous values of p and u. Let
numerical suffixes denote heights. Taking the stratum between A, and A, as a type, it

follows from (12) that

lOg’ He— log e
o o (13)
BN SN SRR og s (14)

logp,~logp,
It is now possible to transform various integrals, in a more accurate way than
before, by making use of C'and B. Thus

i 6 1 (] 1 6 p
H&;Efs,u,pdh=—§f8,u.dp=——f Cpidp

1(logp,—logpy) (wp—pur) (15)
" g log (peps) —log (mpy)

* Hann, Meteorologie, 3 Auf. pp. 227-234.
+ Gold, Geophysical Memoirs, No. 5, p. 138, Meteor. Off. London,
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By this equation W, the whole mass of water per horizontal area of the stratum,
can be found when p, the mass-of-water-per-mass-of-atmosphere, is given at the
boundaries of the stratum. Conversely, given the value of W and of p at one boundary,
we can find p at the other boundary, and so proceed to the next stratum and do
likewise. This rather troublesome process has to be used to find the term wgvy, in
equation (8) when W is given for each stratum in place of u at the boundaries. For
a simpler method might hardly be accurate enough.

Alternative scheme: y given at the levels where strata meet

We have so far supposed that observation gives the masses of water in the form
of vapour or cloud per horizontal area of the strata. Now let us suppose instead that
the given quantities are the ““specific humidities” pg, pz, ps, pss pes p. at the levels
where two strata meet.

It will then be necessary to express equations (5) or (6), or their derivatives, in
terms of pg...u,. This can be done by means of integrations with respect to height,
during which much use will be made of (9) and its derivatives (12), (13), (14), (15).

Some equations integrate more neatly than others, for instance if we attempted

to integrate (5) with respect to A, the term | vy %% dh would prove a stumbling-block.

On the other hand if (5) be multiplied throughout by p/u it integrates nicely with
respect to 4. However it seems best instead to transform (6), because the physical
meaning of the result is simple, and in simple relation to equation (8), and to the
equation expressing the diffusion of moisture by eddies.

Put then Py 2 RS M S, . (16)

where, within any stratum, B’ and 4 are independent of h. Then, for example, in the
stratum %4 to A,

log pg —log p,
~A=TBROTDBE s (17)
8 8 8
be (e [d (hg = Tog) (ps — re) _ =
Then fa.,bdhffGBe —al:"A:I el (o= h)E, ......(18)

where z is an appropriate abbreviation for

ot .
o | e = . ou] 19
log pg—log p, (19)

since ji is the mean value of u with respect to height in the stratum. Now integrate (6)
term by term with respect to A. The term

d (wvy) *o(pmy) ,, 0 [® oh
L 208 g, = L-an dh—a—r—lfg(pmlv)dh+pg<mlv5ﬁ>

9 oh oh
= a—n{’nLN(hG—]ls) ﬁ}-}-l‘LG (’fn]v %) (*ZLIZ\GS o ) +IU,G <7’)LA a ) _(20)
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The term in " transforms similarly. Then

oe ; (St
8. v 3 "
f it g j ke g P (21)
e a g a
: 82 (wv -
Next f f( o Hl = ReMprs — GMUIIGe woevevveeisiiiiiiinninnss (22)
@ (2

The term in o™ does not integrate nicely, since we do not know how my varies
with height. But it is a véry small term. So treating my as independent of height
we get

e %
fg-c—c (wvy) dh=aM,,;7.. .............................. (23)
The term J ip%’é’ dh= —gl Z%‘: dp= —:} 1% f 80 pdp, provided that p is regarded
as constant during the differentiation 1% Here [ Z pdp is given by substituting in
(15) above, G for 8 and 8 for 6, so as to make it apply to the lowest stratum.” But
f :p%; dh may as well be left in that form until precipitation and eddy motion have

been discussed ; as it is from these causes that the term arises.
Lastly the term

8 dw T T & :
L% =2 W - §§f0p,dp. ........................ (24)
8

And here ( pdp 1s given by substituting in (15) above, G' for 8 and 8 for 6, so as to
G

v

make the equation apply to the lowest stratum. Note that in (24) both p and p are
affected by the differentiation o/ot.

Collecting terms (6) transforms into

OWe _ _ 10 (logp,—log pe) (sps— pape)

ot got  log(mp)—log (kepe)
8§ D D . L tan
= fGP —DL: dh - (= . Mpe,) - % (e Mye)+ B - 'a?MA’Ge
0
—,uamzle — & HGS + ﬁ, ....................................... (25)

where Z is defined by (19) above.

Note that the term —pgmye has disappeared because the ground is impervious
to wind, and that in the corresponding equations for the upper strata there would
always be a pair of terms of the form um,.

It will be shown in Ch. 4/8 that the effect of eddies can be inserted in (25).

The fundamental equations on this alternative scheme are (25) and those obtain-
able from (25) by changing the suffixes which indicate the height. As Dp/Dt, My,

My, pe, ps are supposed to be known they can be inserted in (25) which then yields
aIVGS/at.
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In this alternative scheme W is not one of the principal variables, and finding
0 W/ét is only a stage towards finding éu/ot. For, to make any nwmerical scheme of
prediction ‘‘self-contained,” it is necessary and sufficient to find 9/0¢ of each one of
the variables which have been tabulated initially. Unfortunately W, /ot does not im-
mediately give dug/ot and opu,/ot, for it also depends on the pressure changes. It will
be better then to wait until the new distribution of pressure has been found after the
time step 8¢, and then from the new set of W given by (25) to find the new values
of p at the boundaries by means of equation (15), starting from a known value pg
given by the conditions at the ground.

The increase of accuracy, which is the aim of all these special proceedings, could
of course be attained by the general, and possibly easier, method of using sufficiently
thin strata.

The stratosphere does not require special treatinent because there is no appreciable
amount of water in it.

Cu. 4/4. THE DYNAMICAL EQUATIONS, WHEN EDDIES ARE NOT AVERAGED-OUT
AND MOLECULAR VISCOSITY IS NEGLECTED

In vector® notation
—V¢’——Vzo— +(vV)v+2[w v]+[w.[@.a]], .corerrrnn (1)

where the operator 2/t refers to time changes at a point rotating with the globe. The
angular velocity @ of the earth is here regarded as a vector, while a is the radius
vector from the centre of the earth to the atmospheric point under consideration. The
term [w.[w.a]] represents the acceleration of a point at rest relative to the rotating
globe; and this acceleration is customarily included together with Vy/, the true
acceleration of gravity ; since it is possible to derive both together from a potential i,

Vo=V +{w.[@.8]] ..coooiniiiiiiiiiiinies (1a)
Further, it is shown in Vector Algebra that

so that

(W) V= T —[r.omrl v] oorrre e, (1b)

So that the dynamical equation (1) may be written
-V — Vp_—+(vV)v+z[w ) Sl (Lc)

Z‘Z+V—-—[v curlv]4+2[w.v] c.ceeenee. (1d)

The method of deriving the corresponding equations in spherical or spheroidal
coordinates is set out in Lamb’s Hydrodynamics in the section dealing with Laplace’s
theory of the tides on a rotating globe. Lamb first modifies Lagrange’s dynamical
equations in generalized coordinates, to suit the case when the coordinate system is
rotating. He then applies the result to spheroidal coordinates. An alternative method,

* See, for example, Silberstein’s Vectorial Mechanics, ch. vi.
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probably simpler, is first to work out Lagrange’s equations in fixed spherical coordinates
N, ¢, r having the same axis as the rotating coordinates X, ¢, ; and then to transform
to rotating coordinates by putting, for the eastwards velocity d\'/dt = dN[dt + a cos ¢ . o.
Thus, in one way or the other, we get the dynamical equations for a particle moving in any
manner relative to the earth. To form the corresponding equations for a fluid we must

2 2 2
express the quantities dZZ;’ C;ZS , EZ] 7 belonging to a particle moving with the fluid, as
the sum of (i) the changes in the velocity of the fluid at points moving with the earth,
and of (ii) changes in the velocity of the particle due to the fluid-velocity varying from
point to point over the earth. The second part corresponds to the vector (vV)v in
equation (1).

The final result is not given completely by Lamb, because, in the theory of the
tides, various terms involving squares and products of velocities can be neglected, as the
tidal velocities are so small. In meteorology we must retain some at least of these
terms. Here in Ch. 4/4 all are retained, except that a is put for a +/4. The complete
equations are given by Bigelow in his Report on the International Cloud Observations
1896 to 1897. They are of the type

dvgy lap v
—Ft-—;—a—e——2ws1nq$.vlv+etc. ........................ (2)
But for the purposes of this book it will be necessary to have the equation giving
a—?—t— instead of , and similarly for the other components. To obtain the required

forms : the dynamical equation beginning —W—E is multiplied throughout by p; the equa-

tion of continuity of mass in the form 9 ete. is multiplied by vz; then p —~Zis added

ot
115 22 s give Mz There results:
Eat ot ' ‘
_omg _op 0 i\ e !
BtE s (mE'vE) i (mpvy)+ 5 (mpvy)—20sin ¢. my+2wcos ¢ . my
10 107 104 10-3 10-3? 10-3 10-3
3mpVy _ 2mgvytan ¢ 3
;) PR (3)
10-¢ 10~ tan g
amy op ? ,
B gt st (vaE) +a (myvy)+ 5 (myvy) +20wsin¢ . my
10-3 10 3 10-4 10-3 10-39 10-3
+ 3"2’”” e O {mEgE_ My0x} aighhi ] (4)
106 10-tang 10-3tan ¢
ompy o @ 0 0
B =~ Pt (myvg) +5- (myvy) +37 (myvy) — 20 cos ¢ . my
ok R 10-5? 1052 1075 1078

2myvy — MUy —myvy —myvytan ¢ (5)
5 S R

10-7 10-8 1 (= 10-%tan ¢

+
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The terms in equations (3), (4), (5) have the following significance. They are all
of the dimensions massx(length)~*x (time)™? that is to say they are forces-per-unit-
volume, In each equation there are three terms, such, for example, as

6% (mgvg) +a% (mgvy) +é% (mpvy) in equation (3)

arising from the spatial variation of velocity and of density, and derived partly from
the term p (vV)v in p times equation (1), and partly from the equation of continuity
of mass. Next in each equation there are either one or two terms in w cos ¢ or w sin ¢ ;
these form the components of p[w.v]=[w.m], which is the vector product of the
earth’s angular velocity and the momentum-per-unit-volume-relative-to-the-earth.
Lastly in ‘each equation there are a number of terms in ¢’ These depend on the
curvature of the earth. Those in tan ¢ depend also on the curvature of the parallels
of latitude, in such a way as to become formidable near the poles. The terms in o™
are derived partly from the centripetal accelerations and partly from the effect of the
crowding together of the coordinate lines in the equation of continuity of mass.

A body rotating with the earth as if 1t were rigidly attached to it, experiences cen-
trifugal forces per unit volume p (w cos ¢)* (@ +4) upwards and — pe’cos ¢ sin ¢ . (2 +4)
northwards. These forces are found from Lagrange’s equations along with those de-
pending on the winds, but the former are not allowed to appear explicitly in equations
(5) and (4) because they are customarily included respectively in g and in the component
of the acceleration of gravity towards the north, which is here denoted by gy. The
other part of gy is a true gravity effect depending on the ellipticity of the earth.
Values of gy, for heights and latitudes to fit our conventional division of the atmo-
sphere, are given in the annexed table.

=)

Component of the acceleration of grawvity along a line running north and south at a .

constant height above mean sea-level. Directed towards the equator in both

hemispheres. From Helmert's constants (1901) quoted wn Landolt Bornstein
Meyerhoffer's Tabellen

Kilometres above mean sea-level
10 | 30 | 55 | 91 | 163
Distance from equator Approximate mean pressures in decibars
B 1L e U OB s oA
Degrees Megametres 10,000 times accelerations in cms/sec?
0 0 0 0 0o | 0 0
g 1 3 8 14 23 41
18 2 5 14 26 | 43 78
Zif 3 7 20 36 60 107
36 4 8 23 43 70 126
45 5 8 24 45 74 133
b4 6 8 23 43 ‘ 71 126
63 i 7 20 36 | 60 108
72 8 5 14 26 44 78
81 9 3 8 14 | 23 41
90 10 0 0 0.7 gl 0
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The numbers under the terms in (5) show that the vertical equation is nearly

equivalent to 0=gp+ SJIZ e s i s e s S et A LT 4.0 B isils (6)
as is well known. If the largest of the small terms be included, the equation runs
0=gp+gz};—-2wcos¢>.mE. .............................. (7)

The term 2w cos ¢ . my may produce a pressure of 05 millibar at sea-level under
extreme conditions. Mr W. H. Dines points out that this term 2w cos ¢ . mz may be
taken to mean that air moving eastward is lighter than the same air moving westward,
and suggests that this may explain the fact that westerly winds commonly increase
aloft much more than do easterly winds®. If the term 2w cos¢.my really has such
an important influence it ought not to be neglected when one is dealing with parts of
eddies. He also adduces an observation of Nansen'’s as illustrating a similar effect in
the horizontal—the Siberian rivers, which flow northwards, erode the land more on
their eastern sides, as if the water there moved faster than on the west.

Now let us try to express the dynamics of a stratum, considered as a whole, in
terms of the quantities 2, Mz, My, which fitted so neatly into the equation of con-
tinuity of mass (Ch. 4/2). Integrate the longitude equation (3) with respect to height
across a strabum. Taking the lowest stratum with its limits denoted, for brevity, by
G and 8 as example and considering terms separately

*op &5 oh
fga_gdh=a;fgpdh+<p%>a. ........................... (8)

8
Let us denote f pdh by Pg. Now it will probably be more convenient to use p,
G

and pg as variables rather than Pg. In that case we shall require to express Pg, in
terms of p, and pg, and this can be done by the following formula, which is strictly
true if the air is dry and if temperature and gravity are independent of height, and
is in any case a good approximation t

LS (hy—=hg) (pa—ps)
Pg= e R (9)
(37

. 0 . s .
The important terms — -gz- , —2wsin¢.my, + 20cos@.myyleld respectively, on

o,
ot
terms can only be expressed as functions of R, My, My, My in special cases, because

they contain squares and products of velocities; but fortunately these terms are
usually small.

integration across the stratum, — » —20sin¢. My, + 2w cos ¢. M. Theremaining

. ) 0 0
Consider the three terms 5 (mgvg)+ 5 (mgvy)+ 7 (mgvg).

* Manual of Meteorology, by Sir Napier Shaw, Part 1v. p. 58.
1 No doubt, but a better one could easily be obtained.
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On integrating with respect to /& they become

o (8 o (®
b f (mgvs) it J (r50) Al (5

+{mglv a~}£+v ak—v) (10)
e e ¥ on H/{ at the ground,

and the part in {} vanishes, because the ground is impervious to wind, just as did the
similar expression in the equation of continuity of mass. Now in the special case in
Mg M,y My
T TR E=R
this case the two integrals in the last expression transform into

My ) JIIEMN>
ae<R +8n< R

I have assumed that this transformation is a fair representation in general, even if
the velocities are not independent of height. The range of velocity in a stratum
diminishes, as a rule, as the stratum becomes thinner. So if the above assumption
should prove to be insufficiently exact, one course will be to take a larger number of
thinner conventional strata. The other terms containing products have been dealt
with similarly. Collecting terms, the dynamical equations are transformed into the
following (11), (12), (13), which are suitable for use in computing, and which take

which the velocities are independent of height vy = and in

account of the height of the ground. The diﬁ'erentiationsa—i and 3% now follow the

stratum as a whole. The terms poh/oe, poh/on of course only occur when the equations
relate to the lowest stratum. In the integrations g and gy have been regarded as
independent of height. Mean values of ¢ and gy for the stratum should therefore be
used.

oM, oP oh 0 (Mg MgM .
T e T [pf%]al+éé<_ITE>+an< 33 N>+[mE7~’H]s*—2wsm¢~]’Lv+2“’°°s¢°ﬂfll

SZIIEMH—2M My tan q[)
= = mES (11)

oM EP h MyM M.
_WN N-R+ [:pgn}(;'l'ac( .R E>+an< N>+[m'~’v”]s +2wsm¢ ME

3My M. o tan ¢ {My*— M%)
v ul? ek for - (12)

oM, o (MM o (MM
_TH=9R+Ps—Pa+5e'< I}E E>+%< 1;8 N>+[mH”H]s*—2“’°°S¢']'[E

o R L1 (13)

+

* For any stratum except the lowest the corresponding quantity at the lower limit of the stratum is to
be subtracted from this term.
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0 -l HEE A
In the example of Ch. 9 the terms %Dn@ and Lp %] are opposite in sign and
¢

numerically much larger than any other terms in the northward dynamical equation.

> : = oP :
It is therefore well to use exactly the same process in approximating to a%GS as in

approximating to I:p %:l , lest a slight difference in their fractional errors should make
G

a serious error in their sum. Accordingly integrate both these terms, with respect to
latitude through an interval of 200 kilometres. Then

oh o3
o]

Now if we assume that the pressure at the ground is nearly an exponential function
of the height of the ground, then the last integral above is of similar form to P given
by equation (9). So that, if quantities with one dash and two dashes refer to the
beginning and end of the interval 8n =200 km, we have

n / 14 /
35{;8 + |:p g—iﬁ](} represented by 815 {PGS’ '—Pgd + (hi;oge ;:,,)iﬁggepi @ )} ....(14)
And a similar transformation applies to the corresponding terms in the eastward
dynamical equation.

Cu. ¢4/5. ADIABATIC TRANSFORMATION OF ENERGY
Cn. 4/5/0. GENERAL THEORY

This may be very simply expressed by saying that the entropy of a given mass of
air is only changed by radiation, by precipitation or by eddy-diffusion.

But the theory of entropy is usually developed with reference to substances in the
cylinders of idealized engines, where the weight of the working substance and its
kinetic energy are both negligible. And such rigorous experimental versifications of
it, as have related to gases, have mostly either been carried out in closed vessels or
else have referred to wave-motion. When we have to apply such indoor results to the
free atmosphere, where observation is scarcely as yet able to provide a rigorous check,
there is apt to be some confusion of mind as to the precise way in which gravity and
kinetic energy fit into the scheme. The following pages have been written to make
this clear. The result, which is stated above, is shown to be correct.

Continuity of Energy. In counting up the total energy of a mass of gas we must
beware lest we add on the same part twice over, under different names.
Imagining the gas as a swarm of molecules we see four kinds of energy

(i) gravitational due to earth.

(if) energy within the molecules.

(ii1) energy of forces between molecules.
(iv) kinetiec.
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Pressure does not appear. Now when we change to a scale on which molecules become
invisibly minute, there remains simply under the same name only gravitational energy.
It is denoted by py per unit volume, where y is the gravitational potential and p is
the density. The kinetic energy is now split into two portions: (@) mean-motional,
still called “kinetic energy” and denoted by 4 pv”, (b) deviations from the mean. These
deviations are grouped together with the energy within the molecules, and the energy
of forces, other than gravity, between molecules. The groﬁp so formed is called the
“intrinsic energy ” and in this book is denoted by v (upsilon) per mass or pv per
volume. Here dv=1y,d@ where y, is the specific heat at constant volume.

Schematically the classification of energy-per-mass runs thus

MOLECULAR MOLAR
Gravitational v
1L Mean 30’
Kinetic oy
Deviations............... e
‘Within molecules.... v
Between molecules ........vveeeenennnes

The point to be emphasized is that as f pressure . d (volume) did not appear in the

molecular classification, 1t cannot appear in the molar classification unless we com-
pensate for its appearance by omitting an equal amount of energy under some other
name. For instance part of pv that comes from the translational kinetic energy of the
molecules is equal to 3p in an ideal gas. See Jeans' Dynamical Theory of Gases,
2nd edn. § 161. Margules® no doubt makes some such compensation when he caleu-
lates the energy associated with local irregularities of pressure. In the present scheme
this energy appears under other names, and to include pressural energy in addition
would be to count some of the energy twice over. It seems to be most natural to
regard pressure only as concerned in the transfer across surfaces. Once across, energy
appears in some other form : gravitational, intrinsic or molar kinetic.
The rate of increase of energy in unit volume is therefore in the present scheme

é%(p¢+%pv"+ AL NS, oy SO (o P (1)

Let us next examine the rate at which energy crosses a very small plane. Again
imagining the gas on an enlarged scale, we see only a swarm of molecules, each carrying
its energy with it. To simplify the problem, let the plane move with the mean velocity
of the swarm in its neighbourhood. That is to say let the fluxes of mass across the plane
from its two sides be equal and opposite.

* «Mechanical Equivalent of Pressure” and “Energy of Storms” in Abbe’s Mechanics of the Earth's
Atmosphere, 3rd Collection.
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Then as the gravitational energy which a molecule possesses when it is crossing the
plane is independent of its speed and of the direction of its motion, so on the average
no gravitational energy crosses the plane. The internal energy which a molecule
possesses when crossing the plane is likely to increase with its speed relative to the
plane, but is independent of the side from which it comes, if the general state of the
gas is the same on the two sides, so for that reason, no internal energy crosses the
plane. (Note that we have here made an assumption equivalent to neglecting part of
the conduction of heat. Let us neglect the rest of it also, as it can be allowed for
afterwards.)

Next, will the energy of inter-molecular forces be carried across the plane ?
Apparently not, for it also will be independent of the direction of motion relative to
the plane, if conduction of heat can be neglected. But the same is not true of the mole-
cular kinetic energy, for this has been reckoned relative to the earth and the motion
of the plane produces a lack of symmetry in the flux of energy, so that the opposing
parts do not balance, as will be shown.

For simplicity let the plane be set at right angles to the mean motion of the mole-
cules and let its velocity relative to any Newtonian framework be #, the mean velocity
of the particles. If we distinguish mean values by bars and deviations from the mean
by dashes, then any molecule has kinetic energy, relative to the same standard,
equal to

In{@Z+EY+@+IV+EFE)L o, (2)

where m is the mass of a molecule.

The molecule traverses the plane with a velocity &'. If there are 7 molecules having
this velocity in unit volume, a number &'n of them cross unit area of the plane in unit
time and carry with them a kinetic energy

S {F+ Y+ GHTF+EE ) oo (8)

The resultant flux of energy is the sum of this expression for all the molecules in
unit volume and may be written as follows, n being omitted because 3 sums for the
molecules individually,

Em3& {(2) + (J) + (B) + 288 + 297 + 28/ + 2" + 9" + 2"} v en (4)

Now the sum of the product of any mean into any deviation-from-a-mean vanishes.
Also, in the molecular chaos, the correlations between #/, 7' and #’ all vanish if the
effects of molecular viscosity are negligible. Again 3#" is negligible if we can neglect
the molecular conduction of heat. Consequently the flux of energy simplifies down to
m#d"” Now in works on the Kinetic Theory of Gases™ it is shown that mE#” is equal
to the pressure, at least in an ideal gas.

Thus if a very small plane be moving at right angles to itself with a velocity v such
that on the average no mass s traversing it, then the flux of energy across it is pv
R L R ARG TR (5)

* Jeans’ Dynamical Theory of Gases, 2nd ed., § 161 and § 216 ef seq.
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Thus is explained the appearance of pressure in the flux of energy and its absence
in the energy contained in unit volume. The above treatment is sketchy and the
reader should be referred to works in which the kinetic theory is treated thoroughly.
The above theorem is a very special case of one by Maxwell set out in its generality
in Jeans’ book, 2nd edn. § 340.

Now if we add to the small plane, which we may imagine as square, five other planes,
also moving with the fluid to form, at one instant, a unit cube, then we see that the
rate of decrease of energy in the moving, distorting, swelling cube will instanta-
neously be

o(pv,)  o(pv o (pv, . .
—%—M —%ﬂh »(g; %2} G, ripliy e e i (6)

Or if we had taken a cube containing unit mass instead of unit volume, the rate of
decrease of energy in it would have been

e
> divi(pw)si for o T gt . L o o (7)

But the energy in unit mass of fluid is 1 v*+ 1 + v, so if D/Dt denote a differentiation
following the motion of the fluid

~ D i) %div (7). i e g (8)

There is another form, sometimes useful, into which (8) may be turned by means
of the general theorem that if 4 is any scalar and p the density of a fluid moving
with velocity v then

DA o(pd) . ..
P Dt = —(gt—)"l‘dlv (pVA). ........................... (9)

If we put 4 =(3v'+y +v) then equation (9) causes (8) to transform into

div {v(%pv2.+p\p+pv+p)}= —;i(%pv”-!-ptp-l—pv). ............ (10)

Equations (9) and (10) are two forms of the equation of continuity of energy*.
But we can change to a more convenient one.
For, purely by geometry, in the ordinary vector notation,
div (pv) =p.Aiv v 4 TVP. St itorssn st 1 he dine! po (11)

And the term vVp can be found and removed along with (3v’+4), by means of the
dynamical equation, as follows.
When the axes of reference are fixed to the earth the dynamical equation is

D
—Vp = VYt p Y +2p[OV], e i (12)

where the square bracket denotes a vector product. Now form the equation of activity-
per-volume by taking the scalar product of v into each term of the above equation.
Since v and [wv] are at right angles to one another their scalar product vanishes.

* Cp. Webster, Dynamics, § 188 ; Lamb, Hydrodynamics, § 10, eqn. (5).
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And since the gravity potential does not change at a point fixed to the earth

oyfet=0; so that vW=Dy/Dt. .oovverreeiarinnneen. (13)
Thus the dynamical activity per volume is expressed by either side of
D
—-va=pD«t(%v?+n,b). .............................. (14)
Now on substituting (14) in (11) we obtain as a form of the dynamical equation
div (vp) =P &iv ¥ —p s (B4 3F): oo (15)
And this when combined with (8) yields
—p%:pdivv. ................................. (16)
We might advantageously bring in the equation of continuity of mass in the form
! 1Dp
divv= Ml ety e e (17)
which when substituted in (16) gives
Dv D /1
——D—Z=p1——)—-t<;>. ................................. (18)

That is to say, following the motion, the wncrease of v, the intrinsic-energy-per-
mass, 1s equal to the pressure multiplied by the decrease of volume per mass. This
is the ordinary adiabatic relation. We have neglected radiation, molecular conduction
of heat, and molecular viscosity. The reason for deriving a familiar result by such a
roundabout process, is to make it clear that neither the kinetic energy 4pv* nor the
gravitational energy appears in (18). They are not neglected; they do not belong in
this adiabatic equation.

Equation (18) from its mode of deduction should apply equally to clear air or to clouds
moving in the most unrestricted way occurring in nature, provided that radiation and
conduction and precipitation are negligible, or allowed for separately. There is a query
as to the flux being vp when intermolecular forces act, but in meteorological applications
the error, if any, must be small.

Entropy

If unit mass, during its motion, is gaining energy by radiation at a rate De/Dt we
have from (18) on bringing in the additional term and then transposing and dividing

by &
1De 1Dv p D /1

5D_t_ﬁﬁt+9f)'i<,—>> . B o e AT ok ceanen (19)
Each side of this equation is the rate of increase of entropy-per-mass, o, following the
motion ; that is Do/Dt.
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To see that this formula agrees with those in common use (Hertz, Neuhoff, etc.)
take, as a test case, that of dry air. Then
Dv=1,D0 and p/f = bp.
There results

% = _g—t('y,, log 0~ b log p) =—é% MR RIR). < T se ol ek (20)

Thus the entropy is o =7y, log  — b log p for dry air, and its constancy during the motion
is entirely unaffected by changes in the molar kinetic energy, or by any gravitational
effect.

The Potential Temperature* = in a mass of air is defined as the absolute tempera-
ture which the air assumes when brought adiabatically to a standard pressure p;.
If in the equation which follows from (20)

o=1v,log 8—0log p + const.
we replace p by p by means of the equation p=0bpb, applicable to dry air, we obtain
o =1, log #—0log p + const.

Thus if the air at 8, p be brought adiabatically to a standard pressure p;, its final

2)i>0'299
p 2
so that o =y,log r+const. again independently of any kinetic energy generated en
route.

In dealing with eddy-motion the potential temperature is more convenient than the
entropy in this respect: If two masses of dry air at different potential temperatures
mix ntimately and adiabatically by diffusion under the constant pressure of their
surroundings, their mean potential temperature remains unaltered, although their
total entropy increasest. This follows immediately from the formulae. It will be suf-
ficient to consider the mixture of two equal masses, as any other case may be reduced
to that. Let the initial temperatures be &, 8”. Then the potential temperatures are

initially
sl < P >o-2ss; il < 2 >0'280.
p p
On mixing portions of dry air under constant pressure, without loss or gain of heat,
there is no change in the total intrinsic energy, so the final temperature is 1 (¢'+6")
and, as the pressure is fixed, the final potential-temperature is 1 (7 + 7”); but the entropy,
which is proportional to vy, log 7 4 const., necessarily changes.

N
temperature 6, now called its potential temperature 7, will be 7=6 ( %) ol <

The Potential Density might prove to be a more useful conception than potential
temperature, for it is density that is directly connected with stability.

* Vide v. Helmholtz (p. 83), v. Bezold (p. 243) in Abbe’s Mechanics of the Earth’s Atmosphere, 1891;
L. A. Bauer (p. 495) in Abbe’s Mechanics of the Earth’s Atmosphere, 3rd Collection, Smithsonian Institution.
t+ Pointed out to me by Mr W. H. Dines.
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Cn. 4/5/1. NUMERICAL VALUES FOR THE ENTROPY.PER-MASS, ¢, OF MOIST AIR
General

The formulae and diagrams have been worked over successively by Hann, Hertz*,
von Bezold {, W. M. Davis and Neuhofft. Revised constants have been collected by
Bigelow{. Bigelow’s constants are in kg metres and in heat units; we require them

+c
in ergs.
The constants in the characteristic equations
T AT e A SRR | §
or p" =b"wh, for water vapour, .......c..c.ceiiiiiinninn. (2)
are S e R R e P (3)
T R R (4)

when expressed in erg grm™ (degree C)™". In the same unit the specific heats y,” and
v, of dry air and water vapour at constant pressure are respectively

R DIROE L WO & T At . 2055 s o i (5
T S A SR S (6)
Note that b or y, without dashes, refer to the atmospheric mixture.

In addition to the entropy we require, in connection with the elimination of the
vertical velocity (Ch. 5), the coeflicients a in the expansion

do=adp+adptadp. ..cccevvvivinninninninnann.n. (7)

Entropy in the unsaturated stage

Hertz's formula for this stage is
a=c+{u(y," =7 )+ v} og, 0 —{p (V" - V) +V}log, p
=+ 10°(10°16p +9°92) log, 6 — 10° (17 46 +2:870) log, p, ......... (8)
where c¢ is an arbitrary constant of integration.
The characteristic equation for moist air is
log, 0 =log,p—log,p—log, {u(b"—-0)+V'}
=log,p—log,p—log, (1746 +2°870) x 10" ......... (9)
Eliminating log 6 between (8) and (9) we get
o=c +log,p(841pu+705)x10°—log, p(10°16p+ 9'92) x 10°
—(10°16p 4+ 9°92) x 10°log, {(1-746p + 2°870) X 10}, ...... . %10)

where ¢’ 1s another arbitrary constant.

* Hertz, Miscellaneous Papers, No. XIXx.
+ Abbe’s Translations of Papers on Mechanics of the Atmosphere.
} Bigelow, Report on the International Cloud Observations, 1896 to 1897, p. 488,
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From (10) a,, a,, a, can be found by differentiation, thus:

aO') 1 ’y'u
o, =~ =4 (B8t 705)X10°=22 ... .0 v onaie (11)
& <ap p, 1 const. P ( f ) p
30') 1 v
a,=|— = —~=(10°16u+992) x 10°= — "7, . .iiieiiiinnns (12)
2 (aP Ig,poonst. P( lu ) P

I

a, <Bo-> = +8'41x10°log, p—10°16 x 10°log, p
P, p const.

5
~10°16 x 10°log, {10° (17464 + 2°870)}
1

—10° (10~ go) S S S bian e 1
10° (10164 + 9 92))”1_644 (13)

We also require the quantity B, defined as equal to — 2 in Ch. 5. From (11)

%p
and (12)
1P 10‘16,&—*—9‘92:]2 Yo 14
B= +p°_———8'41p+7'05 1B PRy D (14)
By means of the characteristic equation (9), 8 can be expressed in terms of # and p.
The result is
40446900 EDAER TN RS e (15)
1+1193u

So that for dry air 8 is simply 4:04x10°6.

B=0.10.

Entropy in the Rain, Hail and Snow stages

To fit with the rest of this work we require the entropy expressed as a function of
pressure, density and moisture ; the temperature must not appear explicitly. How- °
ever, there is a difficulty in expressing the relation in formulae, because the vapour
pressure is given experimentally as a somewhat complicated function of the tempera-
ture. On this account it is simpler to proceed by way of graphs or numerical tables, of
which those by Neuhoff* appear to be the best, although they need to be converted
to millibar units. If p’ is the partial pressure of the dry air, Neuhoff gives the
adiabatic relation in the form

log p’ — %@—Fl (1) log 6 + const. = 0,

where F, is a function only of the amount of water present, and varies slowly, while
F, depends only on the temperature, with which it rapidly increases. Following
Bezold, Neuhoff treats also the pseudo-adiabatic” case in which the water is pre-
cipitated as soon as 1t is condensed.

* Abbe’s Translations, 3rd Collection, pp. 430—494.
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Cu. 4/5/2. THE CONVEYANCE OF HEAT ON A LARGE SCALE

Hot winds from the desert and cool breezes from the sea are well known.
F. M. Exner* has published a prognostic method based on the source of air supply.
V. Bjerknes and his assistants, J. Bjerknes, Bergeron and Solberg, attach great impor-
tance to the conveyance of heat. They go so far as to find a “polar front” where cold
air from the polar regions meets warm air from the Tropies in European latitudes, and
thereby causes cyclones. The present writer regards the ¢ polar front” as a sketch, in
black and white, of a reality, which these authors deserve much credit for having
discovered, but which requires, for its proper representation, many delicate gradations
of half tones, as well as the occasional sharp outlines. In other words we may not take
the entropy-per-mass o as unchanging following the motion, because o must be altered
by radiation, precipitation, and mixing. If these effects are known, then we know
Dg/Dt, the rate of change following the motion. And then the rate of change 9o/t
at a point fixed relatively to the earth is given, in the usual way, by

oo oo oo oc Do
%_—@E-gé—’uN%—’LHa%-FE. ........................ (1)

This equation is used in finding the vertical velocity. Having served that purpose
it is found in the lower strata to be no longer necessary; so that we need not integrate
it to make it apply to a stratum as a whole. The uppermost stratum receives a special
treatment in Ch. 6

Cn. 4/6. UNIFORM CLOUDS AND PRECIPITATION

When the dependent variables are tabulated numerical quantities, it is as easy
as account-keeping to deduct a numerical quantity of water from the amount present
in any stratum, and to transfer it to the ground.

Knowing the total amount of water-substance present, and also the temperature,
we can find the amount of liquid or solid by means of a table, for it has been found
that supersaturation does not occurt. As a general indication of what may be
expected, the following table shows the limiting amount of water, which can just
exist as gas, in the several conventional strata, for an average English temperature
distribution}.

Pressure in decibars at limits of strata 10 8 6 4 2 0
|
Gaseous water in grams per square centi- 134 | 067 025 ' 004 7
metre of horizontal area of stratum |
water :
vapour | vapour in equilibrium with ice

* Exner, Dynamische Meteorologie (Teubner, 1917), § 70.
t Sir Napier Shaw, Principia Atmospherica, p. 83.
1 Mean temperature British Isles, 1908 to 1911, Geoplysical Journal, 1913, p. 91.

6—2
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Of the condensed water some will be precipitated and some will float as cloud.
Several observers* have measured the amount of liquid in clouds on mountains and
their results indicate a maximum mass of liquid. of about 4 x 107* per mass of
atmosphere.

For the high cloud alto-stratus the maximum value of the volume of the particles
per horizontal area has been estimatedf by photometric measurements to be of the
order of three times the diameter of the particle, regarded as spherical. The mean of
value for the diameter found by Pernter, from measurements of coronae, was about
1x107° em (Hann, Meteorologie, 3 Auf. p. 257). The mean thickness of such a cloud
comes to about 500 metres (Hann, l.c. p. 284), and its mean height above ground to
say 4 km (Hann, l.c. p. 280). From these data it follows that the ratio of mass of
water to mass of air is of the order of 7x107°. This is remarkably less than the
ratio 4x107* found at lower levels.

However, only a few alto-stratus clouds show coronae. C. M. K Douglas, who
has studied these clouds while flying through them, writes: “The snow particles of
alto-stratus or false cirrus are usually of the order of | m.m. in length and of
elongated form. Occasionally much smaller particles are met with, perhaps of the
order of 0'1 m.m. These are usually thinly scattered and cause halos readily. They
are occasionally met with quite low down. A layer of dense grey alto-stratus usually
consists of larger particles. Occasionally alto-stratus consists of water drops, espe-
cially in summer, or with warm damp upper currents in the autumn or early winter.
The water drops may of course be super-cooled, but the water drop clouds more often
have the appearance of alto-cumulus. The water drops are usually too small to be
felt on the face.” According to Douglas’ observations we might take the volume of
the particle to be that of a sphere of about 003 ¢m in diameter, and it would then
follow, from the photometric observations, that the mass of water or of ice per mass
of air is of the order of 2x107% which 1s about half of the maximum value observed
on mountains. Thus the limiting amount of condensed water which can float in any
one conventional stratum will be about 0°8 gram per square centimetre of horizontal
area.

What has been said above applies to the formation of extended sheets of cloud.
Detached clouds are discussed in Ch. 5 below.

In order to save labour I have supposed there to be a sharp distinction between
rain which falls and clouds which float. Actually there is a gradual transition. All
sizes of particles occur. Even the smallest ones observed by Pernter would fall,
according to Stokes’ formula, at a rate of 70 metres per day. Generally speaking a
small sphere of ice or water falls relatively to the air at a rate of about}

Yp= —03x10° (diameter in cms)” cm sec™. ....cccvuviinenn (1)

* Hann, Meteorologie, 3 Auf. p. 306.
1 Recent measurements similar to L. F. Richardson’s Roy. Soc. Proc. A, 96 (1919), p. 22.
1 Wrong sign of power of ten in Roy. Soe. Proc. A, 96, p. 15.
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In discussing the conveyance of water in Ch. 4/3 above, we supposed that the
water had the same velocity as the air. ILet us now correct that assumption. The
total mass of solid, liquid, and gaseous water, per mass of atmosphere has been
called u. Let the mass of the solid and liquid parts jointly per mass of atmo-
sphere be ».

Then (u—v) has the velocity vy of the air

BTN B the velocity vyt s } relative to the earth.

The horizontal velocities may be considered the same in both cases.

So that the indestructibility of water-substance leads to

o op ; o 3(;1, v) .\ OV
0= *+ 08 5 0 5 +0n g + (0 + V) 7
el e o
<8t +'UEa +Q/Na +1)Hah> I“L+@Ii ah ........................ (2)

If there are particles of different sizes and velocity the last term would have to
be summed for all sizes so that

_Dp
~ i =>Vx; h BLAE L St oyt s s ATt 654 <. (3)
where D, as usual, denotes a change following the motion of the azr.

Similarly in the equation of continuity of mass we have taken my as equal
to pvg. But if vy is the velocity of the air, and if pis the total density, then the
mass per volume of all the gases jointly is p (1 —»), so that, strictly

mpy=p(l—v)vg+pv(vy+Py)
B o atle ia s s « o1s o s s a5 vie s s 60 m i vise(4)
Or, if the sizes are various,
ME=PUaFPE Vg, ereeerieireriiirneieeirinronnans (5)
which should be substituted throughout.

But we cannot use this equation in a scheme of numerical prediction until we
can predict the number of particles of each size. The size of particles depends on the
amount of water to be condensed and on the number of nuclei available*. The
nuclei are partly dust and partly ions. So that before (5) could be used, it would be
necessary to bring into the scheme, as an eighth dependent variable, the amount of
dust. For the present that will not be attempted.

Rain in falling through layers of varying temperatures must effect a trans-
ference of heat. If the raindrops were always at the same temperature as the air

* Sir J. J. Thomson, Conduction of Electricity through gases, Chs. vi and vir
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which momentarily surrounds them, then the downward flux of heat would be
equal to

0 (specific heat of water)
X (rate of precipitation as mass per time per area) =fsay. ...(6)

The rate of accumulation of heat at any level would then be 9f/2h per unit volume.
Mathematically the problem would then be very similar to the transference of heat in
the soil by the percolation of water, a problem which is discussed in Ch. 4/9. But it
is doubtful whether the assumption that the rain is at the same temperature as the
air, is a sufficiently good approx1mat10n Descending streaks of rain sometimes appear
to evaporate. A column for the gain of heat by precipitation has been provided on
one of the computing forms.

Cu. 4/7. RADIATION

Cu. 4/7/0. GENERAL

For solar radiation I have relied on the observations of Abbot, Fowle and Aldrich
and on their reduction by L. V. King; for atmospheric radiation on the observations
of Anders Angstrom Fowle and W. H. Dines with reference also to the theory a,nd
collection of data given by E. Gold.

As the temperature of the sun is a large multiple of that of the earth, it is
possible to make a division at a wave length of about 5 microns, such that nearly
all the solar energy is in the shorter wave lengths and nearly all the atmospheric
and terrestrial in the longer ones. That explains the meaning of short and long
in the present connection. But our computing processes are scarcely affected by the
fact that there is a slight overlap.

CH. 4/7/1. LONG-WAVE RADIATION

The radiation from a full radiator at all temperatures and wave lengths is satis-
factorily expressed by the excellent formula of Planck. The simple connection between
emission and absorption has been made clear by Kirchhoff. The experimental re-
searches of Paschen, of Rubens and Aschkinass, and more recently of Fowle have
shown that the absorption of the atmospheric gases is concentrated in certain ranges
of wave length. Bnt owing to the opacity of rock salt prisms for wave lengths greater
than 15 to 20 microns, the absorption in the important region beyond this limit
remains unexplored, save for isolated measurements by means of ““reststrahlen.” Some
of the leading facts for our present purpose are set out in the diagram and Tables,
The upper curve shows the spectrum of the radiation emitted by a full radiator
at 270° A. The ordinate is expressed in gram calories per day emitted in the totality
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of directions to one side of a square centimetre and reckoned per micron of wave
length. This curve was computed from the constants given in Winkelmann’s Physics,
3rd edition, 111. p. 402. The lower curves give some rough idea of the percentage
absorptions from a vertical ray in traversing a conventional stratum, 200 millibars
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thick, of cloud-free air. The absorption of oxygen and nitrogen is supposed to be
small. One of the peculiar features of the situation is that the absorption caused by a
given mass of water-vapour increases with the pressure of the dry air with which it
is mixed. E. v. Bahr's measurements of this effect, when turned into the present
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notation, appear to mean that the absorptivity-per-density, due to water vapour alone,

1s proportional to p.pé.

Between wave lengths of 9 and 11'5 microns there is a transparent region where
none of the atmospheric gases absorb, except ozone, and that only slightly.

Radiation from a full radiator at the
fixed wave length of 14:6 microns (CO, Radiation from a black area at 270° A., summed

E:':Ii)’isel:;]i t’;l:)iafilt:;rgo); %li:::ltizzz f:)mzn: for all directions to one side, expressed in d‘i—yc:%

side expressed in gram calories ¢cm=2 per per micron of wave length.

micron of wave length for the times men-

tioned below:

| Temperature Radiation Wave length Radiation \ Wave length Radiat

microns microns R

°A per day - per minute !

: 3 005 | 18 213

| 300 428 0297 4 10 | 20 171
290 380 0264 5 49 22 138
280 335 0232 6 IRICY 24 11-4
270 29-2 0203 7 - 26 9:2
260 252 0175 8 Sl wl= 62
250 216 0150 10 345 40 26
240 182 0126 12 343 | 50 0-8
230 152 0106 14 307 60 04
220 12:4 0086 16 5
210, * 24 & ;10058 | INEVETD :

] 200 | 78 0054

There remain various unexplored questions. Thus measurements with balloons
have shown that the water in the atmosphere above any level would, if all precipi-
tated, form a layer equal in depth to about twice the millimetres of mercury which
express the vapour pressure at the bottom level. (Hann, Meteor. 3 Auf. p. 231, also
A. Angstrom, Met. Zeit. 1916, Heft 12.) Fowle® observed at a wave length of 135
microns, an absorption of 15 °/, by aqueous vapour in a tube when the precipitable
water amounted to 0'1 cm, which according to the c’a’bove rule would correspond to a
surface vapour pressure of 0'5 mm Hg. Now A. Angstrom has observed the down-
ward radiation from a clear sky at very low vapour pressures of this order and the
radiation is considerable, and remains as much as half the radiation from a black
body at the temperature of the level of observation, even after having been extra-

* Smathsonian Misc. Coll. Vol. 68, No. 8.
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polated, by means of other observations, to absolute dryness. On referring to the
diagram, it looks as though ozone and carbon dioxide were not the only absorbers in
clear dry air. The suggestion is that dry clear air absorbs strongly between 20 and
40 microns. But the laboratory observations do not harmonize together as well as
they might, and there is need for more experimental work, especially relating to wave
lengths exceeding 15 microns.

In the meantime meteorologists must carry on business on premises which are,
so to speak, in the hands of the builders.

If the distribution of absorption in the spectrum were well known, we could then
group together all ranges of wave length which had similar absorptions, so as to form
three or more groups. The energy of a full radiator in each group would be obtainable
from Planck’s formula. The energy in each group would be propagated independently
of that in the others.

However, in the meantime, for comparison with observation, let us work out
the distribution of radiation in height and in direction, making two simplifying
assumptions :

(i) The absorptivity of dry air independent of the wave length.
(i) No scattering in cloud-free air..

The experience thus gained in treating height and direction will be useful when, at a
later stage, wave lengths can be grouped.

The first task is to work out the absorptivity of dry clear air (for the existing
estimates vary greatly), and simultaneously to develop a method for computing the
flux of radiation at any time and place. Both objects are attained in the following dis-
cussion of some observations by A. Angstrom. We shall treat first the observational
material, next the general theory of the connection between the absorptivity and the
radiation, and lastly, the approximate computation of the absorptivity.

Observations. At the summit of Mount Whitney, California, on the dry clear
night of 11 Aug. 1913 Angstrom * found that the radiation falling from above, in all
directions, on to a fully exposed horizontal surface was at the rate of 0:218 cal
em™ min™. The temperature at the place of observation was 270'5° A and the
vapour pressure there only 06 mm of mercury. An extrapolation to absolute dryness,
by means of fig. 5 in the same publication®, reduces the radiation only to 0-210 cal
em™ min~’. The pressure at the top of the mountain at the time of observation is
not stated, so I have taken a normal pressure of 586 millibars. The temperatures of
the air radiating down on to the mountain are known approximately, from balloon
ascents made at Avalon, California. During the ascent on 28 July 1913, the balloon
recorded a temperature at the level of the summit, equal to the temperature at the
summit on the occasion of the radiation observation quoted above, and this ascent
has therefore been selected to give the temperatures. Angstrém expresses his observed
radiations as functions of the temperature and humidity at the point of observation,

* Smithsonian Miscellaneous Collections, Vol. 68, No. 8 (1917).
i
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ignoring the fact that the levels of his stations varied by 4 kilometres. I have
carefully avoided the mixing of data belonging to different levels.

To come now to the general theory: the absorptivity per density, a, may be
defined by the statement that a fraction apdl of the incident radiation is absorbed in
Passing Rt orl Tl o T e P A e et deioe s s 0 o .4 4o e e s (1)

For dry clear air, for the long waves radiated from the air itself, it is assumed as
a temporary expedient that A does not depend on the wave length. ............... (2)

It may be recalled * that a beam of diffuse radiation requires for its limitation two
areas, say 4, and 4,, not in the same plane. If 4, and 4, are plane and equal to d4,,
dA, and are small in comparison with 7%, the square of their distance apart, then the
amount of radiation which will pass through both of them when they are surrounded
by a black enclosure at 6° is

o 84y aA, os e ot ke T 3)
T 7 .
where {,, {, are the angles between the normal to d4,, d4, respectively and the line
joining d4, to d4,; and where O =7'68x107* cal em™ min~ (Kurlbaum’s value).

The symbol O is chosen because of its resemblance to the enclosure with a small
aperture which is used in determining the constant.

Discussions about diffuse radiation would be made much clearer if we had a
technical term for this important geometrical figure formed by two closed curves not

in one plane. I propose to call it a ‘“‘parcel”—which we may think of as tied with
a loop of string at each end.
The quantity

dA,.dA,.cos{ .cos{,
,'.2

is of the dimensions of an area. For brevity it will be referred to as “the area of the
elementary parcel.” The area of a finite parcel has to be found by integrating its
elements. Then 00‘r~* is the full radiation per parcel of unit area. Note that 06/
is also in a special case the full radiation per em® per unit solid angle, and that in
finding the full radiation in all directions from one side of a black surface, although
the solid angle is 2, we must on account of obliquity multiply only by 7.

According to Kirchhoff’s law, a portion of air, if placed so as to be traversed by a
length di of the straight line joining d4, to d4,, will radiate through the parcel defined
by d4,, d4, in either direction, a fraction apdl of the radiation through the same
parcel in a black enclosure at the same temperature as the air. ..................... (4)

Now dl=dh . sec{, where {, without a subscript, is the zenith distance of the ray.
" Also pdh= —dp/y.

Y asec{.dp
So ' Apdl= - TR e A (5)

Note that sec { . dp is negative, whether the radiation goes upwards or downwards.

"% Seé, for example, equation (17) in M. Planck’s Vorlesungen tiber die Theorie der Wéirmestrahlung,
published by J. A. Barth, Leipsig.
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Now if E is the activity in a parcel of radiation in the direction {, and limited by
the two areas d4,, d4, and falling on a horizontal layer of air dp thick, then the
radiation emerging from the layer is

E<1+Aseclc.dp)_QsecC.dp.ggdA,.dAg.cos Cl.cosg.
q q T rt

So that the differential equation for the radiation passing in either direction
through the parcel is

p=teetly SO A ddionbe bl o (6)
dp 9 T 7

Now to apply these general theorems to Angstrom’s observations, let d4, be one
square centimetre of the horizontal receiving surface of his instrument. Then  is
the zenith distance of the narrow beam received from the direction d4,. Let d4, be
an infinitesimal zone d{ of the sphere-at-infinity concentric with the instrument.
Then dA,cos{,/r is the solid angle of the zone as seen from the instrument, and is
equal to 27 sin {.d{. So (6) becomes '

dE Asec( JIm,

‘E= £ HASO@ 28N €. €08 o dl): .- ovorvnvrssninrennnin. (7)
Now let I be the ‘“brightness” of the sky for this invisible radiation, that is to

say let I be the radiation per parcel of unit area. Then

E=Tcosl.2uw8Inl. Al ccoeeveinviiniiiinnenninnnn. (8)
So that (7) becomes

dl _asec{ D

= {I—;H}. .............................. (©)

But 08/ is the full radiation for a parcel of unit area.

Expressed in words (9) means that: in traversing an infinitely thin horizontal
lamana, of mass dR per unit area, the radiation gains asec{.dR of its deficit from
the full radiation which would pass through o parcel of the same area in an
enclosure at the temperature of the air.

It would not be convenient to integrate (9) analytically even for clear air, be-
cause we should have to take account of the variations of A and 6 with height. And
when it is remembered that clouds have a great influence on 7, and that’ clouds can
hardly be treated analytically, the necessity for a treatment by strata and finite differ-
ences becomes evident. However, within the narrow range of single stratum there is
much advantage in integrating (9) analytically. The integrals for the successive
strata can then be fitted together at the boundaries. Within a stratum it is assumed
that o may be considered independent of height, and that #* may be considered to
increase linearly with p at a known rate. Thus d6#*/dp is about 65 (degrees)* cm®dyne™*
in the troposphere and is zero in the stratosphere. Ly’

7—2
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Under these restrictions, (9) may be solved by the general analytical method
for linear equations. When this has been done, and when the arbitrary constant of
integration has been eliminated between the values of I and 6 at the boundaries of

the stratum, which, for illustration, has been taken as the one lying between %, and &,
the result is

A 8ec { (ps — Pe)
e I <) A s =l dﬁ“)
Lk ; {I“ w\ Z Asec { dp)} e ™ <08 +Asec§ o J e, TN (10)

This equation is suitable for reducing observations made simultaneously in moun-
tainous country at different levels. Angstroms excellent Californian observations
do not refer, unfortunately, to an isolated zenith distance, and so eannot be used thus.

In (10), as in (5), sec { is positive for ascending 1adlatxon negative for descending.

...... (11)

The variation of 6 with height occurs in (10) in two ways: by the term in (57109

and by the separate appearance of 6, and 6,. In the following caleulation of A from
Angstrom’s observations, the variation of # with height has been treated by using two
different sizes of coordinate differences. There was consequently little to be gained
by retaining the temperature variation in (10). It was neglected so that (10) became
simply
o

I,,=(1-—-1;)Is+7;—7;—, ....................... 1 (12)

where O B i K R A R B (13)

In (13) sec{. R is taken as always positive, so that (12) refers to descending
radiation. For ascending radiation I, and I, change places. The quantity n may be
called the “absorptance” of the stratum for rays in the direction {.

The energy absorbed by the stratum per unit time is, for the descending radiation
I, — 1, for the ascending radiation Jy—Z,% |5 vemsuse-a-ted b s aissbd R RS RS C A (14)

The two terms on the right of (12) may be called: (1—9)Z, the “transmitted”
ST o 4 b 1 L Bar
radiation; and 5 —f— the “emitted” radiation. The emitted radiation » O—:i is less than

o) . . 2
Asec (. R—;ﬁ for thick layers, on account of the absorption by the layer of its own

radiation. For very thin layers n=asec (. R.

We want the radiation from the whole sky falling on a horizontal unit area; it is
{=u/2

JLcos { « 2a sin (. AU=30ERGEN.. .\, ...... .. (15)
¢=0

For the uppermost stratum this integral would be obtainable analytically from
(10), but to repeat such integrations for the successive lower strata would not be easy.
Instead an approximation has been obtained by a summation.

For purposes of computation let the infinitesimal zone d{ be replaced by a finite
zone, first of {=380°; that is to say, let the hemisphere above the instrument be
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divided into three parts by the cones {=30°, 60°. The solid angle of each part is
then calculated as 27 f sin { . d{ between the limits and is multiplied by a mean value

of cos {. For example, in the case of the conical shell lying between {=30" and
{=60" the expression 27 cos {.sin {.d{ in (7) is approximately represented by

27 cos 45° (cos 30° — cos 60°).

Similarly in calculating » from (5), for this conical shell, { is put equal to its mean
value 45°. In calculating » a trial value of A, namely A=1601x107" c.@.s. units is
first assumed. The mean temperatures of the layers of air are found from the balloon
observation and from them the full radiation O6'/x is deduced for each layer. Then the
descending radiation in each cone or conical shell can be traced downwards by making
successive applications of (12), from the top, where it is assumed to be zero, to
the instrument. The computation is set out in the accompanying table. It gives
0°2267 cal cm™ min~" at the instrument, for the stated trial value of the absorptivity-
per-density A.

Computation of Radiation from the Atmosphere

Assuming A=1601 x 10-® ¢. c.s. units and temperatures from balloon at Avalon, California on 28 July 1913

' ol $=0? 30° 60° 90°
Mean e ° o °
Px:ils_sbure tefmpemture pgag;:?éinof e LD %5 Q s
millitbars | of stratum. X um for
oA ‘[ca]uclll;]tg;fian.‘l 1 -7 '718 '636 '291 all zones
i Bt pamm 7 282 364 SR E==———
approx. area of
pareel } 813 1:626 813
per em?at instr.
VERTICAL CONTRIBUTION OF ZONES
cal em~2min-1
214° ‘0510 §=0° 30° 60° 90°
transmitted 0 0
1 x586 emitted ‘0117 ‘0302 ‘0294
total ‘0117 ‘0302 ‘0294 ‘0712
231° ‘0701
transmitted ‘0084 | -0192 ‘0086
2 x 586 emitted ‘0161 ‘0415 ‘0405
total ‘0245 0607 ‘0491 1343
260° 1118 ‘
transmitted ‘0176 | -0386 ‘0143
586 emitted 0256 i 0661 | 0645
total ‘0432 -1047 ‘0788 2267
!

Next to estimate the errors due to finite differences, the calculation was re-
peated in exactly the same manner, but taking 6 layers of equal mass instead of 3,
and dividing the hemisphere into 6 parts by the cones {=15°, 80°, 45°, 60°, 75°.
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This gave 02210 cal cm™ min™ at the instrument. Now the errors are usually

proportional to the square of the coordinate differences, when these are small enough.
If this rule holds in the present case, the radiation at the instrument would be
0-2192 cal ecm™ min~, if calculated by infinitesimal steps for the same absorptivity-
per-density a=1'601Xx10"* c.a.s units. The observed value of the radiation was
0°210 cal cm™ min~, which is slightly less than the calculated. To correct a to the
observed value of the radiation, the variation of the radiation was recalculated with
a slightly different value of 4, namely 4=1'501Xx10"* c.c.s. units.

In this calculation the larger of the two afore-mentioned sizes of differences was
used, to save trouble, and it was assumed that the small correction would be practi-
cally the same, whether determined by comparing two coarse difference tables or two
fine difference tables. For A=1'501x10"* ¢.G.5. units coarse differences gave a radia-
tion at the instrument of 02195 calem™ min™. The final result is that, with infini-
tesimal differences, the observed radiation would be given when

A=1'48%x10"? ¢.G.S. units,

for dry clear upper air, for its own radiation.
We are now in a position to find the radiation emitted by a horizontal lamina of
clear air dp thick.
This may be shown to be
A see ¢dp

S=m/2
o()‘f gcos{sinl(Ll—e g ) df=2082 > dp=200spd, ......(16)

in which both dp and dk are to be taken as positive. Putting in the value of A and
taking g =980 cm/sec’ it follows that: a horizontal lamina of air 8p millibars thick
emits from each side radiant energy at « rate 0°003023p times that from an ideally
black plane to one side, for the same area.

For comparison with the experimental constants quoted by Gold on page 53 of
Proc. Roy. Soc. Vol. 82, we require —0 of the radiation emitted by a layer of air

1 em thick. Gold does not state the temperature or the pressure of the layer, so I
have assumed them to be normal, that is 273° A and 1013 mb. It then follows from
(16) that the increase in the radiation from the layer per degree is 0°143X 107’ cal cm ™
per hour, when a is given the value 1:48X 107 c.@.s. units. Thus the figures quoted
by Gold correspond to much greater absorptivities than the one deduced above. In
another paper* Gold has criticized the deduction of the absorptivity from observations
of the cooling of surface air. In what follows I have preferred to rely on Angstl om’s
observations as reduced above.

It would be interesting to repeat the computation of the absorptivity on the
assumption that dry air is perfectly transparent except between wave lengths of 13
and 16 microns, which is the position of the band due to carbon dioxide.

* . J. B. Met. Soc. Oct. 1913.
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Moist Clear Air. No satisfactory treatment will be possible until we are able to
group wave lengths into ranges according to the absorptivity. In the meantime we
may note that the effect of the moisture is usually less than that of the dry air. This
has been shown by A. Angstrom. He observed the total radiation falling from a clear
sky upon a horizontal plane. Then having corrected all the observations empirically
to a standard air temperature of 293° A at the instrument, he plotted them against
vapour pressure at the instrument. A range of vapour pressure of 0 to 10 mm of
Hg caused the radiation to vary from 0-27 to 041 g cal em™* min™. That was when
observations at all levels were combined in a single diagram. In view of the result
which has been obtained above, that a stratum of dryair 200 millibars thick allows as
much as 0'7 of vertical radiation to pass through, it does not appear to be permissible
to combine the results from levels differing by several kilometres. And for the same
reason the humidity and temperature at the instrument are only of interest in so far
as they are a guide to the whole distribution above.

If we treat the levels separately it is found that the effect of humidity is as follows:

Increase of radiation per 1 mm of

Stati Height vapour pressure at the instrument,
A (metres) Radiation being in g cal em~2 min—1,

Temperature constant at 293° C,

l
Mt Whitney AL \ 4420}

5 016
Mt San Gorgonio...| 3500
Mt San Antonio ... | 3000} 017
Lone Pine Canyon | 2500
Bassour ... 1160 007
Lone Pine ... 1140 *009
Indio | 0 005

Thus the down-coming radiation is most increased by water vapour in the higher
levels. That is as we should expect, knowing that the radiation of water vapour 1s
concentrated in bands. For as soon as the full temperature radiation is attained in
the band, increases will only follow the increase of temperature.

It would be desirable to know the absorptivity a as a function of u, the mass of
water-vapour per mass of atmosphere. The relationship could be found, if of the form

A= (value for dry air) {1 + (constant) u},

by pursuing step-by-step computations like those made above for dry air. It would
be necessary to have both u and the temperature given as functions of height. A
very rough calculation of this kind, based on the mean of the above data, indicates
that the constant is of the order of 40, so that

A=1'48X107*(1+40p)em’grm™ ....coccvrurirnennans (17)



56 THE FUNDAMENTAL EQUATIONS Cu. 4/7/1

The definition of A is contained in equation (1) above. The absorptances of the con-
ventional strata might be taken to be increased in the same ratio (14 40u), where p
is put equal to W/R, the total mass of water divided by the total mass of atmosphere
in the stratum. But no treatment will be satisfactory until the wave lengths can be
grouped.

Approximate simplified process. It is proposed to diminish the amount of
computing by treating the hemisphere as a whole, instead of in separate zones. For
the resultant flux of radiation is almost invariably vertical. Near the edge of a
clouded area, the resultant could have a horizontal component, but this exceptional
case has been neglected. The whole radiation falling on one side of a horizontal unit
area has already been denoted by S/ which is defined by equation (15). We require
to find, for 3 ¥, an equation corresponding to (12), for the brightness I. Now if we
multiply (12) throughout by cos {. 27 sin {. d{ and integrate over the hemisphere,
the left-hand side transforms to £ E,. The term in —%/, does not however transform
into one in %F,. But if % were independent of {, and equal to 7, then equation (12)
would transform into

SE=(1-7)ZEA700, 8l i o (18)

which is accordingly taken as an empirical equation used to define a mean absorptance
7 for descending radiation distributed in all directions in the actual manner. In the
last term of (18) O@* is the radiation emitted by unit area of a perfectly black
plane, to one side. Now 3 is given in the last column of the table on p. 53, which
1s based on [&ngstrb‘m’s observations. From this column, by use of (18), the values of
7 have been deduced for the three strata shown in the table. They may be stated
by giving the mean zenith distance { which must be inserted in equation (13) in
order to make  equal to 5. The advantage of giving the angle is that it is probably
not affected by the small error in a in the table. The result is, for strata approxi-
mately the same as our three upper conventional ones of 2 decibars thickness,

b P2 P4 y2

402 ket 54°5 54°-7

(1 radian
nearly)

It is seen that the descending radiation is more horizontal above, more vertical
below. The mean angle { may also be different for ascending radiation. More obser-
vational values are needed.

This simplified process will be illustrated in connection with the data for 20 May
1910, which will be discussed in Ch. 9. There { is taken as 55° throughout, a is taken
as 1'48 x 107* (1 - 40u) cm’ grm ™, 4 is calculated by putting  in place of { in (13),
and S F is traced from stratum to stratum by means of (18).

‘Mr W. H. Dines* has used this simplified process extensively to compute the
radiation at all heights according to various trial values of the absorptance. X

* Q. J. R. Met, Soc. April 1920.
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Clouds. A. Angstri)'m in the introductory summary to his paper makes a state-
ment which implies that low and dense clouds behave almost as black bodies to the
long-wave nocturnal radiation. The recent observations of W. H. Dines confirm this.

Surface of Sea. The radiation from water may be calculated by Kirchhoff’s law
from its reflectivity, which in turn may be deduced, by Fresnel's formulae, from its
refractive index. The reflectivity varies from unity for grazing incidence to 0°02
for normal incidence. But for rays distributed as they would be in all directions
A. Angstrom has computed, in this way, that a flat water surface gives out 94 °/ of
the radiation from a black surface.

Some Papers on Liong-Wave Radiation

E. GoLp. “The Isothermal Layer...and Atmospheric Radiation.” Roy. Soc. Proc. A, Vol. 82,
pp- 43 to 70.

E. GoLp. Q. J. R. Met. Soc. Oct. 1913.

A. AxcsTROM. “A Study of the Radiation of the Atmosphere.” Smithsonian Miscellaneous Collections,
Vol. 65, No. 3 (1915).

A. Axgstrom. “Uber die Gegenstrahlung der Atmosphéare.” Meteor. Zeit. Heft 12 (1916) and
Heft 1 (1917).

F. E. FowLe. * Water-vapour Transparency to Low-temperature Radiation.” Smathsonian Miscel-
laneous Collections, Vol. 68, No. 8 (1917). i

A. ANGsTROM. “On the Radiation and Temperature of Snow and the convection of the air at its
surface.” Arkiv for Mat. Astr. och Fysik. Stockholm, 1918,

A. AxGsTROM. “Determination of the constants of Pyrgeometers.” Arkiv for Matematik. Stock-
holm, 1918.

C. G. ABBor. “Terrestrial Temperature and Atmospheric Absorption.” Proc. Nationul Academy of
Sciences, U.S.4., Vol. 4, pp. 104-106 (1918).

M. A. Bouragric. “Contribution a I'étude du pouvoir absorbant de 'atmosphére terrestre.” Lhéses
& la faculté des sciences de Paris. Gauthier-Villars et Cie, 1918,

W. H. DiNgs. “ Atmospheric and Terrestrial Radiation.” Q. J. R. Met. Soc. April 1920.

Cu. 4/7/2. SOLAR RADIATION
General

What we require to find is the energy absorbed by each stratum of the atmo-
sphere and by the soil, vegetation or sea. Scattering must be taken into account.

The fraction of the direct solar beam transmitted by a horizontal layer, §p units
of pressure in thickness, is

L B A R () | R P (1)
where B 1s a quantity depending only on water and dust and / is the wave length.
' 8

R.
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The part in f(I) represents the loss by absorption. The loss varies irregularly with
wave length, from a large value in certain bands due to oxygen or water vapour, to a
much smaller value in the continuous spectrum between the bands. The other part
in Bl~* represents the loss due to scattering. Scattering does not warm the air.
The scattered radiation spreads in all directions, but not equally so. Its intensity in
a direction making an angle 4 with the incident beam has been found* by Rayleigh,
by Kelvin and by Schuster, to be proportional to 14 (cos A). ..occoovvvvinnnnnn. (2)

The important point about this formula, for present purposes, is its symmetry: the
radiations scattered in any two opposite directions are equal. In its course through the
atmosphere, the scattered radiation is partly absorbed and partly repeatedly scattered.
Some of it eventually goes off to space and the rest comes to earth as skyshine.

It will be convenient to consider firstly the radiation reaching the upper atmo-
sphere from the sun and secondly its distribution in space.

Sunshine above the Atmosphere

Abbot, Fowle and Aldricht by extrapolating, for each wave length separately,
from observations made at large and small zenith distances of the sun. found the
distribution of energy in the solar spectrum outside the atmosphere; and then by
integrating with respect to wave length they found the total energy. Their mean
value for this total is 1'93 calories cm~* min~" which is equivalent to

1'16 X 10" ergs cm™*® per mean Solap day. ....i. e e (3)

By simultaneous observations at different stations Abbot} has found evidence of small
variations in the total radiation, variations having a period of the order of a few
days, weeks or months. Until some way of predicting these variations can be found,
we must just neglect them. The small effect of the seasonal change of the sun’s
distance from the earth is easily taken into account by reference to astronomical
tables. We require the radiation falling on a unit horizontal area. At any instant
this is proportional to cos { where { is the sun’s zenith distance. The mean value of
cos { during a time-step can be found by expressing { in terms of the sun’s hour angle
and declination and then integrating. The result is that the mean value of cos ¢,
between two times ¢, and ¢/, reckoned in mean solar days from local apparent noon, is

. . omt; — 2 t 4
sin (north decl.)xsin ¢ + zi cos (north decl.) x cos ¢ i Wt ; jl,n T A= o (4)
p -

From this formula the following numerical values have been calculated. They
refer to the example of Ch. 9 which is based on observations made at about 8 local
apparent time (=7"6.M.T.) on 20 May 1910.

¥ Vide L. V. King, Phil. Trans. A, 1913, p. 376.
t Smithsonian Astrophysical Annals, Vol. n1
} Nature, July 29, 1920.
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,i Mean value of cosine of sun’s
zenith distance
1910 May 20 d.
Kilometres
north Y
of equator 5 to 11n 11b to 170
local local
apparent time | apparent time
6200 0:522 I 0:693
6000 0:523 0-706
5800 0-528 0:718
5600 0-5631 0-729
5400 0535 0-740
5200 0537 | 0750
5000 0:539 0759
4800 0541 f 0-766

Transmission of Solar Radiation through the Atmosphere

To be exact we should have to follow the Smithsonian observers in treating
each wave length separately, and L. V. King in considering scattering as occurring
repeatedly. All this might be practicable if the atmosphere could be treated always
as a single stratum, but such a treatment would break down as soon as clouds inter-
vened. Cloudiness or transparency are of course the most important atmospheric
properties in connection with solar radiation, and everything else must be subordi-
nated to the distinction between them. Thus it becomes necessary to keep account,
separately, of the radiation passing through the several conventional strata; and
then, to economize arithmetic, approximations must be sought elsewhere. The fol-
lowing approximations, while greatly reducing the work, would appear to permit an
accuracy of a few per cent in the final result.

(1) Dust is left to be estimated statistically. That is to say it is not included, as
water is, among the dependent variables, whose history we attempt to trace throughout.

(i) We neglect the radiation passing from any horizontal coordinate chequer,
of 200 kilometres of latitude times 2° 49’ of longitude, to the neighbouring chequers.
This point may be illustrated by the fact that the curvature of the earth prevents a
cloud, above the centre of one of these chequers, from casting a shadow on the centre
of the next chequer, unless the cloud is more than 3 kilometres above sea-level.
Even for the highest clouds it would only be possible if the sun were so low as to
have a negligible heating effect.

(ni) Asthe zenith distance { of the sun changes largely during our time-step of
six hours, a mean value of sec { must be inserted in all transmission formulae such as (1).
A mean value of cos {, for the same interval, has in any case to be calculated from (4),

8—2
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and its reciprocal may be used for mean sec {. A much better mean value of the factor
e 25¢¢ would be J cos { e~ Beees t + f cos {dt, in which the “weight” cos { is introduced

because the radiation on the top of the atmosphere is proportional to it. But the
essential difficulty is that B varies with time, owing to its dependence on the amount
of cumulus cloud, and that six hours is a long interval when dealing with the latter.
Three-hour steps would be much better.

(iv) Instead of treating the scattered radiation as distributed in all directions
each with its appropriate absorption, the absorption is taken to be that corresponding
to a single mean direction. For radiation scattered once only, this direction is taken
as 45°, pending more exact estimates.

(v) Repetition of scattering may be allowed for, in a rough way, by slightly
increasing the above angle. For consider that, if scattered radiation were not ab-
sorbed by the atmosphere, we should hardly be concerned with the repeated scattering;
for although the repetitions may alter the relative brightness of various parts of the
sky, they can not affect the fact that half the scattered radiation would make its exit
to space, and the other half would reach the ground, in accordance with the symmetry
of expression (2). The fraction reflected by soil or foliage can hardly depend at all
upon the distribution of brightness over the sky, but the fraction reflected by a
perfectly calm sea would do so in a known manner. As scattered radiation is slightly
absorbed by the atmosphere, and as repeated scattering increases the average aggre-
gate path of the radiation in the air, we may allow for the repetitions by increasing
the above-mentioned mean zenith distance from 45° to say at a guess 55°.

(vi) Lastly, instead of treating each wave length separately, the whole range
of wave lengths has been divided into interlacing portions, according to the strength
of the absorption. It seems best to group together wave length ranges which have
similar absorptions, rather than those which have similar scatterings, because the
variations of absorption are much greater than the variations of scattering, and
because we are only concerned with scattering in so far as it prevents or produces
absorption. For simplicity the range of wave lengths has been divided into only
two groups—that of the atmospheric absorption bands, and the remainder. Accord-
ing to Abbot, Fowle and Aldrich the energy lost in the bands is not more than 15 °/,
of the total amount. The total is therefore divided into 15°/, and 85°/ , and these
amounts are entered at the head of the columns marked ‘‘bands” and “remainder” in
the computing form. See Ch. 9.

The above are the simplifying approximations.

We must next consider the observed values of the constants for scattering and
absorption, for these two groups of wave lengths. The absorption in the bands has
been determined by Abbot, Fowle and Aldrich* by measuring areas on graphs in
which the observed intensity is recorded as a function of the wave length. The

* Smithsontan Astrophysical Annals, Vol. 1L
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continuous spectrum was taken as the base line from which the areas were measured.
The absorption in the continuous spectrum has been found by L. V. King* by treating
the logarithm, of the fraction of the radiation which is transmitted, as the sum of two
terms: one term varies inversely as the fourth power of the wave length and is there-
fore due to scattering; the other term is presumably due to absorption, and is found
to be independent of wave length. In the bands these two absorptions must appa-
rently have been superposed, but whether the coefficients should be added or whether
two separate exponential terms with different coefficients will be required, is hardly
clear from the experimental evidence. So, for simplicity, the former course has been
taken. Again the total observed scattering must be divided between the two groups
of wave lengths. Now the bands are mostly in the red or ultra-red, where the scatter-
ing, for the same incident energy, is only about one-half what it is for the remainder
of the spectrum. So instead of taking 15 °/ of the total scattering as occurring in
the bands, only 73 °/. has been taken.

From the above-mentioned sources, some of the most interesting data have been
collected into the following table.

In the table on p. 62 all the activities are expressed as fractions of the radiation
incident on the top of the atmosphere. Before being used to deduce constants for the
air between the levels of Mt. Whitney and Mt. Wilson they require to be expressed
as fractions of the energy incident upon this layer for the particular group of wave
lengths concerned.

Now for any wave length, expression (1) may be put in the form:

radiation directly transmltted o= o (a+ #)sec Ldh -
radiation incident e IR (5)

where 4 is the absorptivity-per-density and where #, which measures the scattering,
may be called the scatterivity-per-density. The integral is to be taken across the
layer. If A and # are independent of height, (5) becomes:

radiation directly transmltted o—(ax P)secl. R :
radiation incident i e e (6)

where I is the mass per unit area of the layer.

To determine the constants a and 7 from the observations quoted above, for layers
which are not thin enough to permit the approximation e~ “+8) =1 — 4 — B, we find first
the sum (a+ #) from (6). Next this sum, (a + #), is divided into two parts in the ratio
of the total absorption to the total scattering in the layer. This ratio equals a/
because if the activity in the direct beam at any level is %, then the amounts absorbed

and scattered in the layer 7 to ¢’ are respectively a f pkE sec{dh and } f pE sec (dh.

* Phil. Trans. A, 1913, p. 425 ete., also Nature, July 1914,
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The results are set out in the table below, and refer to clear air

Bands Remainder

Water substance
per mass=pu

Absorptivity Scatterivity Absorptivity : Scatterivity

per density=4 | per density= ¥ | per density =a ‘ per density:j‘ See note below

Air above Mt, l

X 2:28 x 10 | 0:76 x 10—* | 024 x10-* | 1:60 x 10— 0135 x 1073
Whitney

Air between levels|
of Mt. Whitney 12-8 x 10—
and Mt. Wilson

06x10-* | 043x10~* | 1-98x10-* 2:83x10-3

}

Note. The measurements of the absorption in the bands were made on isolated occasions when the water
content may have differed from the mean value given in the last column.

Clouds. Abbot states that thick clouds reflect about 65 °/_ of the solar radiation
falling upon them. Photometric measurements* indicate that the fraction of red light
transmitted by uniform stratus is about 25 °/, for an ordinary cloud and 8°/. for a
very dark one. Thus the effect of clouds appears to be mainly a scattering. How
much they absorb is apparently not yet known exactly.

Routine Process. The foregoing principles and data have been applied to the
observations in Ch. 9. The procedure was as follows in any group of ranges of wave
lengths. Take the “bands” group for illustration.

First o and # were obtained for each stratum, by using the values given in the
table above, and assuming that o and # were linear functions of the water-per-mass, u.
It was concluded that the sky was cloudless, because the water-content was every-
where low, and the period considered, 5" to 11" by local time, too early in the day for
much cumulus cloud. Next the fraction of energy not transmitted

1—Exp {R (s + ) sec {}

"was formed for each stratum, and theunce the fraction absorbed

(1 -Exp{R (a+})secl}],

x
A+ F

and the fraction scattered

r
At}

(1 -Exp{R (a+[F)sec }]

These are all fractions of the energy incident on the particular stratum. They were
entered on the computing form which is printed in Ch. 9. Next 15°/ of the incident
radiation was entered opposite %, in the column headed “Direct beam, flux.” The
direct beam was then traced down stratum by stratum, deducting the amounts ab-
sorbed or scattered, until the vegetation was reached. The downward flux of diffuse

* Roy. Soc. Proc. A, Vol. 96, pp. 23 and 31 and similar measurements now in progress.
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radiation was next traced, starting from zero at the top %,. In each stratum one
half of the energy scattered from the direct beam was added to the downward flux
of diffuse radiation. From this sum was deducted the amount of diffuse radiation
absorbed by the stratum, the amount absorbed being taken as a known fraction,
corresponding to (=55, of the diffuse radiation entering the stratum from above.
Thus diffuse radiation was brought down to the vegetation film. The portions of
the descending radiation, direct or diffuse, which were considered as reflected by
the vegetation, were added and transferred to the foot of the column of ascending
diffuse radiation, at the level 4. The ascending radiation was then traced upwards,
subtracting in each stratum the fraction absorbed, and adding half the energy
scattered from the direct beam in that stratum, until A, was reached, where the
radiation left the earth for interplanetary space. In the last column of the computing
form, the energy absorbed by the several strata, and by the earth, was added up.
Finally the total energy received from the sun was checked against the total of all
absorbed plus the loss to space.

Publications on Solar Radiation

AggoT, FowLE and ALDRICH. Smithsontan Astrophysical Annals, Vol. 111. and Smathsonian Mascell.
Collections, Vol. 65, No. 4.

F. LinpHOLM. “Extinction des Radiations solaires dans l'atmosphere terrestre.” Nowe Acta
Upsaliensis, Ser. 1v. Vol. 3, No. 6 (1913).

L. V. Kixa. Plil. Trans. A, Vol. 212 and Nature, July 30, 1914.

R. S. WHipPLE. “Instruments for the Measurement of Solar Radiation.” Trans. Optical Society,
London, 1915. ’

W. H. DiNes. “Heat Balance of the Atmosphere.” @. J. R. Met. Soc. Apr. 1917.

SiR NaPIER SHAW. “Memorandum on Atmospheric Visibility,” Feb. 1918. Hydrographic Dept.,
Admiralty, London.

F. E. FowrLt. “The Atmospheric Scattering of Light.” Smathsonian Misc. Collections, Vol. 69, No. 3
(May 1918).

C. G. ABBor. “Terrestrial Temperature and Atmospheric Absorption.” Proc. Nat. Acad. Sci.,
US.A., April 1918.

M. A. Boutaric. “Contribution & I'étude du pouvoir absorbant de I'atmosphere terrestre.” Théses
d la faculté des sciences de Paris. Gauthier-Villars et Cie, 1918.

F. LixpaoLM, “Sur l'insolation dans la Snéde Septentrionale.” Kungl. Svenska Vet. Hand. Bd. 60,
No. 2 (Wm Wesley & Son, 28 Essex St., Strand).

A. Ancstrom,  “ Uber die Schatzung der Bewslkung.”  Met. Zeit. Heft 9/10, 1919.

C. G. AsBor. Nature, July 29, 1920.
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Cu. 4/8. THE EFFECTS OF EDDY MOTION

Note: Numerical references attached to persons’ names in Ch. 4/8 refer to the bibliography on p. 92.

Cn. 4/8/0. GENERAL

The kinetic theory of gases has revealed to us that the properties of viscosity,
diffusion, and conduction of heat, which are attributable to a gas enclosed in a small
vessel, are in reality due to molecular motions which we cannot follow in detail. In the
same way in the atmosphere, many varieties of motion which we cannot or do not
wish to record in detail, can be ignored; provided that their general statistical effect is
taken into account by adding to the equations, describing the general motion, appro-
priate additional terms. This was very clearly brought out by Osborne Reynolds (3)
in connection with viscosity. He took the mean value of the dynamical equations
and found that they were of exactly the same formn in the mean velocities as in the
actual velocities; except that the quadratic terms introduced, on taking the mean,
the body force derived from a system of “eddy stresses.” This was true however
large was the interval of time or the volume over which the mean was taken, with the
limitation that the eddies within this time and space must be sufficiently numerous*,

Our theory and constants must be appropriate to the size of the element of the
fluid which we treat as a “differential” in that we ignore the details of any motions
taking place wholly within it{. The upper limit to the size of an eddy is, like the length
of a piece of string, a matter of human couvenience. When an airman says that the
wind is “bumpy” he is thinking in terms of a differential element probably comparable
in size with one wing of a flying machine. For the present purpose any motion which
disappears on taking the average over our coordinate intervals (8¢ =6 hours, 8\ =3°,
8¢ =200 km, 8h =1 mass upwards) has of necessity to be ignored. If it occurs in
large numbers—as cumulus eddies do for example—then its general effect can be
satisfactorily represented by additional terms; although unfortunately this does not
help us for example to say whether it will hail or not on Mr X’s field.

It has been customary to separate circulatory motions in the atmosphere into
two main groups according as they derive their energy from the local heating of the
lower layers of air (“convection”) or from the kinetic energy of the wind (“dynamical
instability”). Tt is easy to classify a thunder-cloud as belonging to the conventional
type, or a gust in a gale as being an example of the other extreme. But recent
researches have shown the existence of numerous intermediate forms, which derive
their energy from both sources jointly. Thus Akerblom (8) found that the eddy
viscosity at the Eiffel Tower was greater in summer, when the supply of heat for con-
vection was greater. Hesselberg (13) obtained a similar result for the wind 500 metres
above Lindenberg. Again Taylor(21) found a very large seasonal variation, in the
same sense, for the diffusion of heat as deduced from the Eiffel Tower temperatures.

* See also Ch. 4/9/5 below.
T Bryan, Thermodynamics (Teubner), Art. 46; Jeans, Dynamical Theory of Gases, Art. 11.

R. 9
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~ Exceptionally low diffusivities have been measured at night by L. F. Richardson (32)
in the cold air near the earth. Airmen are very familiar with the increased bumpiness
of the wind caused by sun shining on the ground below them. All these facts show
that the production of eddies in the wind is greatly facilitated when the thermal
equilibrium becomes less stable, although we may not suppose that actual thermal
instability is reached in the majority of cases, because such an event is unusual among
the collected observations made either by registering balloons or from aeroplanes.

A quantitative theory of the criterion of turbulence has been given by L. F.
Richardson (32).

On the other hand we find that convectional motions are hindered by the formation
of small eddies resembling those due to dynamical instability. Thus C. K. M. Douglas
writing of observations from aeroplanes remarks: “The upward currents of large
cumuli give rise to much turbulence within, below, and around the clouds, and the
structure of the clouds is often very complex.” One gets a similar impression when
making a drawing of a rising cumulus from a fixed point; the details change before
the sketch can be completed. We realize thus that: big whirls have little whirls
that feed on their velocity, and little whirls have lesser whirls and so on to viscosity—
in the molecular sense.

Thus, because it is not possible to separate eddies into clearly defined classes
according to the source of their energy; and as there is no object, for present purposes,
in making a distinction based on size between cumulus eddies and eddies a few metres
in diameter (since both are small compared with our coordinate chequer), therefore a -
single coeflicient is used to represent the effect produced by eddies of all sizes and
descriptions. We have then to study the variations of this coefficient. But first we
must consider the differential equation. In doing so the aim has been to lay down
theoretically only so much as can be determined with strictness, leaving all un-
certainties to be decided by observation.

In hydrodynamics or aerodynamics it is customary to speak of the motions of
“ definite portions” of the fluid, portions which may be marked by a dot of milk in
water or of smoke in air. The capital D in D/Dt is commonly used to denote a time
differentiation following such a definite element. It is customary to ignore the fact
that molecules are constantly passing in and out of the element called “definite.”
When we have to deal with eddies, the interchanges are more conspicuous, for
boundaries marked by smoke would rapidly fade and disperse. Yet some way must
be found of specifying an element which follows the mean motion. The fundamental
idea seems to be the following. When there are no eddies we are accustomed to
compute the flow of entropy or water across a plane from the flow of mass across
the plane. As the effect of eddies is to be treated as additional, it should not include
any flow due to the mean motion of mass across a plane. Accordingly we should adopt
some such definition as the following:

Draw a sphere in the fluid. Let the radius be as large as is necessary to include
a considerable number of eddies, but no larger. Let the sphere move so that the
whole momentum of the fluid inside it is equal to the mass of the same fluid multiplied
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by the vector velocity of the centre of the sphere. The centre may then be said to
B8 ‘‘a point moving stiGh@RSEh-motion.” ................ L. (1)

As bars denote mean values the capital letter with a bar over it in D/Dt may
suitably denote a difterential following the mean motion.

Here we may usefully bear in mind the analogy with the conduction of heat in a
solid. The total water in a portion of air, or the mean potential temperature of it,
is not altered by gently mixing it at constant pressure, provided precipitation does not
oceur. If, then, Z stands for either of these quantities or for any other quantity, which

Has its total, for a secluded portion of air, unchanged by the internal
RN R 00 DG POITAON, | o io- o0 s 0 idus s 5dsrnas orjons - prmposonasronnponsnsangens (2)

B R Lt O e e 20 T 2ot e s 3 Fmar o s oo g s o s oo e (3)

then the rate of increase of the total Zin the portion must be due to Z flowing in over
the sides.

As the variations of moisture, entropy and velocity in the atmosphere are usually
much more rapid vertically than horizontally, the ensuing treatment is confined to
the vertical diffusion. :

Consider a large horizontal surface moving so that there is no net flow of mass across
it. Let us define the “upward eddy flux” of the quantity Z across any such surface as
the ratio of the amount of Z rising across the surface in unit time to the area of the
surface, which is supposed to intersect many eddies..........cccoceveriieiiiiiiii.. (4)

Then rate of increase of Z per area in the layer dA bounded by two surfaces which
rise and fall with the mean motion must be

—dh o (apward fux). (5)
It now x be defined as the amount of Z per unit mass of atmosphere, then
The amount of Z per area in dh is xpdh, ........ccoevennen. (6)
D (xpdh 0
so that ~(>1%t ) —dh 5 erd flux). .............o0neneee. (7)
Now we can define a coefficient ¢ such that
upward flux of Z= —¢ g% BRI T & e s o .« oo (8)

where ¢ might be called the “eddy-conductivity”* when the quantity transferred is
moisture or energy; or it might be called the “eddy-viscosity” when we have to do
with exchanges of momentum. The coeflicient ¢ corresponds closely but not exactly
to the ‘“Austausch” which W. Schmidt of Vienna denotes by the symbol 4. When ¢
is defined by (8) it will be for observation to show whether ¢ is a constant, as would

* Since I adopted this name (Bibliog. 32, p. 2) I see that G. I. Taylor (12, p. 4) had previously used
it to denote another quantity. To avoid muddles it is best to refer always to the differential equation for
diffusion.

9—2
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be nice, or whether ¢ depends on various factors, and in particular on 9x/ok = 0. But,
if ¢ is to be useful, it must not be infinite when 9x/0h =0. Therefore we had better
confine ourselves to conditions in which
The upward flux vanishes when oy/oh=0. .................. (9)
Now this implies that:

x must be unchanged by the simple transportation of air to a different level. ...(10)

Otherwise expressed Dy/Dt=0 where D) denotes a differentiation following
the eddying MotiQm, = u...inesel e fas e R RS R L el - « (10a)

Now x is the total Z per unit mass of a definite portion of air. So, as the mass
is unchanged by transport, (10) implies that:

The total Z in a definite portion of air must be unchanged by its removal
10 a QHIETEnt 1eVel, | & .o oeisie tmote s tohh ool i L A T (11)

Fortunately, (11) is satisfied by the same two quantities which previously
satisfied (2), so that (10) is satisfied when y is either mass-of-water-per-
mass-of-atmosphere or else potential-temperature. .........................e. (I1la)

If, in place of (8), we had made the flux proportional to ¢'d (px)/oh where py is the
total amount of Z per volume instead of per mass of atmosphere then, to avoid an
infinite value of ¢, the flux would have to vanish when @ (px)/d% vanished. That
would not be possible for the two given meanings of y, because rising air changes its
volume. So it appears that we had better keep to the definition (8).

o Dlpxdh) _ < 3x>
Inserting (8) in (7) we have D = dh - S \Cap ] e, (11b)
Now D—%)—:l—h) =0, Lide e ¥, e Distncs .. el AN (12)

for the layer is bounded by surfaces moving with the mean motion.

Then (11D) reduces, without approximation, to

Dx 1o/ oy

Dt p ah< ah>

It is sometimes more convenient to use pressure as a measure of height by
means of the transformation

dp= —gpdh.
At the same time, in order to get a single constant, let us put
Uiy .o 3 ATt ) BFEuyg 1% SRR =S (14)
then (13) becomes
DX 0 ax>
g <§ap A S S (15)

where x may have either of the meanings (11a).
The dimensions of £ are (mass)® (length)~* (time)".

Pressure is peculiarly convenient if we can neglect any lateral convergence of
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wind, for then an isobarie surface moves up and down with the mean motion, so that
when ¢ and p are the independent variables, [)/Dt is the same as 9/0t and (15) becomes

0 0 0
‘a?f:‘a}';(fag)' .................................... (16)
The flux is given by (5), (8), and (14), that is to say, if x is the amount of Z per
unit mass of atmosphere, then the amount of Z rising across a large horizontal surface
per area per time, when no mass traverses the surface on the average, is
g %—)g or equivalently, — c_g—% L s b 0 ook o' (17)
The quantity x may have either of the meanings (11 «).

The conductivity ¢ or the turbulivity £ are left to be determined by observation,
but we know beforehand that they are finite when 8x/oh=0. No attempt is here
made to show that they are the same for various meanings of .

It should be pointed out* that entropy per mass o cannot stand for y in the above
equations. Because, when the variegated structure produced by eddies is smoothed
out by molecular diffusion at constant pressure, then the entropy increases and so
does not satisfy (2) or (3); although the mean potential temperature of a secluded
portion of air remains unchanged. The equation for diffusion of entropy per mass o
has to be derived from that for potential temperature 7.

For dry air G B O Y e G 4 W Tk w900 e £ 5l v s e (18)
so that (13) leads to

Dt” " pom\ ok
Or alternatively 2—(: = 11-8% <f‘r %t) ................................. (20)

The case of velocity

Can velocity stand for x and momentum for Z in the preceding equations? The
answer will be yes, provided that (2), (3), and (9) are satisfied. Suppose that Z and
x are both in the same fixed horizontal direction. Now (3) is satisfied because
the external forces on a lamina, due to local pressure differences, are normal to its
broad surfaces, and therefore cannot alter its momentum parallel to any line in its
own plane. So that it can gain horizontal momentum only by air moving into it.
Condition (2) is satisfied because forces between the parts cannot alter the momentum
of the whole. In examining (9) we must distinguish between the mean velocity 7,
which here plays the part of x, and ¢/, the deviation from the mean. The question is
whether, if 69/0h vanish at any level, an upward flux of momentum can cross that level ?

* In view of a mistake of mine in Roy. Soc. Proc. A, Vol. 96 (1919), p. 9 from which paper the above
theory is taken, with improvements.
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In other words, can there be an eddy-shearing-stress where there is no rate-of-mean-
shear? The converse, of course, occurs where there are no eddies. Or to put the
question over again in another way: imagine two adjacent horizontal layers each say
100 metres thick and having the same mean velocity; would it be possible for the
faster moving portions to sort themselves out and to flock together into one layer,
leaving the slower moving portions in the other? If molecules did that sort of thing,
the occurrence would be one of the exceedingly rare exceptions to the second law of
thermodynamics. We may reasonably expect that there is a corresponding law, on
an enlarged scale so to speak, applicable to the statistical mechanics of eddy motion.

The only other possibility seems to be that portions of air should wander in from
quite distant regions, giving a part of the vertical flux of momentum proportional to
o'7foh’ and a term in (15) proportional to 2*T/oh’.

When v plays the part of x then ¢ plays the part of viscosity, as may be seen by
imagining (13) as a dynamical equation from which pressure gradient and geostrophie
wind have been omitted because they just balanced each other.

To sum up: we may expect equations (13) and (15) to be an exact expression of
the effect of mixing when y is either:
potential temperature (but not entropy per mass),
mass of water in all its phases jointly per mass of atmosphere,
horizontal velocity in a fixed azimuth,
or any other quantity satisfying (2), (3) and (9).
But there is no evidence from this theory as to whether the coefficients ¢ and £ are

the same for these different meanings of x.

The Eddy-Flux of heat behaves in a manner remarkably different from the flux
of heat in a solid. If x in the above general theory be given its permissible special
meaning of the potential temperature 7, then Z is (potential temperature) x (mass) and
the amount of Z rising per second across a unit horizontal area which moves with the
mean motion is —c.drfoh. The flux of heat may be said to be the flux of

(mass) x (ordinary temperature) x (specific heat at constant pressure),
and this will be vy, (p/p’)"® times the flux of Z.
That is to say the flux of heat will be, in dry air,
A )
—711 <“1%7> 0.87]:' ................................. (21)
Let us consider the simplest case. Suppose that the temperature does not change

at points moving with the mean motion, and that the pressure does not change either.
Then Dr/Dt=0 and from (13) it follows that, as far as eddies are concerned

o [ or G om < LA
% <c 57L>= 0, so that c o independent of height.
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Therefore from (21) we see that in this steady state the flux of heat depends on the
height. The explanation of this distribution—so different from that in a solid—is that
heat is being transformed into the kinetic energy of eddies or vice versa as it goes.
The matter has been treated by the author (33, p. 354). If 7 increases upwards, then
heat flows down; but then also the atmosphere is stable, and as it is stirred kinetic
energy is drawn from the mean wind and becomes, partly immediately heat, and
partly first eddying kinetic energy. The latter part ultimately, by molecular dissi-
pation, is converted to heat. If,on the contrary, 7 increases downwards, then the flow
of heat is upwards; but also the equilibrium is unstable even in the absence of wind,
and heat is being converted into eddying kinetic emergy. Ultimately this is also
dissipated as heat. But in the meantime, provided Dr/Dt=0, then whichever sign
orfoh may have, the flux of heat, in conformity with equation (21), is greater below.

Cr.4/8/1. COLLECTION OF OBSERVATIONS OF VISCOSITY AND CONDUCTIVITIES

Although these are put down as values of ¢ in equation (13) yet very many of the
observers have gone on the unreliable hypothesis that ¢ was independent of height

2

S0 tha.tp :h <c %) was taken by them as %Z Iig.

The most striking fact is the large value of the viscosity which eddies give to the
atmosphere. Thus several observers have found viscosities of the order of 100 c.@.s.
units at a height of 100 to 1000 metres above land. Glycerine in the same units has
a viscosity of 46 at 0° C., Lyle’s Golden Syrup 1400 at 12° C. However, when the forces
resisted by viscosity are produced by the inertia of the fluid, we should compare fluids
by their ratio of viscosity to density. For the atmosphere this ratio attains values of
the order of 10’ c.c.s. units, a figure which lies between 10° for golden syrup at 12° C.
and 5x10° for shoemakers’ wax at 8°C. (The laboratory data are taken from Kaye
and Laby’s tables.)

In the adjoining columns are set out various circumstances which are likely to have
influenced the state of eddying. They will be examined later. I have endeavoured
to pick them out to fit the same ranges of height, place and time as the observations
of turbulence.

The coefficients ¢,, ¢,, ¢, mean the values of ¢ in equation (13) which apply when
the diffusing quantity is respectively v, w or 7. Thus ¢, is the eddy-viscosity and is
not to be mistaken for the specific heat at constant volume, for which, following
G. H. Bryan, I use the symbol v,



72 THE FUNDAMENTAL EQUATIONS CH. 4/8/1
Observed values of the Eddy-viscosity c, for velocity
The 2 axis is directed with the wind at the mean level
: : <av;)2 (.3,"1)2 ‘ 990 Height above Wind near surface
Y oh oh ¥p Ol ground
Velocity | At height | Character of surface Remarks
grm sec™2 gec™? gec~2
sec cm 1074 x 10—4x 10-4x Metres cm sec™? cms
Tl e bt B e =
F. Axerproy (8). From variation of wind with height, allowing for possible variation of barometric gradient.
83 6-8 047 24 } 21 to [ 239 2100 Paris, winter Eiffel Tower
113 41 0-8? 16 305 ‘ 205 2100 ' Paris, summer } winds
G. I. Tavror (11) and (12). From variation of wind with height, not allowing for
variation of barometric gradient.
70 ] 950 i }
0 to 1 5 e G. M. Dobson’s
56 ‘ ! 1700 590 > 3000 Salisbury Plain Reolind
32 l | 330
|
09 mean mean mean | . by, -
", S-O} ’ 90 18 60 J 0 to 200 Sea, Newfoundland | “Scotia” kites
09to4-8| 18 34 0-9 0 to 200 440 10007 Sea 1913,Aug 2¢11"

0-9

40 2:6
50 05
50 01
60 0:0
50 |

‘ W. Scumipt (18). Assuming that very near the ground the vertical flux of momentum is independent
of height and therefore ¢,0v/0h constant.

HerssELBERG and SvE

7
0-8
02
0-0

not allowing for variation of

RDRUP (14

26
for 0 to
500 at
8 a.m.

/

). From variation of wind and barometrie gradient with height.

0to9

9 to 209
109 to 309
209 to 409
309 to 509

| 9 to 3009

\ [30 assumed as basis at height of 200]

2:6

13

-
140 0-08
260 0-01
90 007

0-00

0-32

0-02

~ o W

Anem.

H64 900

| I

barometric gradient

Stevenson and
Hellmann obsns.

Lindenberg

H. U. Sverprup (19). Variation of velocity with height in the North Atlantic Trade Wind,

allowing for variation of pressure gradient.
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Observed values of the Eddy-viscosity c, for velocity (continued)
The x axis is directed with the wind at the mean level
| | g i
[ au,)\? 63_,,)2 g0 } Height above Wind near surface |
. oh ah Yp 0h ground - )
Velocity | At height Character of surface Remarks
grm sec~? sec? sec?
10~4 x 10-4x Metres cm sec™1 cms

sec cm ' 10-4x

L. F. Ricnarpsox (32). By integrating the loss of momentum with respect to height from a level chosen so

that dv/oh and consequently the stress there both vanish. Neglecting variation of pressure gradient,

15
110

parallel to wind

horizontally across wind

” 400 l | !

|

Lindenberg
General mean

L. F. RicuarpsoN (32). From the speed of ascent of cumuli, the height through which they rise and

1030 Zero Zero

Nearly

zZero

the fraction of the sky covered.

0 to 2000 Zero

.

Land

' Midday

Observed values of the Eddy-conductwity ¢ for dust, smoke or other floating solids

dah t oh
grm sec™2 sec™?
sec cm , 1074 x

99
Yo Oh
sec™2
104 x

! ’ | Wind near surface
Height above |

ground

Metres cm sec~! | cms |

l

Velocity l At height = Character of surface

1074 x ‘

L. F. RIcHARDSON (32).

From irregularities in the flight of a free balloon observed by Capt. Cave

\ | L

with two theodolites.

Remarks

6 02 o1 | 10%in 1000 700 RIS 180'm, higl
l : l February o Al
L. F. Ricuarpson (32). Dispersal of smoke.
1 ' - Argonne Forest
D) o. 20k g H
120 i Avg; Oh} 250 wooded hills
July 71
6 ‘ overcast 9 Moor
0-16 13 ? 131 3.4 120 | 340 Flat fields Biblgogg' 32)
d !
[ |{Steam plough ob-| 1920 Sept. 109,
4] l 225 ? -219 5 { gig { ‘;’88 structions subtend | 10b 45m
1 1/15 radian 2/10 cum.
' | 1920 Sept. 10,
| | 13n, '
7 2 ? —-117 24 200 200 Firework
6/10 ci-str,
2/10 cum.
R. 10
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Observed values of the Eddy-conductivity c, for water

7 Wind near surface |
n (?t_@)’ (%)’ 9.9 | Height above |
oh oh Yp 0k ground
: Velocity | At height Cha.ragter of Remarks
grm sec—2 sec—2 sec—2 SRrince
sec cm 10-4 x 104 x 10— x Metres cm gec! cms
I 9 I i

W. Scamipr (25). Evaporation in the court of the Bureau Central Meteorologique, and difference of water
per mass between Parc St Maur and the summit of the Eiffel Tower.

61 ' Dec. to Feb. 9 to 12

21 5 s 21hto 24
2 to 302

84 July 3% to 6

60 . | , 21hto 24

L. F. Ricrarpson (28). By comparing precipitation with the up-grade of water per mass of atmosphere,
Means for whole globe, including as eddies any up and down motion however extensive.

0-006 ) ! '

to - 015% | 00 15 8500
038 |

120 500
08 or less 05

Observed values for carbon dioxide

W. Scamipr (18, p. 36). The observed distribution of carbon dioxide is a balance between
eddy diffusion, gravity, and molecular diffusion

-
i

c

00017 | 0-15% 00
S et

Note. Schmidt himself rejects this value as incredibly small, but T am inclined to believe it.

2-8 10000 tion, Met. Zeit.,

Wigand’s Observa-
33, 433 (19186).

* This figure is a rough estimate of the mean square of év/oh derived from G. M. B. Dobson’s diagram in
Q. J. R. Met. Soc., Jan. 1920, p. 55.
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Observed values of the Eddy-conductivity c, for potential temperature

. ( Q}f@)z ( u,\? g9 \ Height above Wind near surface ' |
g dh oh Yp Oh ‘ ground ‘ Ch t
Velocity | At height ara:ter e Remarks
pE sec™2 sec™2 sec~2 surface
sec cm 10—¢ x 104 x 10—¢ x Metres cm sec™! cms
l I l | 1

G. I. TayLor (11). From the life-history of the air currents, and the sudden bends in the curve
showing the distribution of temperature with height.

1913
16 IFIESI S BN N0:3 87 1 0to170 | 440 | 1000? July 29
30 1-8 I 34 09 | 0to200 440 , 1000? © Sea Aug. 24 11k
31 87 | 0to370 | 9220 e racal
Z€ro zero? | + 10007 banks Ang. 44 19°
41 13 | 370t0770 | 220 |
G. 1. Tavror (21). From Eiffel Tower temperatures, neglecting radiation,
180 | 18 to 123 Paris Year
20 247 , Feb.
197 to 302 Paris
364 208 July
2100
54 87 0-8 18 238 : Jan.
’ 18 to 302 ‘ Paris
ey | 56 02 07 206 June
W. Scamipt (25). From Eiffel Tower temperatures, allowing for radiation.
31-2 EHT 228 Spring
465 161 || 205 Summer
197 to 302 "

10-6 1-98 290 2100 Paris Autumn
059 2:47 238 Winter
9-2 2 to 123 Year

‘W. Scamipr (25). From Allahabad temperatures in the same way.
06 ! ‘ cold
07 | 12 to 14 hot
2.8 ‘ rainy
46 cold
33 31-7 to 506 hot
74 rainy

10—2
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4. Aingstrb'm (27) by observing, during the polar night, the net radiation leaving
a surface of snow, which he asumes to be a full radiator, and by observing also the
temperature gradient in the first 0'6 metre of air above the surface, and by allowing
for the conduction through the snow, found an eddy flux of heat equal to

— 003 96/oh grm cal cm™ sec™".

As the up-grade of temperature was so large—at the rate of about 4400° C per kilo-
metre—we may neglect pressure variations, and by taking the standard pressure as
that at the surface, we may put or/oh =00/0h. 1t follows that

—¥p-C.00f0h=—0"0306/h
if energy is expressed in calories.

Whence as vy, =024 g-cal grm™ degree ™, it appears that

c=0"12.

The mean wind velocity was 28 metres per second at a height of 15 metres above
ground.

g oo comes to 1650 x 107*sec™.
¥y Oh

Critique of the Observational data. From geometrical considerations* we must
admit the possibility that ¢ or u at a fixed point may be different in three directions
at right angles. The preceding data however refer only to the vertical direction.

Comparing the values of ¢ given in the first column ot the tables, we notice that it
increases with height up to a level of about a kilometre, and thereafter decreases.

At the same height the coefficient appears to be of the same order, whatever it
may be that diffuses. This was observed and explained by G. I. Taylor (12), and
later W. Schmidt (18) gave the general notion behind any mathematical argument in
the form that an exchange of mass goes on, and that the measure ¢ will be the same
for any properties which this mass simply carries with it. This argument fails if the
atmosphere has a diversified structure in the diffusing substance, provided the
diversity tends to advance or to retard the motions which produce diffusion. For
instance the value ¢ =1030 grm sec™ cm™ for the viscosity produced by rising cumuli
does not apply to the diffusion of heat, because cumuli are patches of air which are
rising because they are warm. Again horizontal velocities at right angles to one
another are to be considered as two different diffusing ‘“ substances ” and observational
or theoretical proof is required to show whether the eddy-viscosity is the same for both.
A single computation quoted on page 73 shows ¢, at a height of 400 metres to be
seven times greater across the wind than along it¥. This problem deserves further
attention. The columns containing (dvx/oh)’, (dvgfoh) and g/v,.oa/ch have been
added because of their relation to the criterion of turbulence. Here o is the entropy
per mass, so g/y, . 0 /dh is negative for a thermally unstable atmosphere, zero in an

* Richardson, L. F. (32), p. 10.
+ Errata in the paper referred to, Phil. Trans. A, Vol. 221, p. 5, Table II. Delete the data at a
height of 1'0 and 0'8 kilometres. The unit for the rates of mean shearing should be 10-2 not 10+2



Cu. 4/8/1 CRITERION OF TURBULENCE 77

adiabatic atmosphere, and increasingly positive as stability (in the absence of wind)
increases. When there is wind, the stability is affected by the rates of mean shear.
Let the kinetic energy of eddies be ® per mass of atmosphere, then from considera-
tions of energy it has been deduced (L. F. Richardson (33), p. 354)* that

[[j PG)) 2':” Jd.xdjdh
fff 81‘ <a;]1> c, ’3’ T J dodydh, .:....... (22)

where the integrals are taken over an atmospheric block so large that we may neglect
the eddying energy traversing its boundaries. In the first member [ is the linear
dimension of a ““typical” eddy, « is the molecular viscosity. The bar over the
velocity denotes a mean. If ¢,=c,, then we should expect the kinetic energy of
eddies © to decrease on the average provided that

avY av} 280’]
”f ah < ><7pah dodydh .....coovrerennnnn, (23)

throughout the block. Local changes within the block might be caused by the
diffusion of eddies. G. I. Taylor had arrived at a similar criterion, but with a
different numerical coetlicient, from a theory of the oscillations of superposed laminae.
To explain the different numerical coeflicient we can easily imagine that the atmosphere
might be stable for a special type of disturbance at a time when a more general
disturbance would tend automatically to increase itself. No limitation of type is
made in the “energy” theory of stability which leads to equations (22) and (23)
above. On the other hand there may conceivably be limitations in nature, depending
on the character of the earth’s surface.

In comparing the theory with observational data we must remember that ¢ is
quite different from © although they are alike in so far as they both vanish in the
absence of eddies.

Now looking at pp. 72 to 75 we see that, at a given place and height, for example
the Eiffel Tower, ¢, or ¢, increases as g/y, . 00 /oh decreases, that is to say as the
atmosphere becomes less stable in the absence of wind. The same applies to the
Newfoundland banks.

Again for Salisbury Plain G. 1. Taylor has shown that ¢, is roughly proportional
to the gradient velocity. Now, at fixed heights near the ground ov/ok increases
with v and, from the point of view of the criterion, it is more convenient to ex-
press this result of Taylor's by saying that ¢, increases with ov/oh.

On the Newfoundland banks where, on the average of the observations, g/y, . oo/oh
was nearly double (dvy/oh)*+ (dvy/oh) so that the motion was very stable, the eddy-
viscosity and ¢ for potential temperature were both found by Taylor to be remarkably
low for the height in question (0 to 200 metres). It is proper to deal only with the

* Note, in the paper referred to, a wrong sign in italicised statement on p. 362 and that in equation (6-4)
do/dp should be squared.
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average here, because ¢, was deduced from a distribution which required many hours
to establish itself.

It might be thought that the low eddy-viscosity was due to the smoothness of the
sea surface. But by contrast over the sub-tropical sea, Sverdrup (19) has found
eddy-viscosities which are abnormally large, even for the greater height 0 to 2000
metres to which they refer. The peculiarity of the latter situation—the North
Atlantic Trade Wind—is that g/y,.00/oh is eight to twenty times greater than
(Qux/oh) + (dvyfoh) for the general range of height, so that we should expect the
atmosphere to flow without eddies. Just at the lower part of the range from 0 to
500 m 00-/oh 1s zero so that eddies would certainly form there. - May we suppose that
the large eddy-viscosity between 1200 and 1800 metres is due to eddies, which
acquire their energy between 0 and 500 m and which diffuse themselves upwards ?

100 KM

10 KM %

/ / o
1 KM S
/ 61

'1/

%
3
AN
b &3
\@ Sl @

1m < -

AN

| | l | | 1 il - - =1
0° 10° 20° 30" ° 40° 50° 60° 70° 80° ¢0° 100° 110° 120°

- f?&)’ (3&4)’} - 4
i [1( a) “\@) S/ el

100 m

N
N\

10m '
N
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Notation ;
St D forr D for » O for O for CO,
siﬁ:;fi O for artificial smoke

The numbers are log;, of 10%c.

See description on p. 79.
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Rising eddies would die away on reaching the stable upper layers, but the supply
of new eddies arriving there would be maintained. The observations indicate that
the upward diffusion of eddy motion has an important effect, and in consequence
that the stability or instability of the motion next the ground is often the deciding
factor in determining the turbulence at much greater heights.

The road to a fuller knowledge of the variations of viscosity appears to lie through
a study of the diftusion of eddies™.

The observations in the tables have, as far as possible, been shown in the diagram.
Special scales have been necessary. The numbers in the body of the diagram are
4 +log,c, so that the molecular viscosity would be represented by 0'2. The ordi-
nate is the logarithm of the height. The peculiar function chosen for the abscissa
has the following advantages: (i) it does not commit us in the derivation of the
criterion to supposing that the eddy-viscosity c, is equal to the eddy-conductivity
for potential temperature; (ii) it increases steadily through 90° when the up-grade
of entropy per mass changes sign ; (ii1) it is zero in circumstances such that we should
expect no eddies. The stability used in the diagram is that of the lowest layer
which happens to be given in the tables. This interim procedure is due to be improved
when there is a better understanding of how eddies diffuse. In particular the
observations at 8'5 and 10 km have been plotted against the stability at their own
height. Many of the observations refer to a considerable vertical range. In this
case they have been plotted against the mean height, not against the mean of its
logarithm.

CH. 4/8/2. APPLICATION TO THE UPPER CONVENTIONAL STRATA

From 1 km upwards the change of y with height is usually sufficiently gradual to
permit of significant analysis by coordinate differences as large as 2 decibars. Within
the kilometre next the surface the change of both ¢ and x with height is so rapid
that our coordinate differences have no longer any resemblance to infinitesimals, and
a different process has to be adopted. This will be discussed in Ch. 4/8/3 and the
following sections. For the present let us confine our attention to heights exceeding
one kilometre.

Velocity. In order to fit into the dynamical equations beginning
oM oMy
— = R —_——= g 2
o g = (Ch. 4/4 # 11 and 12)
we require the rate at which horizontal momentum is crossing unit area of the
boundaries of the strata by means of eddies. In other words we require the eddy-
shearing-stress at the interface.

Momentum is also carried across the interface by the mean vertical velocity, if any.
This flux is represented by the terms [mzvy],, [myvy) in the aforesaid dynamical
equations. But that general transport receives separate attention, so that we need
not deal with it here.

* L. F. Richardson (33), p. 372.
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Now in the theory of Ch. 4/8/0 we may take Z successively as either of the
horizontal components of momentum, and then y is vz or vy, and the eddy-shearing-
stress on a horizontal plane has components (Ch. 4/8/0 # 17)

Eouy  Eon
gop’ gop’

Now M/R, the ratio of the momentum of a stratum to its mass, gives some kind

of mean velocity, which we may use to find ov ok, dvy/oh by taking differences with
height. For instance, where suffixes refer to height, we should have a stress at the

hq level having an eastward component
<J};Is.; . Z”.«a)
&\Bw Ry,
5 DPi—Ps
where p,—p, may be taken as } (p,—p,) or as ‘g(Rsh. +R,). Now R is approximately

the same, and equal to 2 decibars, for all conventional strata except the lowest, so
that the shearing stress at the A, level is nearly

- 92—]3’ L
And the differences between the shearing stresses at the different levels are the
additional terms required in the dynamical equations quoted above.

Water, when W is given. Putting W, the mass of water per horizontal area, in
place of M in (2) we have for the water crossing unit area of a horizontal plane at

height £,
-3
bRy TR,

&m. .................................... (4)

This is the effect of eddies alone. The change due to any general motion of air
up or down is dealt with under the ¢ conveyance of water,” Ch. 4/3.

Water, alternative scheme, p given at boundaries of strata. (Compare part of
Ch. 4/3.) In the equation

Dp @ a,L>
S = [ S R e T el e« Ao )
Dt op (fap (5)
it is now most simple to put
op : Hs— K
= approximately equal to == ...l 6
op 4 ! Ps—Ps (6)

for the stratum £, to h,, which may serve as a type.
Similarly for the stratum above. So that (5) transforms into

Dy, _ 1 Jlg il g,"ﬂ;"‘}, ........................ (7)

Dt p,—p,U'p—ps T P—D
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giving the time change of u correctly centered at the boundary where we need it.
Note that € is now required at the levels, with odd suffixes, corresponding to the
mean pressure of the strata. As p, and p, are not tabulated variables we must put

LA P S A SR R I R (8)

Or indeed, in view of the uncertainty of £, it may be near enough to make both the
dp simply equal to their average value of 200 millibars.

It hardly seems worth while making use of the fact that, on the average of many
occasions, p = Cp® where C and B vary slowly with_height, as was done in Ch. 4/3,
until we know more about the.variations of £ with height, as they also are involved.

In the equation for the conveyance of water (Ch. 4/3 #25) there is a term in
Du/Dt, which is shown in that section to transform thus

B 300
(log p, - log p) < P T - Pe 3 G>
Wap L1 e Dy (9)
p Di g Diegp, Dlogpe . 7
Dt Dt

In so far as this term arises, not from precipitation, but from the eddy-flux, the values
of Du,/Dt for insertion in it are given by (7) above.

Potential Temperature. The mean potential temperature of a stratum follows
from the pressures at its boundaries and from its water content per horizontal area.
Having found this mean it is to be inserted in place of W/R in the numerator of (4).
The result is the rate at which temperature Xinass i1s crossing unit horizontal area.
Again the effect of any general vertical motion has been separately formulated in

Ch. 4/5/2.

As to the method of finding the mean potential temperature of the stratum when
dry or at least clear. In the troposphere, on the average,  only varies by 5 or 10 °/,
of itself in the thickness of a stratum, so that it does not much matter whether we
take an arithmetic, geometric or harmonic mean. For dry awr exactly, and very
RO CIear aIr, 7 =0 (/D)™ ttieenceeiieniiiieiiiiin ettt (10)

where p' is the standard pressure used in defining 7, so that the vertical static equation
may be written*

RN e e - 9D [P\

e bt i <}?> o S S (11)
g : dh

\Vhence 7= —0"289 "é (pl)o 280. dW (G000 000a000000000000000 (12)

* Vide Exner, Dynamische Meteorologie, § T0.
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It follows that a mean potential temperature is given by the following fairly simple
formula :

h,—h,
2—)60_.285 ?40.2;9 e  essessessesrresresesas ( 1 3)

Tables of 0-289th powers would be a useful aid.

For cloudy air we come in for more complications, as in Ch. 4/1 and Ch. 4/5/1.

?64= -, 0.289 % (pl)0'289-

Cn. 4/8/3. EDDY SHEARING STRESS ON THE EARTH’S SURFACE

When x is velocity we require the eddy shearing stress on the ground to be given
by statistics as a function of such variables as are available, namely of : the position
on the map, the date, the mean temperature 0.5 of the lowest stratum, the tempera-
ture of the sea, of the bare earth or of the air in the vegetation film, and the mean
momentum per volume of the lowest stratum. For brevity the last-named quantity
will be denoted by 7. It has components

g = Mue/(hs—hg); My=Mucaf(ha—hg). werrereereverenna. (1)

Akerblom appears to have been the first to get a fairly reliable measure of the
surface stress. He deduced it from Angot’s statistics of wind observations at the top
of the Eiffel Tower (305 metres) and at the Bureau Central (21 m) by assuming the
eddy-viscosity to be independent of height. We now know that this assumption is
hardly permissible.

Akerblom, F. ( 8).

Shearing stress Velocity cm sec™! Velocity at 305 m
ou surface at Bureau Central Eiffel Tower
dyne em—2 21 m c¢m sec™!
0-40 234 982 Winter
0-29 209 i1 Summer

Hesselberg and Sverdrup (14), treating the same data by a different method, confirm
the above result.

G. I. Taylor(16) illuminated the subject by comparing, by aid of the theory of
dimensions, the friction on the earth- with that obtained on small metal plates at
much higher velocities in laboratories. By analysing G. M. Dobson’s Pilot balloon
observations made over Salisbury Plain, Taylor showed that the surface stress was
more or less proportional to the square of the velocity “near the surface.” Like
Akerblom he assumed the eddy-viscosity to be independent of height.
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G. L. Taylor (16).

Stress dynes Gradient wind m
cm—2 cm sec™! grm sec~! em~2
0-31 460 —
1-37 910 —
244 1560 1-70

As velocity varies so rapidly with height near the surface it may well be that the
upper wind represented by 7 provides a standard more suitable than the wind near
the surface. In the present scheme at any rate we have to use m, for it is the only
measure of wind available.

W. V. Ekman (6) in 1905 pointed out, with reference to the sea when a steady
state has been attained, that the total momentum, produced by a tangential stress on
the surface, is directed at right angles to the stress, and is equal in magnitude to the
stress divided by 2wsin ¢. Thus the momentum produced by the stress is quite
independent of the value of the viscosity or of its variation with height. This is
true provided that the quadratic terms in the dynamical equations produce only a
negligible disturbance, and that will be so if we take, as our standard of what the
momentum would be in the absence of stress, not the wind deduced from the isobaric
map, but the actual upper wind. Even that approximation will fail near the equator.
A high level should be chosen at which the stress vanishes because 9v/oh vanishes
there, and deviations of momentum from the aforesaid standard should be computed
from the ground to the level of no-stress. One must either select observations in
which the upper momentum becomes independent of height—as I have done—or else,
preferably, compute the variation with height of the staudard momentum from obser-
vations of horizontal temperature-gradients. Here read the table on p. 84.

Another way of measuring the eddy-shearing-stress is provided by O. Reynolds’
theorem to the effect that the stress dragging the lower air in the direction of x
increasing is

where vy’ and vy are simultaneous deviations, at the same point, of velocity from
the mean; and where the bar denotes a mean, over a long interval of time, of the
product of these deviations. By observing the motion of thistledown and using
Reynolds’ formula, there was obtained on one occasion (L. F. Richardson (32), pp. 10
to 15 and p. 21)

Stress dragging lower air :

to right of wind Probable error

Height Mean velocity

200 cm 145 cm sec™? + 048 dyne em™2 0-20

11—2
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On clear nights the air over land is often calm near the ground while the wind
blows uninterruptedly at a height of some hundred metres. How does this calm air
remain unmoved under the joint action of friction from above and of the all-pervading
barometric gradient? The answer must apparently be that the upper surface of the
calm is not level, but is tilted so as to balance these forces. Seeing that the calm air
always has a distinctly greater ““potential density” than the air above it, a tilt would
produce a horizontal pressure gradient. Observations of the height of the calm at
neighbouring stations would be interesting, and would give a measure of the surface
stress, which may be very small*,

After sunrise the wind descends. Its junction with the calm is sometimes very
abrupt, as is shown by shooting spheres up to various heights. The arrival of the
wind at the level of the anemometer is often quite sudden. One gets the impression
that the upper wind planes away the night calm a shaving at a time. Suppose that
the lower boundary of the wind descends at rate of B, that the velocity of the wind
is v and that the air-density is p. Then a mass of air equal to Bp grams per horizontal
cm” acquires a velocity v in one second, so that the surface stress is Bpv. ......... (3)

The mean stress will have this value whatever be the order in which the parts of
the calm air are accelerated, provided the interval of time and their final velocity
are given.

Observation at Benson.

‘ Early data Anemometer data M
I | f;m Stress
Date | : | Wind ' d say | B dy n.e
Calm reaches to Z;Igz;t_}; ﬁrs; ;:;znched ' gggﬁz g ilg:;g cm sec™! ’ cm®
} lamie — - e L } e =
1919 | 70 500 ; pas 1o
‘ m. h h b 1Rm :
T T P L I L L
Lelirs C o T kel
250 m
1920 170 m 300 132 50m | 15t 10m 300 8h 30m 0-31
Feb. 23| at 62 50™ [at 250 m =083 cm sec-!

To these stresses must be added any due to the (as yet unmeasured*) slope of the
upper surface of the calm.

A cornfield provides a uniform elastic surface by observing which we can measure
the shearing stress. For example at Benson, 1920 Aug. 16th to 22nd, observations were
made on a field of ripe wheat. The wind acts mainly on the ear, but partly also on
the stalk, as may be shown by lowering a glass jar over the ear. The centre of the
forces due to the wind appears to be about 5 em below the ear. The springiness of
a number of growing stalks was measured on a calm evening and it was found that .
1 em deflection of the centre of force corresponded on the average to a horizontal

* Since this was set in type I learn that W. Georgii has made extensive observations (dnn. Hydr.
Berlin, 1920, pp. 207—222 and 241—262).
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force of about 130 dynes applied at that level. The number of ears per square metre
was about 175. Therefore a deflection of the centre of force of about 15 em on the
average corresponded to a stress of

15 x130%x175x107*=3"4 dynes cm™.

R Stress | Wind 80 em Anem At 600 m & Stress
Aug. 1920 dyne above ears at 26 m by balloon | _8rm Other conditions (m)?
i cm? cm sec™! cm sec™! cm gec™! | cmZsec em3/grm
179108 | 34 130 350 500 ¢ A s Tkt mearly | [
normal. Overcast
224 160 16 400 550 — 1-2¢ 2/10 cumulus 11?2

Thus a cornfield appears to be rougher than the average of the country-side.

Thus estimates of the stress, by five or six different methods, give values clustering
round 1 dyne em™.

Suppose we have found the surface shearing stress on the air, for the particular
locality, with due reference to the strength of the wind and to the vertical gradient
of entropy-per-unit-mass. The stress will be specified by its components directed
with M, and perpendicularly to the left of M. Denote these by 4 and B respectively.

The components of stress on the air to the east and the north are then

1

37 (AME=BMy), cocoeoevnvincianne el el n,) (4)
1 .

g (A BM), o S i bt (5)

where, as usual, M = (Mg + M, V*)é.

CH. 4/8/4. THE EDDY-FLUX OF HEAT AT THE SURFACE

We have already noted on pp. 70, 71 that, when temperature remains steady,
the flux of heat increases downwards.

The curve showing the relation of temperature to height reminds one of a fishing
rod, held aloft with its thin end pointing downwards, and shaken. The upper part is
fairly steady both in slope and in position. The lower part switches to and fro, and its
slope alternates between large positive and negative extremes. Measurements of 06/0k
made at Benson by carrying an Assmann aspirated thermometer up a steel mast to a
height of 16 metres show that on a sunny summer morning 06/0k may be at the rate
of —45°C per km; while just before sunrise it may be at the rate of +130° C per km.
Such up-grades as these are unheard of, if the differences are taken over a whole
kilometre. We see thus that the relations of potential temperature to height are as
detailed as the relations of wind to height would be, if the earth's surface had the
habit of slipping to and fro parallel to itself, with a daily period, and with a velocity
attaining 30 metres per second.

The stratum from the ground to 2 km was rather thick for dealing with the varia-
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tions of wind, but the case of potential temperature is worse. Yet as thinner strata
would mean more arithmetical toil, let us for the sake of economy try first to make
the thick stratum do. The origin of most of our difficulties lies in the fact that the
up-grade of potential temperature in the first 50 metres is frequently of opposite sign
to the mean up-grade over the first two kilometres, so that the latter alone is of no
use in estimating the flow of heat at the surface.

Although the variation between day and night of heat produced at the surface
from the balance of radiation has a large effect, yet we cannot ignore the consequences
of the warmth or coolness of the upper air relative to the daily mean at the ground.

We might attempt to separate the mean eddy-flux from the daily oscillation.
There are some good observations of a damped periodic wave of temperature propa-
gated with an amplitude which diminishes, and a time of maximum which lags, as it
goes upwards. For instance there are Angot’s statistics for the Eiffel Tower, and
J. Regers for Lindenberg®. The amplitude of the daily wave decreases to 1/e of its
surface value at a height of about 400 metres above Lindenberg. Such statistics
have been compared with theory by G. I. Taylor (21) and by W. Schmidt (25), (34),
(35) with a view to finding a measure of turbulence. Schmidt separates the effect
of radiation absorbed by the air from the effect of eddy-conduction. Schmidt also
treats of the ratio in which heat, generated from radiation at the interface, divides
itself between the two media. These theories no doubt have some relation to fact
and give us some new insight into it. But they begin by assuming & to be inde-
pendent of time and of height—a treacherous assumption, which we must try to
avold, seeing that £ is observed to vary in a range of 100 to 1. However & may vary,
it is so far possible to separate out an oscillatory part, as in consequence of Ch.

4/8/0 # 16, w_vhich reads
ox = 0 ox
X (g-), .................................... (1)

op\>op
being linear in ¥, it follows that the sum of any two integrals of this equation is itself
an integral. But there are other difficulties which will now be explained.

W. Schmidt (18, p. 26) concludes that the flux is on the average downwards
because, on the average, potential temperature increases upwards. His argument is
convincing when it refers to a height to which the daily variation hardly penetrates.
Referring to layers near the ground, W. H. Dines?, on the contrary, concludes that the
eddy-flux of heat is on the average upwards, because heated air rises freely on sunny
days, while on cold nights the air next the ground, by becoming stagnant, prevents
downflow. '

Mr Dines’ description suggests that the deviation of potential temperature from
its daily mean will not in general satisfy the diffusion equation satistied by the actual
potential temperature. For, take the time-mean of equation (1). At any level let a
time-mean be denoted by a bar, a deviation from a mean by a dash, so that

A N S A S (2)

* Lindenberg annual volume for 1912.
t “Heat Balance of the Atmosphere,” Q. J. R. Met. Soc., April 1917, p. 155.
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Be it noted that & and x are both intrinsically mean values. We are now performing,
over a longer interval, a second averaging.

s whd ox _ox , o
Then (2) implies that el 7 + - R i i 1 (3)
So that the diffusion equation (1), when averaged with respect to time, becomes
X_9 [igren X ax’)
a‘x‘a}S{(f“"f)(ap"'fﬁo" P ) L L S (4)
and as the product of a mean into a deviation becomes zero when its mean is taken
(), g f ' aXi
s a]) lf + & P ERICTT oAV e (5)

Now there is no expectation that f’ 5 Wlll vanish, at any rate if y is potential

temperature, for the wind tends to become niore turbulent as the lapse-rate approaches
or exceeds the adiabatic. In fact on a sunny midday, when or/dp is positive, the tur-
bulivity £ at a height of about a kilometre was estimated by the present writer* to be

=

1:1x10° grm* cm™ sec™

ten times greater than the average turbulivity found by various authors at this height.
Again smoke observations made at a height of 2 metres above ground show that £ is
much greater on clear days than on clear nights. Also, as & tends to increase with

= i
increase of velocity aloft, so & %XZ; will not vanish if y is the horizontal velocity. The

case when x =p is not so clear.

Thus we conclude: the daily mean of potential temperature does not satusfy the
diffusion equation satisfied by the instantaneous value.

Subtract (5) from (1), then it follows that
X' _ 0 [n0% , 7% 10X X .
E—aj—o{f@‘i—fé—ﬁ‘%fa})—f%} ..................... (6)

Thus the deviation from the daily mean follows the course described by this com-
plicated equation. The effects of radiation, conveyance and precipitation are to be
regarded as additional.

On these grounds it appears useless to attempt to separate the daily oscillation
from the mean distribution. Another reason against such a course is to be found in
the non-periodic irregularities of the thermograph record which are produced by cloud.

Turning away from harmonic analysis we come back to an extensive empiricism.
From data uncomplicated by the effects of eddies, we know the rate at which heat is
being produced or destroyed at the surface. This heat diffuses both upwards and
downwards. Let the ratio of the upward flux to the downward flux be denoted by

* Phal. Trans. A, Vol, 221, p. 26.
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= and let us make an empirical study of the value and variations of =. The parti-
tion coefficient, as we may call =, is not enough to fix the flux of heat, for sometimes
there may be no net radiant energy to be divided in parts, and yet, when for instance
colder air overlies a warmer sea, there will be an upward flux of heat. We need a
second empirical coeflicient, say 2, defined so that the npward flux of heat when

there is no net radiation is

22

“"q (?(;g—f(;)/% (ps —pG)’ .............................. (7)

where 7 is the potential temperature of air in thermal equilibrium with the surface
of the sea or land. =%

It will be interesting to compare the numerical value of ax, when it has been
observed, with that of the corresponding quantity for the diffusion of water, which is
discussed in the next section under the symbol &g, and of which some estimates are
given in Table on p. 84. See Angstrém’s observation quoted in Ch. 4/8/1.

The relation of = to 22 and their combination or alteration to give the flux of
heat, is a question which is deferred to Ch. 8/2/15.

W. Schmidt (35), from whom I get the idea of the partition-coeflicient, has written
of it mostly from the point of view of integrals of oy/ot= Be*y/ol’. Going instead
directly to Homen’s observations*, of the heat penetrating the ground, and of radia-
tion, it 1s seen that in latitude 60° on 14th and 15th August = had the following
values:

Surface............ ‘ Granite rock | Sandy heath | Grass moor
By day 6" to 18" ... ! 0-84 2:34 2:80
By night 18" to 6. .. . -0:35 060 1:86

The two coefficients == and 2% might be classified as functions of such variables
as are available in the scheme of numerical prediction, namely of Ty, of 74 —74s and
of the rate of production of heat at the interface. It is probable that z increases as
each of these variables increases. Homen's observations show an increase with either
Tg—Tesr O With the rate of production of heat, or with both of these variables. The
classification should also take account of position on the map, for = is much less over
water than over land.

W. Schmidt (35) estimates that = =0-0087, on the average, over the sea. But
that estimate is deduced from a theory of a simple harmonic oscillation.

Perhaps the surest way to obtain = and £& would be to analyse air-temperatures
observed from kites, aeroplanes and balloons. The gradual “depolarization” of the
first two kilometres of “polar air” as it flows southwards would, when compared with
the radiation, give us the information we need.

* Hann, Meteorologie, 3rd edn. p. 49.
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CH. 4/8/5. EDDY-FLUX OF WATER FROM THE SURFACE

The eddy-flux of water upward from the surface must, on the yearly average of
the whole globe, be equal to the rainfall. But here we need to take a detailed view
of the matter. The records of evaporation from tanks are not supposed to be applicable
to lakes or seas, and do not help us much. The botanists and agriculturalists have
measured the evaporation from plants and that will be referred to in Ch. 4/10.

The large daily oscillation of relative humidity at head level above ground is
nearly compensated by the variation of temperature, so that the diffusing quantity u
varies only some 15 °/_ from its mean. What concerns us more is that ou/oh, like
ovfoh but unlike or/oh, does not ordinarily change sign near the ground during the
course of a summer day. Thus Angot’s statistics for the difference between the
vapour pressure at the summit of the Eiffel Tower, and at Parc St Maur some
250 metres below it, show that 9u/oh is normally negative, and throughout an average
July day varies only 23 °/, on either side of its mean.

Again such variations of moisture as occur in the atmosphere have much less effect
on the density than have the variations of temperature. Thus the distribution of p,
unlike that both of 7 and of v, is not so much a contributory cause of turbulence.
Thus the exchange of moisture is likely to depend on the exchange of mass as if the
instantaneous deviations of v, and of 9u/oh were not correlated®. In other words ob-
servations on the dispersal of smoke should yield a value of the turbulivity more
applicable to the diffusion of water than to that of heat.

Possessing observed values of & near the ground we might combine them with
op/op at the same level, to get the flux &/g.ou/op; but unfortunately our coordinate
difference is too big to serve as 9p in 9p/op near the ground. So the best we can do is
to express du/op as an empirical function of the excess of the mean value fig for the
first stratum over the value near the earth’s surface say ps. Or when there is vege-
tation p; may advantageously replace pg. !

Let us now examine the compensation which must be made for the greatness
of the coordinate difference.

We have, from Ch. 4/8/0 # 15, when D/Dt is expanded

op_ 0 [0 o] !

5% = 3p (f 515> + terms due to precipitation and transport, ......... (1)
ovy 0 f,0vx ] 1op
W‘a}(fa—p‘>+2wsm¢.vy—’;5i. .................................... (2)

Now the rapid vertical changes in 9u/dp or dvx/ép occur mostly in the first
50 metres or less above the surface where they are due to the decrease of turbulence
as the surface is approached. In this thin layer the mixing is probably more important
than either precipitation or transport. And if we choose the z axis to be parallel to
the isobar, then 9p/ox is zero and vy is small. Also it is probable that the flow by

¥ L. F, Richardson, Phil. Trans. A, 221 (1920), pp. 9, 10.
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way of eddies through this thin layer is more important than the accumulation in it.
In other words we may neglect op/ot. If the same be done with 9vy/ot then the above

equations (1) and (2) both reduce to
ax>
.................................... 3

which implies a flux of y-times-mass which is independent of height. See Ch.
4/8/0 # 17. By integrating (3) and putting in the limit

ox <ax> g
~ = 2225 a0 6000000088088 30605 ABGIqEaabad TS 4
op ¢ opleé’ )
Integrating again and putting in the same limit
_(eX\ " dp ;
X_XG—<§'a})‘> MG R, b (5)

Integrating once more from p; to pgand dividing by ps — ps so as to obtain the mean

G 4
denoted b X= f O T T T s AR R 6
Y el (6)
» dp
t e e PR P T B R AR 4
i B° X Xe= pn_})s Gfsf ( )
Solving for the flux, which we e have assumed to be independent of height

S ERT S TR T ) (8)

P9 2(Ps—pe)' g J"j”@j '

s @

which shows that when we replace dy/op by its mean value (x —x¢)/4(ps — pe) then, to
get the flux, we must also replace ¢ by the peculiar mean value

B i / f 1 f Z i’éi .............................. (9)

8

The idea that & was the same for all meanings of x was first suggested by Taylor
(12), and has been widely used by W. Schmidt (18), (25). Although it is almost
certainly not exact, yet we may try it here in order to obtain some preliminary esti-
mate of the upward flow of water, for comparison with direct measurements. Now if
£ is the same for the diffusion of velocity as of water per mass, and if the assumptions
on which (8) is based are good, then for these two diffusing quantities £z will also
be the same.

W. Schmidt (18) using values of the Austausch, £/¢°p, deduced fromn wind at a
height of 1/2 km, in combination with up-grades of water there, has estimated the
mean flux of water at this level. Similarly we see that fromn the surface stress and
wind distribution we can estimate £, and we can then use &y in combination with
the changes of u given by our large coordinate differences, to find the upward flux of

12—2
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water at the ground. For, replacing x by vy in (8) and (9), the flux becomes the
surface stress and

e (surface stress parallel to the isobar) ( pe—ps) g (10)
= ) <2 LY
Some values of &, deduced in this way are set out in the last column of the Table
5

on p. 84, ready for use in computing the flux of water. Here Vy; has been taken as
Zero.

For reasons already given,_ the analogy cannot be extended to the flux of heat. It
would be desirable to obtain &y directly from observations of humidity.

CH. 4/8/6. CONCLUSION ON EDDY MOTION NEAR THE EARTH’S SURFACE

For the sake of economy in arithmetic, an effort has been made to use a thick
lower stratum extending to a height of 2 km above sea-level. Whether this plan will
be successful or not depends on whether four empirical quantities, namely the stress

,:c\hG for velocity, = and 22 for heat, and & for water, can be expressed with sufficient
accuracy as functions of the data available in the numerical process. There is some
hope of it, but in order to settle the question many more observations, and reductions
of existing observations, are required.

If this plan should fail, then an alternative is to be found in taking thinner strata
near the surface. If for example we had divisions at heights of about 50 m, 200 m,

800 m, all our processes would be much more exact. Although :27@6, 2, 22 and €
would still be required for the new lowest layer, since the first metre differs remark-
ably from the first 50 metres, yet we should then have the velocity and the up-grade
of temperature near the surface as aids to the estimation of that very variable
quantity, the turbulence. These thinner layers would need to rise and fall with the
height of the land above sea, and consequently the dynamical equations in them
would need to be furnished with extra terms depending on the slope of the ground.
As the land sometimes rises above 2000 metres, these surface layers would project
above the Ag horizontal. In avoiding that difficulty we might end by making all the
conventional strata rise and fall with the height of the land.
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Cu. 4/9. HETEROGENEITY*

CH. 4/9/0o. GENERAL OBSERVATIONS

Not only is the velocity usually turbulent but the temperature is often patchy.
An ordinary pen thermograph in a Stevenson screen shows variations of about 1°C
on a sunny afternoon. When motoring on a calm evening one can sometimes dis-
tinctly feel alterations of warm and cool air not corresponding to height. E. Barkow
(Met. Zest. 1915 Mirz), using a thermometer of quick period, found variations of some
tenths of a degree occurring at time intervals which could be interpreted as meaning
that patches of linear dimension of 14 to 127 metres were moving past the instru-
ment with the speed of the wind. Barkow’s observations were made at Potsdam
41 metres above the ground on a wooded hill. The daily weather reports show that
in a square on the ground of 200 km in" the side the temperature at the screen on
an anticyclonic morning may vary as much as 10° C.

For the upper air an estimate of diversity has been extracted from the aeroplane
records published in the London Daily Weather Report for 1920, January 1 to
October 30. Only those pairs are included which are simultaneous to an hour or less.
The aspect of the data to which attention is invited is that the square root of the
mean square of the difference of temperature between two stations is not at all pro-
portional to their distance apart, as it would be if the stations lay in a straight line
and the horizontal temperature gradients were uniform. The differences may be in
part due to observational error. If we ignore this unknown error we get the impres-
sion that there are irregular variations in temperature, represented by a standard
deviation of about 2° C, in distances comparable with the side of our co-ordinate
chequer of 200x200 km. But, as the stations do not lie in a straight line, the St‘tte-
ment caunot be tested rigorously.

* In what follows for brevity I have written “diverse” for “heterogeneous” and ‘“‘diversity” for
«heterogeneity.”
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Mean difference of temperature

Height.
Kilometres | Number
above of pairs | Arithmetic | Square root of
M.S.L. mean, mean Square,
Centigrade Centigrade

| Tl )]

Baldonnel minus either South Farnborough,
Upavon or Andover.

Distance about 400 kilometres.

355 ’ 12 +08 i 317
3-05 16 0-2 31
2-44 15 e 03 | 26
1'83 17 ’ - 03 2:5
1-22 A 0-0 249
O~ | H7 ' 02 31
030 14 —01 2:0
00 16 11 | 39

South Farnborough minus Andover.
Distance 53 kilometres.

1-83 4 00 1:0
1-22 5 =@ | 2:3
0-61 5 -01 | 1-4
0-0 4

- 07 ‘ 1-5

In telegraphic meteorology the smaller diversities are smoothed-out. The tempe-
rature is commonly measured by a thermometer with a bulb large enough to damp
out rapid variations, and if the barometer is “pumping,” owing to a gusty gale, the
observer does his best to estimate the mean reading. In the scheme of this book it is
proposed to replace the instantaneous and local values by means over times as long as
8 hours and spaces as great as 100 km horizontally or several km vertically. That
this neglect of detail has important consequences we have already seen in the case of
velocity. It now remains to enquire whether the diversity of density, temperature,
pressure and moisture produces any statistical effects of like importance to eddy-
viscosity.

Cu: 4/9/1. NOTATION AND ASSUMPTIONS

The theory of Osborne Reynolds concerning turbulence suggests a mathematical
method. The bar-and-dash notation of H. Lamb (Hydrodynamics, 1vth edn. § 369)
allows the theory to be put into a compact form. We begin by supposing that the
actual distribution 1s replaced by a smoothed one, which is indicated by putting a bar
over the symbol. Thus for any quantity whatever 4, we have 4 = 4 + A’ where A’ is
IR s 10 D C I 0. 1018 1 e F il s 2 0000k o s Soae s 66 s as'e s o@h e s ownsnannes (1)
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The subsequent algebra is based on the following suppositions, no one of which is
strictly accurate, but all of which tend to become decent approximations if the diver-
sities are sufliciently numerous and random. These suppositions would become exact
if it were possible to choose a smoothing-interval which could be regarded as an infi-
nitesimal for the smoothed distribution, and yet as infinitely large as compared with
the diversities.

(i) A smoothed-value is unaltered by a second smoothing.

A=A SIS 1., S e (2)
It follows from (1) and (2) that A =0, o o PR S [ (3)

(ii) The smoothed-value of the product of a deviation into a smoothed-value
vanishes

AB =0, & e o S S (4)
(i) The product of a number of smoothed-values is unaltered by smoothing.
A D=, Balil et R P (5)

(iv) The smoothed-value of ‘a differential coefficient is equal to the differential
coefficient of the smoothed-value
od @ :
a? =@ L I R I I I S I A Y (6)
The mean of the product of any two diversified quantities 4 and B is accordingly

AB=(A+AYB+B)=AB+ 4B ..ccoceevrvrenee. (7)
And the deviation of a product takes the following alternative forms, however
large the deviations of the factors may be

(ABY=AB-A4B ..... PPPOPRRIRCIPAR P 0 ¥ 73 i 1 8 g e (8)
= AR + A'B 4+ A'B'« A/B a1 . 5 5NN 1 e b e (9)
=AB — A'B~ AR containing 4 without bar or dash ...... (10)
=A'B+ AB'— A’B containing B without bar or dash. ...... (11)

In other parts of this book a good deal of attention is given to integrations with
respect to height across strata, and the normal variation with height is then taken
into account. But any “normal” variation is essentially a smooth one, so that in

those integrations we are concerned with the facts, which we here ignore, that 4 is
not exactly equal to A nor 4. B.Cto 4.B. C.

Let us now apply these smoothing operations to each of the chief equations.
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CH. 4/9/2. SMOOTHING THE CHARACTERISTIC GAS EQUATION

Under all circumstances for dry air p =bpf so that B=bpf+bp'0. ............ (1)

We might give to bp'8’ the name “pressure of heterogeneity.”

Suppose that the standard deviation of 6 were 2°-8 C that is to say 1 °/, of its
mean value, and suppose that the pressure had no local variations. Then the “pressure
of heterogeneity” would come to 107* of the mean, that is to 0°1 millibar.

If the moisture is also diversified then 0’ will not vanish and
P=b.p0+b.p0+p. O +0.Vp +.... .orrrerenennene (2)

The term #'0/p’ has been omitted as being of a smaller order.

CH. 4/9/3. SMOOTHING THE EQUATION OF CONTINUITY OF MASS

In the form given in Ch. 4/2 # 2 the equation is linear in the dependent variables,
so that it transforms simply into

_?_/_")____ 3N_LE amN_mN. tall(f)+3mH+277bII (1)

ot ae an a ah ~ f LCG0000000000060008

which is of exactly the same form in the smoothed variables as the original equation
was in the unsmoothed. The neglect here of the variation tan ¢ is as justifiable as

the statement that A4’ =0; for tan ¢ is already smooth.

But if the equation of continuity had been written in terms of velocities in place of
momenta-per-volume, then smoothing would have produced a crop of new terms. That
is another reason for preferring momenta-per-volume to velocities.

Cu. 4/9/4. SMOOTHING THE EQUATION FOR CONVEYANCE OF WATER

If we begin with the form (Ch. 4/3 # 5)

3,1,_ o ] o op Dp.
& = _UE ae —Q/Ngﬁ—vlla—h + D—t’ ........................ (1)

then there results

B Y Dy e, o, o
(§+0E8—(3+0N8n+v’155>#—<—1_)2>—7“’3a;—ngﬁ—vH@—z' ......... (2)

The first member is a rate (if change following in some sense the smoothed motion,

but is not quite the same as l—?; i defined in Ch. 4/8/0 # 1. There are three new

terms on the right.
B L 13



98 THE FUNDAMENTAL EQUATIONS CH. 4/9/4,5

On the other hand if we begin with the equation for dw/o¢t which taken from
Ch. 4/8 # 6, and written in Cartesians, runs

?(pp) , 2(pmy)  3(pmy) 3 (pwmy) _ Dp
ot F A 5y F S =P Dy e (3)
we obtain on smoothing
ow , 9(pmy) 0 (amy)  0(AMy)
FR bl T e
s A Dy
+a("“lmlx)—*-@(“lmll’)—*-ah(“mﬂ) <th> ...... (4)

Here there are again three new terms, which in this case have a close formal
resemblance to the eddy-stress terms in the smoothed dynamical equation, u replacing
each of the components of v. The new terms are the divergence of a flux which has

components u'm'y, W'm’y, W'm’y; and that is the flux relative to a point which moves
so that, relative to the point, #ix =0, My=0, My=0. This point corresponds to the
“definite ” portion of a turbulent fluid as it was defined in Ch. 4/8/0 # 1.

But according to the quite different view of Ch. 4/8 we have been accustomed to
express the vertical flux as = cOpfFh. .o 5. u. olotoo e S R I TS SRR SR (5)

In this statement, as in so many others not in the present Ch. 4/9, there is an
implied bar over the p.

We must also admit that there may possibly be different conductivities in different
directions, say

Cxx, Cyyvy Cmir
It follows, from (5), as thus modified, that

o Ofi - Of
Cxx 5’;= —p'my; Cn’aiyL= —pw'my; CHHgL}:“—‘ BN AR (6)

There is a close analogy between these equations and

(viscosity) x (space-rate of mean-shear) = (eddy-shearing-stress).

Cu. 4/9/5. SMOOTHING THE DYNAMICAL EQUATIONS

For the present purpose Cartesian co-ordinates are preferable to polar ones. We
get the equations in Cartesians from Ch. 4/4 # 3, 4 by making the polar-coordinate-
radius infinite and by replacing £ by X and N by Y. Only the terms containing

products of dependent variables, namely a%(mxvx) and the like, produce on being

smoothed any additional terms. As Reynolds showed, these additions express the
body-force produced by a system of eddy-stress. But, if the density is diverse, the
components of stress are not quite of the form —p .4 5’y ete., which Reynolds first
gave for an incompressible fluid, and which the present writer has elsewhere applied
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to the atmosphere. On referring to Ch. 4/4 # 3, 4, 5 we see that the exact form of
the additional terms is

0 0 0 - ; ¢
P (m'xv'x) +é§ (M xv'y) + 5 (m'xv'y) in the X equation,
s . 0 —r v, 9y - .

e (m/pv'x) + 5 (m/yv'y) + % (m'yv'y) in the Y equation,

ot S el e T .
. (m/gv'x) + 5y (m/v'y) + 5% (m'yv'y) in the H equation.

Thus in place of the stress —p.v"xv'y we have strietly —m’x?'y. Furthermore the
stress in the x direction on the plane normal to the y-axisis —m/xv', which may differ
from —m'y o'y, the stress in the y direction on the plane normal to the x-axis. There
are thus nine components of eddy-stress in contrast to the six found when the density
is not diverse. Silberstein* gives a proof to show that any stress arising from causes
which conform to d’Alembert’s principle will have only six different components. The
question then arises: does smoothing the equation, which expresses d’Alembert’s prin-
ciple, cause it to throw off extra terms which invalidate the aforesaid proof? We
have here the suggestion of an analogy to the stresses in magnetised bodies. But
the subject will not be pursued further now except to note that the eddy-stresses
could be reduced in number from nine to six if we rearranged the dynamical equations,

. 2 . 0
before smoothing them, so as to have in the first ain (mgvy) and in the second e (mgvy),

and so as to make corresponding changes elsewhere. But then the smoothed equations
would have an ugly lack of symmetry.

Ca. 4/9/6. DETACHED CLOUDS AND LOCAL SHOWERS

The scheme proposed in Ch. 4/6 for forecasting cloud was that there would be
general condensation, if the mean value of the water-content of a stratum exceeded its
saturation value at the mean temperature.

If air is cooled by expansion the result of diversity is that the wetter parts of the
volume become cloudy before the volume is on the average saturated, and after it
has become on the average saturated the drier parts may still remain clear. Diversity
thus converts a sudden transition into a gradual one. The more diverse the atmosphere
the more gradual the change.

If the air is cooled by radiation, the parts containing more water than the average
absorb and emit more radiation, so that the question is more complicated than that of
a simple expansion.

But certainly the most familiar example of diversity is that connected with cumuli,
and here the adiabatic cooling as well as the moisture is diversified. It is known that
for cumuli to be formed there must be (i) in the upper air a lapse rate not too stable,
(ii) a supply of heat and moisture below. The problem of the statistical mechanics of
cumuli deserves further attention.

* Vectorial Mechanics (Macmillan & Co.). .
13—2
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Cu. 4/9/7. THE PRODUCTION OF DIVERSITY

The measure of diversity which fits best with our mathematical habits is half the
smoothed square of the deviation. For if the deviating quantity were the velocity
the aforesaid measure would be the eddying-kinetic-energy-per-mass. We have already
a theory of its production and dissipation in connection with the Criterion of tur-
bulence®. Our present task is to find what happens when v is replaced by u, 7 or
other deviating quantities.

Let us consider the diversity of w, the water per mass. That is to say, we seek to
formulate the changes in {{('}} the smoothed square of its deviation. The equation
for the conveyance of water (Ch. 4/3 # 5) may be written, after multiplication by p,

op op op op , Dp

p-a—t—-——miax ml ay ”l}{ah+p _Dt ..................... (l)

where Du/Dt is zero except in so far as precipitation and molecular diffusion come in.

Now take the deviation of this equation term by term using the formula for the
deviation of a product (Ch. 4/9/1 # 10) in part of which the actual p and m appear
without either bar or dash.

a, /alL,
pat+p at e r

op’ o’ op’
=Ty T oy~ "k

Oft Ot ' OR
—771 \’a_—myay mHah
o/ op’ ay. D[L
r 9 ’
+mxax+myay+mﬂah <p Dt) ..................... (2)

Now multiply by u' and bring the terms in the complete my, my, my to the first
member. Then

0 0 0 , O op’
<”at+ X 52 +m’ay+m”ah>{l( Ft+pw ‘a‘i“""(”"a’l:—)

o o ofx
B e ) O S (a
= TEMag Tk re, T )

LY, ity ) il o
p’ % (a smoothed quantity)+u' (p Dp) e (3)

On smoothing this equation various terms disappear, but it is necessary to split
m and p into their means and deviations. Thus there results

9 . @ bl S
(sz‘l'mxa—'hmr@'l'mzzé;;){%(#')}

3 8 G oul® -— Of&
7y CaT o L ~ 77 9
+2<p a +mxa +m1 3_?/ +m118k)+p,u-at
e ok ol b
= L A SR g
B el TS Ly ak+F' (th>

* 0. Reynolds, Phi{. Trans. A, 186, p. 123 (1894); L. F. Richardson, Roy. Soc. Proc. A, 97 (1920),
p. 354.
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The first term resembles that which we seek, for the term is p multlphed by the
time-rate of the smootled square of the deviation of p, following some sort of mean
motion. To see what sort of mean motion, let the co-ordinate axes move so that

’ma-= 0, my= 0, m11=0.

This supposition is permissible because the equation from which we began was true
for any motion of the axes. But if m=0 then no mass is crossing the co-ordinate
planes. That is the same sort of mean motion as the one considered in Ch. 4/8/0 # 1.
Let us put a bar over a capital D to denote change following this kind of mean

motion. =1
We have already (Ch. 4/9/4 # 6) arrived at an interpretation of p'm’y as the

upward flux of water, equal to —cy Zi;: Inserting this and similar terms in (4) there

results

W)+ %t+p at%/’«“

el g o)

-1 { 88 +my aayl +m'y aa}:} ™y <p %}I ............... (5)

gus

There is no obvious reason why m/y should be correlated with —j, > hor why p

U[ bl

P

/

should be correlated appreciably with u’ or with gi (n)". If these correlations and the

corresponding ones in m'y, m'y were to vanish, then
D e
p ‘Z?jg {% (/"’)2} SCxy (ZZ) + Cyy (g;) + Cyy <gi]:> +;L <p Il))l;> ............ (6)

This equation has a close formal resemblance to the one originally worked out by
O. Reynolds to express the activity of the eddy stresses. We may leave the last term
over for consideration in the next section. The equation signifies then, since ¢ is
always observed to be positive, that unless the mean distribution of p is originally
uniform, any turbulence tends to increase the diversity. This one can believe, without
the aid of mathematics, after watching the process of stirring together water and lime-
juice. But we have obtained mathematically a numerical measure, which could con-
ceivably be tested by observations such as Barkow’s*.

Obviously there would be a precisely similar theory in which potential temperature
7 replaced p as far as (5). But the supposed vanishing of the correlations which cause
the simplification to (6) would need more careful scrutiny.

* E. Barkow, “ Uber die thermische Struktur des Windes.” Met., Zzit. 1915, Mérz.
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Cu. 4/9/8. THE DISSIPATION OF DIVERSITY

I i
This is carried out presumably by the molecular agitation. The term p’ (p %) in

the equation at the end of the last section has been put there as a reminder of the
existence of dissipation. It now remains to examine the term in detail. Since the
molecular velocities are enormously greater than the relative molar velocities of two
portions separated by a distance equal to the mean-free-path, we may now ignore the
molar velocity and treat the molecular dissipation as if it were proceeding in
still air. For the effect of eddies is represented by the other terms in the aforesaid
equation. '

The usual statement*® is that the vapour density w tends to become uniform accord-
ing to the equation

N LI AT '
5 = 5 5 T W5 T e e s o el N (

where « is the molecular diffusivity and equal to 0°2 cm®sec™ for the interdiffusion of
water vapour and air. '

Smooth equation (1) and subtract the smoothed form from the original. So we get
an equation in the deviation

AN A AW
W—K<3£’+3]}+§7L_2>w. ................................. (2)
Multiply by »’
1? M- / aa - 32 32 .~ ) Jm2 . )
25 _K’w<5§c”+3y2+é_h’ T4 s RO e (3)
Then because, by the rule for differentiating a product,
o [ ow\ ,ow  [ow)
= (w 695) =8 <6.z:> § §md 5o o1 B0 A SRR SR (4)

on rearranging it follows that

ow’ ow'\' 1@
’ v aalian e A ,2 .................
ox? (ax> I 2 axgw o eeessscssaes (5)

Inserting (5) together with similar expressions in the other two co-ordinates into (3)

the latter becomes
LS ., N A AN (L >’ 3
ga—tw =K. {%Vw '—<5-x—> —<'§y> <3h 5 eI GO0 00 300 - (6)

Now smooth this equation in order to obtain one in (w”) the mean square of the
diversity. It reads

%(—w”-)-= " [ (W) — 2 {(%)’4_(8;:}/’)4_(%_}(;’)’}] ............ (7)

* Jeans' Dynamical Theory of Gases, 2nd edn., eqn (868).




CH. 4/9/8 DISSIPATION OF HETEROGENEITY BY MOLECULAR DIFFUSION 103

The term V*(w”) on the right represents a diffusion of mean-square-diversity from
regions where it is large to those where it is small. The coefficient of this diffusion is
k just the same as for the diffusion of w. But, as the rate of space-variation of the

smoothed quantity (w”) is usually very much smaller than the rate of space-variation
of the unsmoothed w, the curious diffusion of (w”) is likely to be of minor importance.
We must look for the main effect in the second term on the right of (7) for in it the
space-variation is taken before the smoothing. This term is composed of squares. Its
sign 1s such as to correspond always to a decrease of the diversity. It may be contrasted
with a rather similar term in Ch. 4/9/7 # 5, which has however the opposite sign and
which contains the space rates of a smoothed quantity z in place of the deviation w'.
The term in Ch. 4/9/7 # 5 expresses the production of diversity, when an atmosphere,
non-uniform in its smoothed distribution, is stirred ; the present term expresses the
dissipation of the diversity so produced. The two equations could be reduced to com-
parable quantities, either p or w, if density were independent of time and place. For
then we should have, for the extra term in Ch, 4/9/7 # 5,

¥ (o 3e) =405 @)

3 :_) [%V“‘ (") — {(%%‘:)2 + (BB_’;{Y -k (%)ﬂ}] ............ (8)

This expression, although instructive, must be regarded as only a stage on the way to
a working theory, for we have as yet no theoretical way of finding

ow ow ow
ox’ o’ b
Let us now examine the hypotheses. If the temperature distribution is variegated,
will it be the vapour density which tends to become uniform ? The ordinary theory
of distillation proceeds from the assumption that it is not w but the vapour pressure
P.. Which tends to uniformity horizontally. In the vertical, according to Dalton’s law,
the tendency of diffusion alone is not towards uniformity of either w or p, but to a
state such that 9p,/0h = —gw. Then again the diffusion coefficient x which we have
assumed to be a constant, really increases with temperature, and if temperature is
diverse that increase should be taken into account. But to bring in all these cor-
rections would make the equations very elaborate and would perhaps obscure their
main features.
The dissipation of temperature must follow very similar lines, 8 replacing w, and
the molecular thermal conductivity replacing «.

/
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Ca. 4/10. BENEATII THE EARTH’S SURFACE

Cu. 4/10/0. GENERAL

The atmosphere and the upper layers of the soil or sea form together a united
system. This is evident since the first metre of ground has a thermal capacity com-
parable with 1/10 that of the entire atmospheric column standing upon it, and since
buried thermometers show that its changes of temperature are considerable. Similar
considerations apply to the sea, and to the capacity of the soil for water.

As it will not do to neglect the changes in the land or sea, two courses are open:

(i) The variables expressing the temperature in the sea or land might, at least
in imagination, be eliminated. The result of the elimination would be
to yield a complicated boundary-condition for the atmosphere.

(i) A forecast for the land and sea might be attempted concurrently with
that for the air. Let this be the ideal which we here set before us. One
reason for this choice is that a forecast for the soil would itself be of

~ value to agriculturalists.

The quality of the forecast might range from a mere use of the normal variables
for the time of day and year, to a thorough treatment by finite differences. Possibly
a combination of the two may eventuate.

We have already regarded the earth’s surface in Ch. 4/8/3, 4, 5, 6, from above, now
let us look at it from below. Ultimately these two points of view must be combined.

In this connection there are three principal varieties of surface: the sea, bare earth,
and earth covered by vegetation®. It will be convenient to consider these separately
and afterwards to attempt to form average constants for our horizontal chequers of
about 200 km square, by reference to the relative amounts of the three kinds of
surface in each chequer; due regard being paid to the season and to the customary
times of ploughing, harrowing, sowing and the like.

The changes in the soil may be described by two differential equations, one for the
conduction of heat, the other for the transference of water. It is intended to treat
these equations by finite arithmetical differences. The soil must accordingly be divided
into conventional strata. Let z be the depth reckoned positive downwards from the
surface of the soil or sea. . It will be remembered that 4 the height is reckoned positive
upwards, and always from mean sea-level. At what depths z shall we make the divi-
sions between the conventional strata? Well on referring to Rambaut’s  observations
of temperature in the Oxford gravel, it is seen that at a depth of one or two metres
the temperature depends simply on the time of year. The more rapid oscillations,
associated with the passage of cyclones, scarcely penetrate to these depths. In other
words it will suffice to consider a layer of soil having a thermal capacity comparable
with that of the atmosphere.

* And pext in interest perhaps snow and rock.
t A. A. Rambaut, Phil. Trans. A, Vol. 195, 1901.
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Again, in the first few centimetres below the surface the down-grade of temperature
is often steep so that a detailed treatment is required. Whereas, at a depth of a metre
it would be wasteful to keep account of the temperatures at heights differing by so
little as a centimetre. Accordingly it is proposed to change the independent variable
from the depth z to some function of z, which is called j, and which, when divided
equally, gives thin conventional strata near the surface, thick ones lower down. The
choice of the particular function is arbitrary. A convenient form would be

e AT T, 20e S dil So s sl (1)

Giving to j the values 0, 1, 2, 3, 4, 5 in succession_we get the following depths in
centimetres as the boundaries of the conventional strata: 0; 1:92; 6:39; 19°1; 536,
147°5. To transform the differential equations we must substitute

o ud d
m jj for Zzz, .................................... (2)
1 By g d? E
and e+ 1) {Elf - CTJ} for J e (])

Now the equations for the motion of water and heat are interlinked by various
terms, so that it 1s convenient to use the same conventional strata for both. It is
accordingly intended to make the substitutions (2) and (3) in all the equations for the
soil. For simplicity however the independent z is written in what follows.

Ci. 4/10f/1. THE SEA

A layer of sea 2'4 metres deep has a thermal capacity equalling that of the whole
~ of a dry atmosphere standing upon it.

The temperature of the sea surface is much steadier than that of the land. We
might, for some purposes, assume the sea surface to have the mean temperature
observed at the given place and date in previous years, by consulting, for example,
the monthly Charts of the Atlantic Ocean*, published by the Meteorological Office.
The error which we should thereby commit may be represented by a standard deviation.
For areas on the Atlantic Ocean measuring 2° in longitude by 1° in latitude this
standard deviation would be about 1° C in the eastern North Atlantic, while on the
western side, where the gulf-stream is narrow but not quite fixed in its course, the
standard deviation might amount to 5° C. Hann (Meteorologie, 111 edn. p. 65) has
computed the daily variation of temperature in the sea and in the air immediately
over it. The average difference between the two, at any given time of day, rarely
exceeds 1° C. So that the temperature of the air in contact with the eastern North
Atlantic, 1s now predictable to 2° C.

* Helland-Hansen und Nausen, Zemperatur-Schwankungen des Nordatlantischen Ozeans und in der
Atmosphdre, Kristiania, Jacob Dybwad, pp. 50—84. English Edition published by Smithsonian Institu-
tion, 1920.

R. 14
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If a more exact value of the surface temperature had to be predicted, the system
of prediction would have to take into account:

(1) The long-wave radiation which is given off or absorbed, on account of the

~ great opacity of water, only by the uppermost centimetre*.

(i1) The solar radiation which penetrates to much greater depths. O. Kriimmel t
gives a table of absorption coefficients ranging from 0°01 per metre for a
wave length of 450uu to 0°30 per metre for a wave length of 660uu.

(i) The turbulence in the sea which depends on the down-grade of “potential
density.” The problem here is more complicated than that of the atmo-
sphere on account of the variation of salinity with depth. Presumably the
shearing of horizontal velocity must also be a prime cause of turbulence in
the sea as it is in the atmosphere; and the shearing will in turn depend on
the wind.

(iv) The turbulence and temperature of the air which convey heat to or from
the surface. We have already discussed this in Ch. 4/8 and will not go
into it further, except to note that the interaction of sea and air must be
treated as one problem.

(v) The ocean currents, their dynamics, and the heat which they convey.
Presumably these five principles could be put into a scheme of prediction such as has

been worked out for the atmosphere in this book. It may come to that, but let us
hope that something simpler will suffice. '

Interaction of Sea and Air. If the sea is colder than the air at deck-level, the
tarbulence in the air becomes small and very little interchange of heat goes on.
A low eddy-viscosity under these circumstances was observed by G. I. Taylor during
the Scotia cruise{. Prof. Helland-Hansen—to whom I am indebted for much of the
information in this section—tells me that when the sea is colder than the air at deck-
level there may sometimes be a decided change of relative humidity in the first few
metres above the water, indicating a protecting film so thin as that. The warmer air
tends, if anything, to diminish turbulence in the colder sea and thus to cut off the
flow of heat on that side also.

On the other hand if the sea is warmer than the air at deck-level, as it tends to
be in winter, there is much turbulence in the air, which tends to have no up-grade of
potential-temperature nor of water-per-mass. This state of affairs is illustrated by
observations in the North Atlantic trade wind and by the eddy-viscosity deduced
therefrom by Sverdrupf. The sea, being cooled above, tends also to become turbulent,
if the down-grade of salinity permits.

Thus the sea surface acts as a leaky valve, which allows heat readily to flow
upwards, but hinders its descent.

More observations of turbulence over the sea and within it are much needed. The
smoke method§ might be suitable.

* Winkelmann, Handb. der Physik, 2 Aufl. Bd. 11 p. 342. T Handbuch der Oceanographie, 1. 389.
i Vide p. 72 above. § Phil. Trans. A, Vol. 221, pp. 5—26 (1920).
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Ci. 4/10/2. THE BARE SOIL

In winter great areas of arable land are bare. As in the case of the sea, we require
to forecast the temperature and humidity of the air in immediate contact with the
surface of the soil. _

A wealth of observational material has been brought together by Warington in his
Physical Properties of Sotl (Oxford Press) from which I have drawn freely.

The Motion of Water in Soil. The evaporation from bare land has been measured
by the Rothamstead drain gauges® with the remarkable result that in the six winter
months, October to March, the evaporation is practically identical with that from a
water surface, as measured by Greaves*, near London. Provided that we may assume
the atmospheric conditions above Mr Greaves’ gauge to have been the same as at
Rothamstead, we may say: during that portion of the year in which any considerable
fraction of the land is bare, the bare surface is so wet as to saturate the air in contact
with it.

This rough generalization might suffice, but it seems desirable also to develop the
general equation applicable to summer as well as winter. In this equation it will be
convenient to regard the soil as a continuous medium, that is to say the “infinitesimal”
differences of the coordinates must be large compared with the soil particles and yet
small enough to give a good representation of the variation of moisture with position.
The theory of percolation in saturated soils has already been put in mathematical form
by Boussinesq . For unsaturated soil, such as is often found near the surface, I have
not found the equation anywhere. It may be developed from the ideas of Briggs,
according to whom the water in the unsaturated soil may be typified by a waist-shaped
piece partly filling the crevice between two spherical soil particles. If the amount of
water in the waist decreases, the curvature of its surface becomes more strongly
concave and the negative pressure in the water is thereby increased. If the water in
all the crevices is continuous with itself, the pressure will tend to become everywhere
equal, in the absence of gravity. Denote the mass of water per volume of soil by .
From the point of view of our large infinitesimals, the pressure in the water will be a
single valued continuous function of position, and will depend on w. Denote the
pressure in the water by ¥ (w). The form of the function ¥ can be determined, for
any particular soil, by experiments similar to those of Loughridge. He put air-
dried soil into vertical metal pipes closed at their lower ends by muslin. Water was
supplied through the muslin and rose by capillarity. From the mode of its entry
this water was probably all continuous. When the steady state was established,
samples taken at different heights were weighed, dried and reweighed. This gave w.
At the same time Y (w) is equal to g times the height of the sample above the free

* Warington, loc. cit. p. 109. .
t Journal de Mathématiques, Paris, 1904, pp. 1 and 363. See also L. F. Richardson, Proc. Roy. Soc.
Dublin, 1908, May. F. H. King, Irrigation and Drainage, Macmillan, 1882. J. M. K. Pennick, “Over de

Bewegung van Grundwater,” De Ingenieur, 29 July, 1905,
14—2
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water-level outside the tube, as the density of water is unity. In the more general
case, when there is not equilibrium, ?ié(%@ —g will be the unbalanced pressure gradient
producing a flow upwards. Since the flow is in very narrow channels it is non-turbu-
lent. It is therefore proportional to the unbalanced pressure gradient, and varies
inversely as the viscosity. The flow also depends on the dimensions of the channels.
These are bounded in part by the water-air surfaces, with the result that the con-
ductance of the channels diminishes rapidly with diminishing w. Denote the con-
ductance of the channels connecting the opposite faces of a centimetre cube of soil by
ay, which is a Coptic letter pronounced “shai.” Then the flow of water upwards is, in
em® sec”™! per horizontal cm’,

oY
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So the rate at which water accumulates to any point by creeping is

2_’;’ _ % ‘:g_g {%: - g}]. ................................. (2)

The conductivity @j could, I think, be determined experimentally as a function of w
by means of apparatus similar to that which gives the pressure ¥. For let a uniform
slow current of water be established, either down the tube by dropping water on
the top, or up the tube by promoting evaporation at the top. Let the current be
measured and be maintained constant until a steady state has become established
throughout the tube; and then let w be determined at a series of heights by drying
samples. From the distribution of w, that of the pressure Y (w) could be found, since
the form of ¥ is known from the previous experiment. Taking the gradient of the
pressure Y (w) and inserting it along with the constant flow in (1) we should have the
conductivity @ for a series of values of w.

¥ and @ depend on the temperature in known ways; if, as usually happens, the
soil is not uniform, they also depend on the depth. The possibility of the existence of
isolated water must not be forgotten, although no simple way of treating it mathe-
matically may be to hand. Nor must the loss of water by surface drainage, root-holes
and fissures be overlooked.

In the unsaturated soil, simultaneous with the creeping of liquid water, there goes
on a distillation of vapour. In summer there is often a thin coat of dry soil on the
surface; and the distillation through this may dispose of quantities of water which
cannot be neglected. Where liquid water is adhering to the soil particles the vapour
density will be saturated for the temperature and for water surfaces of the existing
curvature. The curvature in turn depends on 0, so that we may write for the vapour
density £ (w, 8). Soil which feels dry to the hand may still contain considerable quanti-
ties of occluded, adsorbed or “hygroscopic” water. From this cause  may amount to
as much as 0°05 grm cm™ or more*. Now the adsorption of gases by solids has been
the subject of many investigations}, which have shown that an equilibrium state is

* Warington, loc. cit. p. 60. + Winkelmann, Handb. der Physik, 2 Aufl. Bd. 11 p. 1524,
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reached in which the mass adsorbed depends on the temperature and on the density
of the gas. So we may write here: vapour density =# (w, #), thus prolonging the
function F from the region of liquid water into that of adsorbed water. For such dif-
ferent substances as charcoal *, glass* and peat dust { it has been found that F, in the
region of adsorption, is more or less proportional to the mass adsorbed, and decreases
rapidly with increasing temperature.

The rate of motion of vapour will be proportional to the gradient of density %g and

also to the porosity which we may denote by %, a Coptic letter pronounced ‘‘janja.”
The porosity will be diminished if the passages are partly choked with water, so that
it should be written x(w), a function of w. It may be defined so that the mass of
water distilling upwards per unit of time and of horizontal area is

oF
X ot et (3)
And the rate of accumulation of water by distillation is therefore
ow 0 oF
—52- — -a‘z— [X ‘a;:, ¢ ®esecscs st ecvs sttt ress e bteetes et s (4)

I have attempted to measure the porosity X of peat dust to water vapour in the
following way. A little water was put into the bottom of a test-tube. Above the
water-level a partition of brass wire gauze and linen was fixed in the tube. The dust
was packed in the tube above the partition. The tube was stood upright in a desic-
cator, and was weighed at intervals during several weeks, until the rate of loss became
constant. The experiment was repeated with a column of peat dust of a different
length. It became apparent that a length of 5 cms of peat dust allowed the water
vapour to diffuse almost as freely as in a tube containing only still air. The diffusivity
in still air is well known. To have obtained a good measurement special attention
would have had to be paid to the constancy of the resistance offered by the open end
of the tube. \

Adding the accumulation by creeping, given by (2), to that by distillation, given by
(4), we obtain the total rate of accumulation of water in an unsaturated soil, as follows:

ow 9 foy oF
bt_azl:sgla;_g}-l-vaJ. ........................... (5)

If we were to add the two terms representing the horizontal components of motion,
equation (5) would then apply to saturated soils as well as to unsaturated ones; for
when saturation occurs X vanishes, @ is the porosity to water, and the pressure Y is
no longer a function of » but depends on position instead.

Natural soils are rarely uniform so that in (5) Y, w, £, x will depend on height.
Temperature reduces the capillary tension, and therefore ¥, by 0:002 of itself per 1°C.
The porosity @ varies rapidly with the temperature in a known manner, because it is
proportional to the reciprocal of the viscosity.

* Winkelmann, loc. cit, t+ Unpublished experiments by the author.
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The flow of water across the surface z=0 depends on precipitation and evapora-
tion, and can be calculated at the initial instant, at which w is given, according to
the methods of Ch. 4/6, Ch. 4/8/5, Ch. 4/9/6. Then the approximate distribution of
w after 8¢ can be found from (5).

The Motion of Heat in Soil. Turning now to the temperature equation, numerous
researches* have shown that it is, at least approximately, of the form

o0 0
a;=éw, ....................................... (6)

where the diffusivity s is of the order of 0°008 cm®sec™. The treatment of this
equation by arithmetical differences has been illustrated by the present writer].
Calendar* and Pottt have found that the diffusivity s is much greater for wet soil
than for dry, so that we must regard s as a function of w. If the soil is stratified s
will also depend upon z, or rather it will be necessary to regard the conductivity and
thermal capacity separately as functions of 2, so that, in place of (6) we have

0 109 Gl
&=aé;<ka7>, .................................... (7)

where u is the thermal capacity of unit volume and £ is the conductivity.

We may improve upon equation (7) by taking account of the disappearance of heat
wherever water is evaporating. The rate of condensation is given by (4). Multiplying
the rate-of-condensation by the latent-heat-of-evaporation and dividing the result by
the heat-capacity-of-unit-volume-of-the-soil, we get a measure of the rate of tempera-
ture due to condensation, in the form

418 10" {598 — 0'60 (0 —278°)} @ {x gf}

u 0z 0z’

where u is the number of ergs required to raise the temperature of one cubic centi-

metre of soil by one degree. For sand, for example, if the grains are of pure quartz
and occupy half the volume of the soil, then u will be

1 (density) x (specific heat of quartz) =0'23x4°18 x 107,

when the sand is quite dry; and, when water is present w = (023 +w) x 418 X 107, with
an upper limit of u =073 x418x 107, when the sand is saturated. On the other hand,
if the soil contains fine powders which attract water, as peat dust does, both the specific
and the latent heat of the water may be expected to differ from their normal values.
Calendar§ has found that heat is also carried through soil by percolating water.
If, neglecting any rapid motion through root-holes and fissures, we assume that the
water is moving slowly between the solid particles, then the temperature of the water
at any point will be the same as that of the particles, so that the symbol 6 will serve

* Encyc. Britt. x1 edn. Vol. 6, pp. 893 to 894; A. A. Rambaut, Radliffe Observations, Vol vr1. Oxford;
Hann, Lehrbuch der Meteorologie, 3rd edn. pp. 48 to 55,

+ Warington, loc. cit. pp. 161 to 171.

t Phil. Trans. Roy. Soc. London, A, Vol. 210, p. 313.

§ Encyc. Britt. x1 edn. Vol. 6, pp. 893 to 894.
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for both. The upward flow of water is given by (1) in grm sec™ em ™. Multiplying this
flow by 8 and by the specific heat of water, which is 4:2x 10" ergs gram ™ degree™ we get
the upward flow of heat in so far as it depends on the motion of water. Differentiating
the flow of heat with respect to z, and dividing the result by the thermal capacity of
unit volume of the soil, we get the rate of rise of temperature, due to the flow of
water, in the form:

19 fav-> §

r.v . .‘) 7 ~ “o

uaz[ﬁwi.,xlo xglaz gj]. ..................... (9)

Collecting now the three parts of the temperature-rise due severally to conduction,

condensation and convection, we have from (7), (8), and (9)

6_0__ .5 k8_0> 4 latent ht. of evapn. K l:x 8/"j|
ot woz\ oz % 0z 0z

42x10" 0 [ oY
+___a_2[6,gg{5—z—g}]. ...... (10)

u

This is the complete temperature equation. The latent heat of fusion of ice in the
soil may be regarded as a very large increase in the thermal capacity in the imme-
diate neighbourhood of the freezing point.

The flow of heat across the earth-air surface, z=0, depends on precipitation, eva-
poration and radiation, and can be calculated at the initial instant at which 6 is given,
according to the methods of Ch. 4/6, 4/7, 4/8/4, 4/9/6. The approximate distribution
of temperature after 8¢ can then be found from (10).

Now as to the treatinent of equations (5) and (10) by finite differences, The
combinations of # and w which occur in these equations, mostly require 6 to be
tabulated at the same depths as w. The last term in (10) is an exception to this
statement, but as we cannot have it both ways, this exception has been ignored.
Again, in order to calculate the radiation and the evaporation from bare soil,’it is
desirable that 6 and w should be tabulated actually at the surface, rather than as
mean values for the upper layer which is 17 centimetres thick. These principles have
been embodied in the corresponding forms in Ch. 9.

Cr. 4/10/3. EARTH COVERED BY VEGETATION

Leaves, when present, exert a paramount influence on the interchanges of moisture
and heat. They absorb the sunshine and screen the soil beneath. Being very freely
exposed to the air they very rapidly communicate the absorbed energy to the air,
either by raising its temperature or by evaporating water into it. The amounts
evaporated by crops are considerable; barley for instance has been estimated to give
oft the equivalent of one millimetre of rain per day during its growth. A portion of
rain, and the greater part of dew, is caught on foliage and evaporated there without
ever reaching the soil. Leaves and stems exert a retarding friction on the air, so
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that within a forest it is very doubtful whether we can still estimate the “eddy
diffusion” of entropy and moisture, from observations of the change of wind velocity
with height, as G. I. Taylor and W. Schmidt have done in the free air (p. 76 above).

For a numerical treatment I have referred to a series of papers by Brown and
Escombe*, and Brown and Wilson*. Their observations are built around the fol-
lowing framework of theory. The air in the intercellular spaces of the leaf is supposed
to be saturated in equilibrium with pure water at the temperature of the leaf. The
vapour ditfuses out through the stomata at a rate proportional to difference of vapour
density between inside and outside. The transpiration also depends on the size, shape
and number of the stomata. By analogy with electric conduction, the rate of trans-
piration may be said to be inversely as the “resistance” of the stomata. The resist-
ance consists of two parts in series. The larger part is due to the air in the intercellular
spaces and in the constricted passages of the stomata; this part is unaffected by wind.
The remainder of the resistance is due to the air immediately outside the stomata
and is reduced by wind. Thus the wind can only alter the transpiration in a limited
range. The openings of the stomata are sensitive to sunlight. The careful experi-
ments set out on pages 106 to 109 of Brown and Escombe’s paper show that a
reduction of sunshine to one-half of its intensity may increase the resistance by
perhaps 10 °/ in the case of Helianthus annus. The initial sunshine averaged about
0°4 cal em™ min™%

The temperature of the leaf is above or below that of the surrounding air according
as the radiation received by the leaf is greater or less than the energy absorbed by
the water in evaporating. The difference between these two sets of energy, divided
by the emissivity of the leaf for heat, gives the temperature difference between the
leaf and the air. The emissivity here is the total rate of loss of heat to the surround-
ing air by conduction, convection and radiation jointly, for 1° C temperature difference.
Brown and Wilson measured the emissivity and found that it was a linear function of
the wind velocity; thus for Helianthus multiflorus

emissivity in cal em ™ min™* (degree C)™'= 0015+ 0010 X (velocity in metres sec™).

The emissivity is so great that although, in the absence of any loss of energy, sun-
shine would raise the temperature of a particular leaf at the rate of 35° C per minute,
yet the temperatures of the leaves observed by Brown and Escombet never differed
by more than 2° C from that of the air, and were much nearer to the dry-bulb
temperature than to that of the wet-bulb.

To put this in a formula: Let the rate of loss of water from a leaf be denoted
by ¢, then

= K L (O ug) BB’ "o nese Siuinaat o oo o S (1)

Here K is the conductance of the stomatal openings and F'(#) is the saturated
vapour density at 6.

* Roy. Soc. Lond. Proc. B, Jan. 1905, t Loc. cit. Tables viiL. and x.
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In (1) we must substitute

(radiation) x (absorptivity) — ¢ x (latent heat of evapn.)
emissivity

0leaf= 0air+ s .(2)

and then ¢ appears on both sides of the equation.

However, to a first approximation, we may take the dry bulb temperature as
equal to the leaf temperature so that

Y R R AT o (3)

The equations (1), (2), (3) apply to a single leaf. We require the corresponding
expressions for a mass of foliage. The chief difference will be the large increase in
the conductance K. We can estimate K for a crop from the following considerations.
The total water transpired by a crop* is from 250 to 700 times its dry weight. For
example for barley it is at the average of about 107° gram per cm® of land surface per
second. The average increment of vapour density, which would just saturate the
air at the temperature of the dry bulb, could be determined by keeping a recording
psychrometer in a barley field. Taking this increment provisionally as of the order of
5% 107" gram cm™, it follows that K is of the order of

10-°+5x10"°=% cm® sec™* per cin’ of land surface.

In Brown and Escombe’s experiments the leaves were supplied with abundant water.
If the amount of water in the soil at the level of the roots falls below a certain small
amount, the leaves lose their turgescence and transpiration diminishes. This critical
amount of water has been determined by Heinrich {. It is, for example, about w =002
for a coarse sandy soil, w=01 for a sandy loam. Now w is already one of our de-
pendent variables, so its effect on transpiration can be taken into account.

A Conventional Film of Vegetation. In order to bring (1), (2), (3) into con-
nection with the other equations of the atmosphere, we must take the temperature
and vapour density of the air surrounding the leaves as dependent variables. Unfor-
tunately it is not possible to estimate these quantities, even approximately, from the
known instantaneous mean values for the stratum which extends up to & =2 kilometres;
because the estimate would be spoilt by the steep and changing temperature gradients
near the surface. For example, at Eskdalemuir, E. H. Chapman found gradients of
+2° C per 10 metres near the earth. It is-therefore necessary to introduce another
conventional layer extending from the earth to the top of the foliage. It is called
hereafter the “vegetation film” and its lower and upper limits will be denoted re-
spectively by the subscripts G’ and L. This layer or film might be treated on the
same general plan as are the conventional strata, with the distinction that the air
must be considered as having its opacity and its thermal capacity increased by the

leaves mixed with it, and that the friction does not vanish when :—Z vanishes.

* Various observers quoted by Russell in Soil Conditions ond Plant Growth (Longmans, Green & Co.),
p. 28.
+ Warington, loc. cut. p. 64.
R. 15
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But such an elaborate treatment is hardly necessary. For the air in the vegetation
is dragged along by friction with the air above. In other words, the frictional terms
in the dynamical equations are so large that the other terms may be neglected. To
the contrary it might be objected that on a clear night there are often rivers of cold
air running downhill near the surface. But these are after all local currents of
small velocity, so that, in dealing with an area as large as 200 x 200 km® no great error
would be committed if their average were taken as zero.

In Ch. 8 we shall again discuss the conventional treatment of the film.

CH. 4/10/4. SNOW AND ICE

The chief peculiarities of a snow surface are perhaps its large reflection of solar
radiation and its contrasting full radiation of long-waves. By these properties
Dr G. C. Simpson has explained the low temperature of the antarctic summer®. The
thermal conductivity of snow is remarkable in being low. Jansson found that when
expressed in G-cal ecm™ sec™ degree-C™ it was equal to

0°00005 + 0:0019p, + 0006 p,*,

where p, is the density of the snow. This figure is quoted from an interesting paper
on the radiation and temperature of snow by Anders AngstromT

* « British Antarctic Expedition 1910—1913,” Meteorology, Vol. 1. p. 89.
t Stockholm Arkiv for Mat. Ast. och Fysik, Bd. 13, No. 21.



CHAPTER V

FINDING THE VERTICAL VELOCITY
Ch. 5/0. PRELIMINARY

SoME observations of vertical velocity have been obtained by J. S. Dines*. He took
the difference between the rate of ascent of a balloon, as observed in free air by two
theodolites, and its rate of ascent in a closed shed. =

However, this method is not yet usual and in particular there are no observations
of vertical velocity for 1910 May 20d over the region studied in the example of
Ch. 9. Even if we knew the complete initial distribution of vertical velocity,
together with the distributions of mg, my, p, p, o, p ete. we could hardly compute
the new distribution of vertical velocity after an interval &8¢ from the expression

ov [ SAS 5
v+ %’ 8t, because the vertical acceleration ;—’t” would have to be found from a tiny

difference between two large terms in the vertical dynamical equation. If progress is
to be possible it can only be by eliminating the vertical velocity.

There are various theories which arrive at the vertical velocity by treating the air
as if it were not shearing, or which either neglect, or else fail to eliminate, some of the
time changes at fixed points. For such reasons the otherwise interesting discussions
by W. H. Dinest and by M. Berek} will not serve for the purposes of numerical
prediction. In the theory here presented dp/dt, dp/ot, 96/ot are all eliminated, the
horizontal velocities are quite general, and the air may be either clear or cloudy. The
equation for the vertical velocity at which we thus arrive (No. 12 below) is complicated
and I have not succeeded in simplifying it much. But its deduction has been carefully
checked and it yields intelligible results when applied to the problem of Ch. 9.

Consider a vertical prism of air. From the known horizontal winds we can find
the amount of air entering or leaving the prism at any level. The excess of that
entering over that leaving—the net amount entering at any level—spreads upwards
or downwards so as to satisfy the hydrostatic equation. Note that the pressures due

4 4 ov I
to the vertical acceleration —;—t” are here neglected. Now the density p may be ex-

pressed as a function of the pressure, of the entropy-per-unit-mass, o, and of the

water-per-unit-mass-of-atmosphere, p. Also a fixed mass of air, in moving, carries its

entropy and moisture with it (except in so far as radiation, stirring and precipitation

come in), so that the changes in these quantities at any level, depend partly on the
* Advisory Committee on Aeronautics, Fourth Report on Wind Structure.

+ “Statical Changes of Pressure and Temperature...,” Q. J. B. Met. Soc. Jan, 1912.
+ “Die Bestimmung der Vertikal-komponente...,” Leipzig Geophys. Inst. Spezial 11. 6 (1919).

16—2
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known horizontal velocities, partly on the unknown vertical velocity. KFrom these
relations the vertical velocity can be determined.

As the vertical velocity occurs also in other equations, for instance the horizontal
dynamical equations, and as we have to remove it from all of them, we may con-
veniently take the elimination in two stages, first finding the vertical velocity and
then substituting it throughout. The two stages have the further advantage that
they permit a comparison of the computed vertical velocity with any observed values
which there may be.

Cu. 5/1. DEDUCTION OF A GENERAL EQUATION

Analytically we suppose that mg, my, p, p, p, o are known functions of position
at an arbitrary fixed instant, to which all the equations of this Ch. 5 relate ; but that
the changes of these quantities in time are unknown. Required to find vy or my as a
function of position, For the present all variables are regarded as varying continuously ;
the treatment of conventional strata will be considered later. In writing down the

following equations, the terms involving the unknowns my and g—t have been kept in

the first members, consequently the second members are known quantities. The incre-
ments Do and Du represent the changes in o and p which a definite portion of air
experiences as it moves. Apart from precipitation, stirring and radiation, these changes
would both be zero. We suppose, in Ch. 5, that Do and Dy have already been deter-
mined by the methods of Ch. 4/6, Ch. 4/9/6, Ch. 4/7, Ch. 4/8. Accordingly Do and Dy
appear as known quantities and are placed in the second members of the equations.

We begin with the equation (Ch. 4/5/2 # 1) for the conveyance of heat

ik =+ 0 UL Ay 1 |

2 T Vg = VB, T VNG, s e (1)
the equation (Ch. 4/3 # 5) for the conveyance of water

o op o 6;1. + Dp,

8t+vHa/ wE% T ................... .(2)
and the equation (Ch. 4/2 # 2) for the continuity of mass

ap 3mH 2mH_ .
& +—a—_—d1vENm, ........................... (3)

where divgy m is a contraction for an oft-recurring expression, given by

omg = Omy tan ¢

dlvEVm-——ée—+—W—mN AR R B (4)
To obtain an equation soluble for vy we must first eliminate ig, %’; %’—?— Two of

these can be removed in the following way. The entropy-per-mass & can be expressed
as a function of p, p, and of one other variable, which it will be convenient later to
have taken as p. Let a,, a,, a, be defined to be such that

ps %p

do=a,.duto,.dpta,.dp. ...ccovvvivininnnnn.... (5)
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For clear air the values of a,, a,, @, have been given in Ch. 4/5/i. In general they
are functions of p, p, p and therefore may vary with position and time. Now multiply
(2) by a,, and (3) by a,, and subtract both products from (1). The result is

ap 3’mH 27”1}1
% £+”H<“Pah+“" ah> % <WT ST
oo o 0o 8,u.> Do Dp.
= —’UE<86 “ae> 'I)N<an a +a leEAm'I‘D a, Dt ...... (6)

Next 9p/ét in (6) must be replaced by known quantities. This can be done by
bringing in the hydrostatic equation
ho

p = gpdh, ....................................... (7)

h
where £, is a height so great that the pressure at it may be neglected. Take the time-
rate of (7). The lower limit of integration is independent of time because we require
dp/ot at a height which is fixed. Thus

N
P f T e (8)
Substitute in (8) the value of 9p/0¢t from (3) then
Y [ om 14 2my|
P _ L 2 {dlvENm+ ok } < ©)

Note that equations (8) and (9) are exceptions to the rule that the second members
are completely known. Next substitute in (6) the value of 9p/dt given by (9), and in
so doing separate the integral into unknown and known parts, and arrange them
respectively in the first and second members. Thus we arrive at

am][ 2777/3 ap a?nH 2mH
~a [ o T a4 )= (i 55)

oh o
ko . .
= +a, fhg. divgym.dh+a,.divgym

oo op oo o
vE <a_é'—a“ 8_e>_vN<%-a"a7L>
D | -D
+ E —-aﬂﬁ‘t e sececssseeresessse et ses st essees et t0cossess 0 (10)

The equation (10) involves only the vertical velocity and quantities expressing the
instantaneous distribution of other meteorological elements, a distribution which is
supposed to be known.

But (10) can be simplified. For in the first member

bl "% Bl = PGl reeeeeseeseeseseeees (11)

And again for ap/oh we can put —gp.

'vHa
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Then (10) reduces to
fo fomy  2m Soc'Bb
= pfhg { ah’{-{- : a”}dh-—ap.g.mﬂ—app <3}§I+ —(1,_H>=

ho
=apfhg.divENm.dh+a,.divENm

oo O io op
=va (57 ~ont )= (- 2t)
Do Dy,
Dt —a, ﬁz. ............................................. (12)

So far the equation is very free from assumptions, almost the only one being that the
pressures due to vertical acceleration are negligible in comparison with the pressure
due to gravity. In particular in deducing (12) we have not assumed g to be inde-
pendent of height.

+

Cu. 5/2. SIMPLIFICATION BY APPROXIMATION
As (12) is inconveniently complicated, let us simplify it by making the following two
approximations which will probably not affect the accuracy by one per cent.
g is independent of height,te. .dstl sotis o et aon SRR S Sl 5 (13)
the terms in the reciprocal of the radius of the earth are negligible. ...... (14)

There is then a cancelling, in the first member of (12), of
_apfhhb%ydh with —a,.g.myg,
so that the first member of (12) reduces to
—a, .. 0vgfBh: .} ne. JANER o BORNE SR (15)
Let us next divide through by —a, . p so as to leave 6v,/oh by itself. In so doing

let us express a, and a, in terms of the more familiar quantities y, and y,, the thermal
capacities, in erg units, of unit mass at constant volume and pressure. By Ch. 4/5/1

# 11, 12, for clear* air

$4°% Jige ' 99
a="; a,,_—%’. ........................... (16), (17)
With these substitutions equation (12) reduces to
a—/v‘LI= '_‘Y‘L hog-diVENm. dh—ldiVENm
oh Yo-PJn 2
1 oo o\ @,/ Op 8_;_L>
5 (o) s (o,
1 (Do Dy
+‘)_,p<—D‘?_aM ﬁz) ............................................. (18)

in which divgy m is given by (4).

* A temporary restriction for illustrative purposes. In Ch. 8 the unrestricted oy, a,, o, are used.
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It may be said that (18) would look neater if the integral were removed by differ-
entiation. But in so doing we should also remove the valuable statement, which is
implied in the definiteness of the integral, namely that the pressure becomes negligible
at a great height. As a matter of fact the differential form was first derived directly from
opfoh = — gp and was employed throughout the example of Ch. 9; but a constant of
integration kept on appearing inconveniently in places where it could not be deter-
mined. This * hysterical manifestation” was eventually traced to the suppression of
the limits of integration which are now explicit in equation (18).

Cu. 5/3. METHOD OF SOLVING THE EQUATION

The approximate solution may be obtained by arithmetical steps. The explicit
integral in (18) is begun at the top, where it vanishes, and is carried downwards to
each conventional level in turn. The equation is then integrated for v, beginning at
the bottom and working upwards, because at the ground v, is known from the hori-
zontal winds and the slope of the surface according to the equation

dh dh
(’UH)G = <1’E e + vy %)G,
which Prof. V. Bjerknes has used to prepare maps of the vertical velocity at the surface
(see his Dynamical Meteorology and Hydrography, Part II).
As equations (18) and (19) are linear in vy and 8v,/oh, the sum of any number of
solutions is itself the solution for the sum of the corresponding distributions of my,
my, P, o,

Cu. 5/4. ILLUSTRATIVE SPECIAL CASES

Case (). No horizontal velocity anywhere, no radiation, precipitation or stirring.

Then Ch. 5/2 # 18 reduces to dvy/oh = 0. .

But we may derive this result independently. For the pressure on any definite
portion of moving air, being simply the weight of air in a column of unit cross-section
above it, remains constant. Therefore, as the motion is adiabatic, the density is
constant for a moving portion. Thus the atmosphere rises or falls like a rigid body,

so that dvpfoh=0. If we bring in also the boundary condition (19) we see that v, is
zero everywhere.

Case (i). No horwizontal velocity, no precipitation or stirring, but radiation in
progress.
Then Ch. 5/2 # 18 reduces to

vy 1 Do
ﬁ-;p—p—t. BRSOt o S8 T sl o e e e (1)

The change in entropy Do occurs under the constant pressure due to the air above.
Therefore Do = lo'y” D@ and (18) implies that

ovy; 1.D6
ah' — 9 “D‘—' L R R N N N X (2)
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But we may deduce this independently. For consider a portion 8% of a vertical column.
If it changes in temperature by D@ while the pressure is kept constant, then it will
expand by a fraction D6/0 of its original length 6h. The displacement of the upper
end of the short column relative to the lower is therefore 8/ . D/8. If the displacement
takes place in a time D¢, the velocity of the upper end of 8k relative to its lower end is

1.D6 .
8]& o @ E .
But this relative velocity is 8v,. Equating and dividing by 8k we get
§'L'][ ad l .DH
oh 1 8: D¢
which agrees with (2).
Case (iii). Horzontal winds exist, but are such as to cause no divergence of hori-

zontal momentum per volume, that vs to say divgym=0 at all levels. The air 1s dry
and there 1s no stirring or radiation.

Then Ch. 5/2 # 18 reduces to

vy 1 oo oo

B2 _ﬁ(”Ea—e‘wNé?z)'
Suppose that the wind is coming from a region where the entropy-per-mass is greater
towards one where it is less. Then the quantity in the bracket will be negative, as is
easily seen by considering the special case vy=0 and remembering that, contrary to
sailors’ usage, vy is positive when the wind blows to the east. In the case imagined
ovgfoh will be positive. The arrival of air of greater entropy-per-mass causes an increase
of upward velocity with height. If the motion happens to be at constant pressure
then we may say: the arrival of warmer air causes a swelling. An independent check
1s lacking.

Case (iv). At a level h; awr ts being abstracted from the column. Moisture s
absent. The entropy-per-mass has no horizontal variation and does not change with
time following the motion.

The general equation Ch. 5/2 # 18 then reduces to

a'UH Yo o . = l .
'ﬁ——yp.pfhg. dIVENm.dh PleENm. ..................... (1)
Case (ivA). Let us suppose, for mathematical simplicity, that div gy m 1s zero every-
where except tn a very short range lying between h; — 8h, and h; + 8h, and let us represent
the total rate of abstraction of mass from a column of unit cross-section by 4, where

h;+8h
A =f AiT ST ML .. on oo (2)
hi-8h
Then below the level of abstraction the integral in (1) includes the range in (2) so that
vy _ve 94

oh v, P
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Above the level of abstraction the integral in (1) does not include that in (2) and so

v
a]:’=o ............ (4)
Let the ground be flat and at a height 24, Then
V=0 ab fi=Tg. <. crw AP i TR |

Now integrating (3) upwards from the ground it follows that, below the level of
abstraction %;
L Ve, 90
A heYp ¢ P
Next, when this second integration is carried upwards across the level %;, there is
an abrupt change in vy arising from the last term in (1), thus
hy+ 3k 1 A4
— = d. TR Ul o) oo ojsle o (478 aroje's sals el s ate o b s safons 7
fh.——ah Aty 2 ")
So from (6) and (7) it follows that, just above the level of abstraction,
U][ hy ‘yv dh 1
A= L @) == 2of | L Aan0! ADNECE, (AN I 8
A4 Jrayy . £ P (®)
And (4) shows us that the vertical velocity remains constant for all greater heights.

The integral in (6) and (8) has been computed from the observed * mean pressures
over Europe, with the following results:

Height above | % / hdh ‘ Height above | s /’ * dh
killg;:;;es ‘)g;n:‘ grgng ,' kif:).usx.e;‘;es 7:’1)113 grgr}‘)
20-5 8540 | 95 | 1293

| 195 7220 | 85 1064
185 6180 | 7 866
175 5240 ‘ 65 694
165 4430 | 55 545
155 3750 45 415
145 3170 35 301
135 2670 25 201
125 2240 , 15 112
115 1870 05 35
105 1560 [0-0 0] |

Note g has here been taken as 980 and y,/v, as 1/1:405. The latter is of doubtful validity in a
moisture-containing atmosphere.

* W. H. Dines, “Characteristics of the Free Atmosphere,” Meteor. Office, London, Geophys. Mem.
No. 13, Table X.

R. 16
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The curves in the adjoining figure have been drawn by using this table in equations
(6) and (8).
14

18

12

o

»

Height in kilometres
|

T
o~
~—_
\

; o
7 v/

0
1000 down O up 1000 down O up_ 1000 down O wp 1000 down O wup 1000 wp

}1? x (vertical velocity), where 4 is defined by (2).

Four distributions of vertical velocity produced by the horizontal removal of mass at equal speeds
but at different heights, namely at 2, 5, 8 and 11 km.

Since divgym and vy enter equation (1) linearly, we may add together any
fixed multiples of the abscissae of any of these curves in order to obtain a new -
distribution satisfying (1). For example if we multiply the velocities of the third
curve by —1 and add them to those of the fourth curve we obtain the distribution
due to the insertion of mass at 8 km and its withdrawal at an equal speed at 11 km.
Below 8 km there is no vertical motion ; between 8 km and 11 km there is an upward
velocity increasing with height ; above 11 km there is a small downward velocity. The
latter is at first sight surprising, but it nust be remembered that we are not discussing
a steady state, but a sudden disturbance of the actnal mean distribution, and that
the air in the neighbourhood of 10 km would be in the course of replacement by colder
air, on account of the difference between the actual and the adiabatic lapse-rates.

The integral in (6) may be put into a variety of equivalent forms which are some-
times useful. Thus by using the hydrostatic and characteristic equations

h
_v_vgf dh_ _ v, [* dlogp _ ey [* 0d<1>

Yo Jhg P YoJpog P Yo Jopg P?

p 1 s oo
=44 <-> f g <_> L. g
[ e \P o he Yo 3]0 vertically - ".(9)
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By way of these it may be shown that the vertical velocity above a level of
abstraction is downwards, unless the atmosphere has a degree of instability far ex-
ceeding anything that is observed. To illustrate this exception we may take the .
hypothetical case in which the density is the same at all heights. Then the second
form in (9) integrates, and when inserted in (8) gives for the vertical velocity above
the level of abstraction

2 A 3 log e ok TR (10)
which is positive if p is small enough. Thus in such an atmosphere the removal of
mass at a sufficiently high level would cause the lower part to raise the part which is
above the level of abstraction.

Cu. 5/5. FURTHER VARIETIES OF THE SIMPLIFIED GENERAL EQUATION

In some applications it is desirable to replace divgy m by an expression in velocity.
vy , Ovy tan ¢ 1 op op
Ve +an F v e e (1)
If this be substituted in Ch. 5/2 # 18 then because, when different samples of air
are compared*,

Now divgym=p {

. do-=?dp—%’dp+a“dy .............................. (2)

it follows that a term in Ch. 5/2 # 18 derived from —%divENm combines with the
two terms following it giving us

L e e il (3)
P

¥ ')’ Y» P
And Ch. 5/2# 18 becomes ’ :
'87—7 Pf {P divgyv+vg ap+'vNé_} dh —divgyv

it 0 Lo 2&)
p Z)<’UF86+ Nan>+'>7p;<Dt a'ﬂ- _Dt 0. 0B 0od060 (4)

But, by the rule for differentiating a product

‘ op _ vy Op op
ah( Eae> a] ae"‘ - 9. RS PE O S 1.7 - S, o (5)

and there is a similar expression in the northward coordinate and component. If in

the integral in (4) we substitute for g vE P the value given by (5) we obtain a term

ko 0
f P~ %G)E Z—g) dh which transforms simply, because at the upper limit p vanishes

everywhere, so that

* See Ch. 4/5/1. Clear air is here assumed for 111ustrat10n, but in Ch. 8 we revert to the more general
form in a,, a,.

16—2
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The value of the same integral at its lower limit cancels another term in (4). Thus
we arrive at

I
??Q - V,yv”f O{gp.diVENv'*'%J ;2]_9 +a’UN a]’} dh

oh Yo P oh e ' oh “on
: 1 (Do Dp.
_dlvEN’L)-F)Za(D—t—a“ E), ......... (7)
. vy  Ov tan
where divgyv = 6eE+ 57%-’01»' —a(k' ........................... (8)

The above has been found to be the most convenient form of the equation when
we have to do with the stratosphere, as in Ch. 6/6.

In places where we measure height by means of pressure it is convenient to take
p as the independent in (7) in place of A. In these differentiations with respect to p,
it is implied that latitude and longitude are constant, whereas in a,=20/0p it is p and
p which are constant. Where there is any risk of confusion the symbols of the
quantities which are constant during the differentiation are added as suffixes to the
differential coefficient. Then (7) transforms into

T R () WEE W WL
oh Yo-PJ po Tag® \ap A,¢x oe ) 310 7\,¢x on 15N P

| 1 /Do Dyu
—leEN’v‘l‘;(E—a“ E) .

Ch. 5/6. THE INFLUENCE OF EDDIES

Smoothing the equation for vertical velocity. This equation is linear in the
three velocity components. So if the other variables p, p, a,, a,, ,, o, p are not
heterogeneous, the process of smoothing, carried out as in Ch. 4/10, merely puts a bar
over all the velocity components and over the capital D, which now denotes a differen-
tiation following the mean motion.

If the other quantities are also diversified great complications will arise. But as
became evident in Ch. 4/10, the percentage variations in velocity are usnally so much
greater than the percentage variations of the other quantities that for many purposes
the latter are negligible.

Vertical velocity connected with eddy-motion. Wherever light warm air is dis-
placed and pushed up by heavy cold air, the joint centre of mass falls, for gravity
supplies g/y, of the kinetic energy of the motion*. Again wherever a thermally
stable atmosphere is stirred by eddies derived from the wind, there heat is carried
down and the centre of mass rises. These motions of the centre of mass imply a small,
but highly significant, mean vertical velocity.

In view of what has been said about smoothing, it follows that the equations
already given in case (ii) in Ch. 5/4 for the vertical velocity due to radiation, will also
apply to that due to eddy motion, if we place a bar over vy and over D. That is true
provided p, p, a,, a,, a,, o, u are not diversified. .

* W. H. Dines’ theorem, @.J. K. Met. Soc. 1913, July, p. 188, see also Roy. Soc. Proc. A, Vol. 97, 1920.



CHAPTER VI

SPECIAL TREATMENT FOR THE STRATOSPHERE

Ca. 6/o. INTRODUCTION

THE equations developed in Ch. 4, between the integrated quantities represented
by the capital letters P, R, My, My, hold good, with the approximations indicated,
for any one of the conventional strata. But in the stratum, which has its base at
118 km and extends upwards to at least 40 km, the ratio of pressure is so great that
the aforesaid approximations are all open to criticism and must be reexamined. This
examination is one of the principal aims in Ch. 6. Another aim is to find a way
of extrapolating observations made by balloons, which seldomn penetrate into the
upper tenth of the mass of the atmosphere, so as to obtain P, R, M, My which are
integrals up to the top. The final aim is to choose a set of quantities, either P, R,
My, My or some other equivalent ones, and to find a corresponding set of equations
so that, when the quantities are given at one instant, the equations will give their
time rates. This problem is for the most part carried over to Ch. 8. But its general
features have already been described in Ch. 4/0.

The quantities P, R, My etc. are the definite integrals of p, p, my ete. with respect
to height, taken so as to include the whole thickness of the stratum. In such integrals,
values of quantities at the lower limit will be denoted by the subscript 2, because
the mean pressure there is 2 decibars; thus we have p,, Ay, my, ete. Similarly the
subscript 0 will be used to denote the upper limit. But while 4, resembles infinity in
that it denotes a height so great that its exact value does not concern us, it must
be understood to lie somewhere between 50 and 100 kilometres above sea-level, at a
pressure between 1 millibar and 0°001 millibar. By this convention we free ourselves
from the necessity for entering into difficult questions concerning that outer atmo-
sphere® which is ionized, which may be escaping, and in which the variation of gravity,

and the term 2—;@7 in the equation of continuity of mass, would cause mathematical

difficulties. By this convention also we assume that whatever the rare gas above 4,
may do, it has no influence on the surface weather.

The vertical variation of gravity has been neglected. It may however be mentioned
that the theory could be carried through with integrals with respect to gravity-potential

instead of with respect to height, 45 = f mgdy replacing My = f mydh and so on; but it

would then be necessary to follow this less familiar system throughout the whole subject.

* Stoermer, Terrestrial Magnetism, March 1915; Jeans, Dynamical Theory of Gases, §375; S. Chapman
and A. E. Milne, Q. J. B. Met. Soc. 1920, Oct. Would not the “empyrean” form a good name for this
highly ionized atmosphere ?
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It has been assumed in this chapter that vertical isothermy extends right down to
11-8 km above m.s.L. Observations sometimes reveal disturbances at greater heights
in temperate latitudes, and in particular in the tropics the normal level of the tropo-
pause is about 16km. These are arguments for raising the boundary of the conventional

stratum. There would be no difficulty about so doing, except the increasing scarcity
of observations.

Cu. 6/1. INTEGRALS OF PRESSURE AND DENSITY

It 1s here assumed that
at all times and places within the stratum.
The air is dry, so that in

b has the fixed* value 2'87 x 10° cm® sec™ per degree centigrade.

The hydrostatic equation,

R T s )
ST TIPT TG g e (3)
may be written al;§p= —Z')%, .................................... (4)

that is to say ‘“the logarithm of the pressure is a linear function of height”; it follows
on integrating that

p:constxe_b%h. ................................. (5) .
So that f pdh=— bg_ﬁ P +arbitrary onst. ...c..vuvevsssiobosiiinons (6)
And, putting in the limits of integration,
P= +b§ Ba' ' os o ver i B TR BN E 7~ et} (7)
At R=f':pdh,=l’i;. N IR

Thus P and R have been expressed in terms of the pressure and temperature at
118 kilometres, a height not infrequently reached by recording balloons.

* M. G. Gouy concludes that there is no stratification of the different components by molecular weight
where the pressure exceeds that of a Crookes’ tube [that is about 0-01 millibar]. Comptes Rendus, clviii.
p- 664 quoted in Nature, 1914, Apr. 23. According to Chapman and Milne (. J. B. Met. Soc. 1920,
Oct.) b might increase to 2-92 x 10° cm?®sec~* degree™' at a height of 60km where the pressure is
0°12 millibar.
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Cu. 6/2. THE CONTINUITY OF MASS IN THE STRATOSPHERE

Since all the terms in the equation of continuity of mass are linear, the equation
transforms without approximation, and without any reference to the manner of varia-
tion of wind with height. The transformation has already been effected in Ch. 4/2,
and the result, when appropriate suffixes are inserted, reads

aR20 aME% aMNzo tan ¢ . MN20 2]'[1{
c- ot = e + i — % —mH2+T"- .............. (1)

We assume here, as elsewhere, that there is no escape of air from the top of the
atmosphere, so that : —

, T U A e e S SR (2)
Now from Ch. 6/1# 8
oR, 1op,
“ét— = 5 % 5 0abmae0c0060060 6336000 060080 Jobu0 IO (3)

so that equation (1) gives us pressure-changes at the base of the stratum. Mg, My,
for insertion in (1), are main tabulated variables, while m, and My are given by the
equation for the vertical velocity to be discussed in Ch. 6/6 below.

CH. 6/3. EXTRAPOLATING OBSERVATIONS OF WIND

For this purpose, in latitudes not too near the equator, we can use a theory
developed from “The Upper Air Calculus”* of Sir Napier Shaw. The dynamical
equations may be written

lop 4 Vg ovy , vy

_;)56__ _2w81n¢ Vy+vg - %e E4w N—+ ot +etc ............ (1)
]_ap 8 B?)N a’UN

_l_)a_—-i-2wS]n¢ Vg +?)Ea + Nan<+'7t—+ CI0EH 6b oo R IeT, (2)

Now since ¢ is independent of & and since p=bp#, it follows that

19p 0 log P o*log p
ah <p ae> ah <b0 e ) bo Thae = o . 306 qooa0 . ............ (3)

But the hydrostatic equation may be written
dlogp ¢

| B D e (4)
On inserting (4) in (3)

o [lop olog 0

ah(p ag) A et (5)

and in (5) on might replace de.

Therefore on diﬁ'erentiating again

flo 1
8h< 8p) 0 and similarly R < UP) DRI ) Y e e (6)

Thus both sides of equations (1) and (2) are linear functions of height.
* Nature, 1913 Sept. 18, also J. Scott. Met. Soc. 1913,
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Near the equator it will be difficult to interpret this general proposition in any
simple way, because neither the linear nor the quadratic terms are negligible on the
right-hand sides of (1) and (2). But in European latitudes it has been shown* that
all terms except those in sin¢ may, with tolerable approximation, be neglected.
In the stratosphere, as there is no vertical convection, there can be no appreciable
friction between horizontal layers, so that one of the causes which disturb the
“geostrophic wind” near the ground is here absent. Assuming then this simple
geostrophic wind, with neglect of curvature of path, there follows from (5) and (1)

Wy o olog) 7)

T g R R Rk S
and similarly 8;% ~2wégm—¢a—1§§0. g T AR ) (8)
And so =0 g =0 (9)

thus in the stratosphere in not too low latitudes the horizontal component velocities
are linear functions of the heightt.

To test this theory I selected the two hlghest balloon flights included in V. Bjerknes’
Synoptic Charts, hefts 1, 2, 3. The ascents were at Ziirich on 1910 Feb. 3 and May 19.
One must resolve the velocities on rectangular axes, for (9) does not imply that
the resultant Vv, + v, is a linear function of height. The figures on p. 129 show
that, in the stratosphere, the component velocities can be fairly well fitted to straight
lines. The fluctuations may be in part attributed to errors made in observing balloons.
For at a height of 16 km and at zenith distance 60°, a standard error of 0°'1 in the
measurement of the zenith distance produces a standard error of 2'6 metres/sec in the
radial velocity of a balloon, as deduced from successive differences of position observed
at intervals of 60 seconds of time when the heights are correct. On the other hand,
if the fluctuations are really gusts, we must suppose them to be due either to stable
waves or else to eddies turning about vertical axes; for if the axes were not vertical
then a fall of temperature with height would result.

From the slopes of the lines corresponding to aa_h and h Y on May 19th we may

calculate the horizontal temperature gradients by equations (7) and (8); it is thus

found that
o0 o0

o2 0°48° C per 100 km ; ;o
Unfortunately the temperatures obtained by sounding balloons are not precise enough
to test these numbers, for according to Gold (Geophys. Mem. No. 5, p. 66) they are
to be suspected of errors of +2°C. Wenger] seems to be of much the same opinion.
W. H. Diues finds a probable error of < 1°C for a single ascent at night, but more
in sunlight.

* E. Gold, “Barometric Gradient and Wind Force,” Report te the Director of the Meteorological Office.

t First published in @.J. R. Met. Soc. 1920 January, p. 63.
i R.Wenger,Ueber den Einfluss der Instrumentalfehler...” Geophys. Inst. Leipxig, Specialarb.11.1(1913),

= +0°"11 C per 100 km.
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As a further test of equations (9) one figure on p. 130 shows the highest theodolite-
balloon record published in the international observations January to June 1912. It
was made at Uccle 1912 Apr. 13. The remaining figure on p. 130 represents the highest
ascent recorded in G. M. B. Dobson’s paper* on “ Winds and Temperature Gradients
in the Stratosphere.” This ascent was made at Uccle on 1911 Sept. 13. The straight
lines fit moderately well. The selection of observations has been made by choosing
the highest in order to eliminate any personal bias in favour of the theory to be
tested.

For average conditions over England, Shaw { has calculated from a formula, with
which (7) is really identical, that the wind velocity at 12 kilometres falls off by 9 per
cent of itself in one kilometre. The formula however shows that the fall in each kilo-
metre must be the same in absolute amount, not in percentage of the wind at that
height, and so it follows that the velocity changes sign at about 23 kilometres and
that at an infinite height the velocity would be infinite, if we might press the logic so
far. Of course if the velocity became very great the square and product terms in the
dynamical equations would cease to be negligible and the hypothesis of the simple
geostrophic wind would be no longer tenable. That high velocities do sometimes occur
at great heights has been shown by the Krakatoa glow stratum (33 metres/sec at
85 km) and by the bolide of 1909 Feb. 22} (70 metres/secat 75 km). Even if the
velocities vy, vy did become infinite linearly, the total mass-transports My, M, would
remain finite, because the density falls off exponentially.

Height-integral of density times a linear function of height. The momenta per
unit volume my, my arve of the form p (4 + Bh), where 4 and B are independent of

height. My, My are therefore of the form f ::) p (A +Bh)dh. In what follows we
shall frequently require the corresponding indefinite integral. To evaluate it, put
p=-— ;Z%, integrate the coefficient of B by parts and take [pdh from Ch. 6/1 # 6.
There results

jp (4 + Bh)dh= _25 I:A +B<h+%9>]+coust. ............... (10)

is a length, and is equal to 6'45 kilometres when the stratosphere has the

Now bo
g9

temperature of 220° A.
If the upper limit of the integral be 4, the pressure there is very small and we have

[:"p (4 +Bl) dh= +E |:A +B (hi+ %”)J B 2 e (11)
where the subscript ¢ re‘fers to any height in the stratosphere. But
%= f:opdh=the whole mass above 4;. ................. (12)
* Q. J. R. Met. Soc. Jan. ‘1920. t J. Scott. Met. Soc. 1913, p. 170.

1 J. E. Clark, Q. J. B. Met. Soc. 1913,
17—2
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And by taking the special case 4 =0, B=1 we see that /;+ 0697 is the level of
the centre of mass of the atmosphere above &, ..co.vvveeniiiiiiiieiiiniiiiieenen. (13)

Thus we may say: ““With reference to a column in the stratosphere extending from
an arbitrary level to a region where pressure vs negligible, the integral up the column,
of the product of the density into any linear function of height, is equal to the pressure
at the base of the column, multiplied by the value of the linear function at a height
b8/g above the base and divided by the acceleration of gravity.” .................. (14)

When applied to velocity, statement (14) is equivalent to the following: The
total eastward momentum above a small horizontal surface, at any level in the
stratosphere in high latitudes, is equal to the total mass above that surface, multiplied
by the eastward velocity at a height about 6°4 kilometres greater than the height
of the surface.

An exactly similar statement holds for the nortliward momentum, but not, in general,
for the resultant momentum.

Thus the initial values of My, My can easily be computed from balloon observations
vy Ovy

which extend into the stratosphere far enough to allow the constant values of —° 5 5h

to be measured.

Cu. 6/4. THE HORIZONTAL DYNAMICAL EQUATIONS IN THE STRATOSPHERE

In extrapolating the initial observations we have neglected all the small terms, but
in tracing the course of the subsequent development it is both possible and desirable
to retain them.

In Ch. 4/4, dealing with the dynamical equations, it is shown that a term such as °
[mgvydh transforms approximately into MpMy/R. In the uppermost stratum the
ranges of velocity and density are so great that one might expect the approximation
to fail altogether. It will therefore be examined in detail. The argument proceeds thus :
If the small terms vanish, the component velocities are linear functions of height. If
the neglected terms are finite but small, a linear relation of component velocities to
height may still be expected to hold approximately, as indeed the balloon-observations
show that it does. This relation may therefore be used in calculating, to a first
approximation, averages with respect to height.

Integrating by parts and using Ch. 6/3 # 9

JmE'deh=vamEdh-—%%’fmedh”+const. .................. (1)

Now putting (4 + Bh)=vgin Ch. 6/3 # 11 we get

P vy bﬁ]
f bl = g[E+a,L 7 o i (2)
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And therefore
ko [ ho bo b20° 840
[° mydli = =2 AN = Fadh

he p g bﬁ p U6 vy
5.9‘[’0 8/1 g;l q g a’b .................. (3)

Collecting terms

_pfl | bowg %8@) b6 ovy vy
]’mEvydh— —§{<@E+g —a~k~><vy+g 5 e g =5 ah (¢ onst. ...(4)

Taking this between the limits p, and p,

MMy V6 vy dvg L
hszdeh F 5 +R o S (5)
Now 8;}1:\, 4 aa]E are known initially, but not subsequently, as the stratosphere is repre-

. ; vy Ovg
sented by a single conventional stratum. But we may replace ;}N = by means

of Ch. 6/3 # 7, 8 and thus obtain
fho MM, R 06 o0

hzm,;@wdh: B G i e (6)

The terms on the right are known both initially and subsequently and can be taken
into account when dealing with the dynamical equation in P, 2, My, M.

Inserting (6) in the dynamical equations of Ch. 4/4 and making other corresponding
transformations, we obtain :

The dynamical equations for the uppermost conventional stratum®.

oMy OoP Y It Me M . 3 [0 2 ta
_._a_t!;— +E‘e( RE ) +8n (_’R_”) [m,v,,]a—2wsm¢2|1‘v+2mcos¢ﬁl,,+,—& L MmgVy dh—= a11¢ ( - N>
Rb? 0 [06\2 i 3_ 0 86) 2 tan ¢ 06 08 7
(2(" Sln ¢)2 ae an an a_é . % a ae (/n}' ....................................... ( )
0 320
Note that . - is not equal to
dedn 1 e
oM. oP 0 /MM, 2 2
= at“'= —gNR+a—;+ 5&( A}t E) +3n (MA ) [myvgle+ 20 sin p M+~ f m,,v,,dk+tan 8 (ﬂ-——-———[" R}[N)
Rb? /cd 06 ) 2 tan¢ 2 06
+‘(2.., sin ¢)2{ de (ae 8n> 5P o 5 (ae> & [(371) — (Te)z]} ......... (8)

The terms in vy, my, My cannot be completely evaluated until the variation of
vy with height has been determined for the particular time and place.

* These important equations are put in small print merely on account of their length.
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Cu. 6/5. RADIATION IN THE STRATOSPHERE
Cr. 6/5/1. THE AVERAGE CONDITION

The independence of temperature on height was explained in 1909 by Gold and
Humphreys as being a state of radiation-equilibriuin undisturbed by mixing. This
explanation has been further developed by Emden, by Friedmann and by Hergesell *.

In applying the process and constants developed in Ch. 4/7/1 to the example of Ch. 9,
evidence is obtained that the lower side of the stratosphere has the greater flux of
long-wave radiation passing through it. It is here the sum of the upward and down-
ward fluxes which is meant. Accordingly it is difficult to see why the temperature in
the stratosphere should not decrease a little upwards, unless the absorptivity for long
waves is greater in the upper regions. The ratio of the sum-of-the-two-fluxes is as 613
at 11'7 km to 397 at the top. This is the same as the ratio of (220)* to (197)* so that
temperatures in radiation equilibrium might be as 220° A at 117 km to 197° A at
the top if absorptivity were uniform in height and wave length and sunshine were
neglected. However that 1s not a large change. And a proper treatment of wave
lengths might show it to be different.

Cr.6/5/2. EVANESCENCE OF LOCAL DISTURBANCES

The data obtained also permit us to calculate the rate at which a small local
disturbance of temperature would die away on account of radiationf. Suppose a thin
horizontal layer of air 8p millibars thick is somehow raised 86 degrees centigrade above
the temperature required for thermal equilibrium. A black surface at the temperature
6 radiates O¢ in all directions to one side. The increased emission due to the rise 86
1s 406°860 which is equal to

48586 calorie cm™ day ™ when 6=220° A.

Now in Ch. 4/7/1#16 it is shown, from A. Angstrém’s observations, that a layer
8p millibars thick radiates by 0:003028p times the radiation for a black surface. This
is for radiation scattered in all directions in the actual manner to one side. Doubling
the figure, since the air radiates to both sides, we get for the loss

calorie
cm? day

2x0:003028p x 4'8586 =0'02938p 80

But the thermal capacity of the layer, at constant pressure, is

024zbp SR
em’ degree
* E. Gold, Roy. Soc. Lond. Proc. A, Vol. 82, also Met. Office, London, Geophys. Mem. 5, p. 126;
Humphreys, Astrophysical Journal, 1909; R. Emden, Miinch. Akad. Ber. 1913, 8. 55, said to be an
important paper: I regret that I have not seen it; A. Friedmann, Met. Zeit. 1914 March; Hergesell
(Lindenberg, x111 Bd.) reviewed in Met. Zeit. 1920 Aug.
t Compare E. Gold’s analysis of surface observations, @. J. B. Met. Soc. 1913 October.
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Whence we conclude that ““if a thin horizontal layer in the stratosphere has its
temperature slightly raised above that which would be in equilibrivm with its surround-
ings, the disturbance will be decreased to e™ of atself, by radiation, in 83 days.”

Now seeing that cyclones often sweep past a given place in a time short in com-
parison with 83 days, it is difficult to see how the uniformity of temperature with
height in the stratosphere can be maintained by radiation alone.

One is led to the conclusion that the distribution of velocities must be such, that
the adiabatic changes of temperature are the same at all levels.

This conclusion might be avoided if the stratosphere contained a larger proportion
than the lower layers of some constituent which absorbs long wave radiation ; for in
caleulating the absorptivity in Ch. 4/7/1 it was assumed that this quantity was the
same at all heights provided the air were dry. The percentage of ozone has been
observed by Pring*. He concludes that no very large increase in ozone content occurs
between 5 kilometres and 20 kilometres. Also, accordmg to A. Angstrom'[‘ spectro-
scopic observations have shown that in summer there is not enough ozone to bave an
appreciable effect. Is it possible that the presence of free ions increases the conversion
of long wave radiation into heat ? -

Again, the inconsistency between (1) and a theory depending simply on radiation
may conceivably disappear when enough is known about the selective absorption of
dry air for certain wave lengths to enable calculations like those of Ch. 4/7/1 to be
carried out strictly.

Cu. 6/6. VERTICAL VELOCITY IN THE STRATOSPHERE

This will now be investigated by means of the general equation Ch. 5/5#7. It is
assumed that 96/0h =0, but only at an initial instant, not necessarily subsequently.
In other words

2

ohot

As the air is dry the precipitation-term vanishes, the specific heats are strictly con-
stant and y,/y,=1'405.

The second member of the general equation for vertical velocity must be expressed
in terms of 6, p,, Mys, Myy,, for these comprise all the information that is provided
by the general process of computing. The discussion of what should be and what
should not be provided involves a review of the entire subject and is treated in Ch. 8.
I here anticipate one of the conclusions. Further, although it would be possible to do
without Mz, My,, by expressing vy, vy and p at all levels in terms of 6 and p,, by
an extensive use of the hypothesis of the geostrophic wind; yet, remembering that
this hypothesis is only an approximation, it will be much better to use it only to

P e R M (1)

* Roy. Soc. Proc. A, 90, p. 218. + Smithsonian Miscell. Vol. 65, p. 87,
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give the variation of wind with height, and to introduce, for the motion of the centre
of mass, M, and My as given directly by observations, or by the general process of
computing. For the centre of mass of the uppermost conventional stratum is at the
level A, +b0/g, and at this level we have by Ch. 6/3# 14 and Ch. 6/1# 8

V= MpaofRoy=gMpa/Ps. «oevvvviviiii i (2)
Also, by the geostrophic-wind-theory, as expressed in Ch. 6/3 # 8

wg_ _ g ologh (3)
= "B e ¢ e

Combining (2) with (3) we get vy at any level in the stratosphere, thus

- A[Ezn - g 0 lgg_e (h — ]1,2 — Z;f) : (4)

Vg e 22— h=h,— — ). it
" Ry 2wsing on

Similarly from Ch. 6/3 #7
Ehey Lo/ ERE 0<h h.;-bf’) ..................... (5)

vy = 4
Y7 Ry 20sing de

We have also from Ch. 6/1 # 5

=m0 kb3 5 Sl iR R T (6)
p=7)p—56‘(h-h2)9/b0. ................................. (7)

Let us now prepare to insert these expressions for the horizontal velocity, pressure
and density in the general equation for the vertical velocity Ch. 5/5#7. In so doing
it 1s best to watch for any groups of terms which are independent of, or proportional
to, height, for these can be integrated as in Ch. 6/3#14. In the first place by °
Ch. 5/5#8

] _ 9 JLIE20> 0 tan ¢>> My’

= i Moo f’ilfgf?} - _b_f’>
+2wsin¢>{ dedn onde (h . g

0log 0 bO\ g o/ 1
+ o (e e

gl S e S e SR @
2wsin¢ @ loe” on on "~ e

This equation simplifies considerably. The last bracket vanishes, since d log 8 = d6/8.
Again in the third term in the second member

2 <sull_$) = a%ﬁ (Sﬁ £ ;}L) :ﬁfi ........................ (9)
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The second term does not vanish because the differentials de, on, which are so
brief and expressive, are not independent of one another. To evaluate the term we
must bring in the original independents : longitude X and latitude ¢. Then

logf# o'logd 1 v _@?l_ogﬁ_r_i__a_ 6log6’>
~ deon ' onde a| cosd.o.od 8¢><cos<j>.a}\

_1810g08< 1 >

“a N od\cos ¢
_ ologd o
=— o etand T (10)

Collecting terms in (8) we arrive at

divgyv= E <ZI_I@) eE _a- (ﬂ_‘lé’%) Y tf.l}_(é <11[N20>

oe\ Ry, on\ Ry, & T b
G g dlog 6 tan¢+cot¢) A _b_ﬁ)
Toing % i h—h, k. Lo (11)

Thus divgyv is a linear function of height. The part dependent on height does
not involve the northward gradient of temperature.

Again, in the general equation Ch. 5/5#7 for the vertical velocity, there occurs
an expression which transforms thus by the aid of (4) and (5)

RS Y {_319&3 9p  ologd op
oh "0e ' oh "on  2wsin ¢ on "de = Oe 'Bn}

e AR s s R R (12)
But by Ch. 6/3# 5
%(% gf) =g al—aoegg, which is independent of &. ............... (13)

So that opfoe is p times a linear function of height. By a similar argument the same
may be said of 0p/on and therefore also of I. It follows that we can write I'/p as the
sum of its value at any basal level, say at h,, plus a quantity proportional to height
above h,. This second term is obtained from (13) and from the similar expression
1n on.

Thus
r g {_?L"g_” 1dp,  ologé laP_z}

p 2wsing on " p,oe de " p,on
7y 9 [ _2logd dlogh dlogh alogh)
+(h-h,). T ¢{ e Sk R =f s (14)

The part of (14) which dependé on h is seen to vanish. That vanishing may be
traced back to its cause in the assumed connection with the geostrophic wind.

R. 18
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The preceding expressions (11) and (14) have been prepared for insertion in t}le
general equation for the vertical velocity Ch. 5/5#7. Consider first the definite
integral in the latter. It is

" o ch g p | Soy op »
]h lgp.leEN’U‘*-'aW . ae‘ =P % o Clh, .................. ( )

which may be written
ho
fh p{A,+ B, (h=h)}dh, cooeeeniniiiianiiniiiienii (16)
where 4, and B, are independent of height and have the following values given by
(11) and (14)

—_—= -+ —— )= — + e |({ —r—F
g oo\ Ity on

o & 3 Loty 2using’ e o
1 ologé 108p, 2logh l%} ;
+2wsin¢{_ - 'E_BZ-!_—Ge T (17)
B g Dl (tamt_qﬁ) (18)
g .y 2w Sin ¢ ae a/ @ 0 € 0005 000908888800 TLIN NI EENET IR tE e

The integral (15) can therefore be written down by the rule Ch. 6/3#14 in the form

£{A1+B, <h+§—€—hg>}, ........................... (19)
9 g
so that the general equation for the vertical velocity, Ch. 5/5# 7, now runs
v e b oy L1 Do
- —_yp.g{A,+B, <h+?—h2>}—dwmv+% A (20)
The terms in (20) can again be arranged so that
W yrwel 1 Do
ah—-—gf{'r+(h~ha)d>}+_7pﬁ, ........................ (21)

where T and ® are quantities independent of height, and have the following values
in terms of the known quantities Mgy, Myg,, p., 0

(1) (2 (M) o (2 - ) (i)
9 vol 0€\ By on a v

b0 [vy,(olog® dlogp,  2logf 2logp)\ , 2logf /tan ¢+ cot¢
+§Jéih¢l:—7,,< g0 & W e >+ de ( o >:| --(22)
The dimension of T/g is the reciprocal of a time.
D g dlogf [tand+cot ¢
Also o~ <1 'y) TR ( : ) ............... (23)

so that ®/g is of dimensions: (time)™ (length)™. These expressions T and ® appear
on the computing form. As the air is dry
1

Yo
1-Y =1 =0-288.
i 205 = 0288
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We must next integrate (21) to find the vertical velocity. Before we can do that
we need the relation of Da/Dt to height. As precipitation and stirring are absent
Do arises wholly from radiation. The stratosphere is obviously very transparent to
solar radiation and, if the calculations of Ch. 4/7/1 are reliable, the stratosphere only
absorbs about £ of the diffuse long-wave radiation incident upon it. Under the
circumstances the rise of temperature and the gain of entropy-per-mass will be roughly
the same at all heights. Thus we assume that

B :
v Dt is independent of bélght. ........................ (25)
Then (21) integrates, yielding
h 1 Do
vp= =T+ Fh=h) O+ — A+ F, .ceiiiiviniinnnn. 26
n g{ (3 ) @} y. D (26)

where the arbitrary * constant ” of integration ¥ is a function of latitude and longitude
determinable by the value of v at A,.
Thus eliminating F by the introduction of vy, it follows that
, P
D ata s (K o) {y—ﬁ 2 —}—%(h—h,) = Al st

Equation (27) shows among other things that the vertical velocity in the stratosphere
18 a quadratic function of height. It would become a linear function if ® were zero,
and (26) shows that ® would be zero if the temperature had no east-west variation,
or if the earth could be regarded as flat. See the conclusion of Ch. 6/7/2.

We shall subsequently require Mpy,,, the total upward momentum of the air
above the level %,. To find this multiply (27) by p and integrate by parts. It

follows that
B L0 o1 De T bo\* p, @
M= 1’3+—.~’{————}—<—>. RC T = T 28
R sl gf \g/'99 28
0 0
We are now in a position to evaluate the terms 2 [ myvyydh, 2 f myvydh, which
2 2

are required for the dynamical equations. It will simplify the analysis to reckon all
heights from k,+ b6/g, the level of the centre of mass. Then, as vy and vy are respec-
tively linear and quadratic functions of height, we may put

b A <h—a2-%”>, ....................................... (29)

UH=B+B'(k—h,—%)-i—B”(h‘ke—b?g)z’ .................. (30)
where 4, A’, B, B, B” are independent of height and need not be further specified.
So vgvy=AB+(A'B+ AB) (h—-hz— bg—0>+(A’B’+AB") (h R %9>z

T e YL (31)
g :

18—2
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Next multiply (31) by p and integrate the product by parts” four times, remem-
bering that by Ch. 6/6 #7

bo P
dh+ to==—p= =" el 32
it o
Then, on putting in the limits, the linear term disappears, leaving
0
f A R {AB+< ) (A'B'+ AB") + (b9> 24'B] . ......(33)
5

But, by similar integrations by parts,

0 0
[ prsdh=Rad=Mpi [ prudi=Rou {B+B" (V) = Mo .(34), (39)
2 2
And on substituting these in the right-hand side of equation (33), 1t follows that

2 S M oSN S ho avE ovy . If)
a[ szdeh—(;-—Rm—- +aR2°<g> Fy t<h2+tWICG 5 ,---(86)

which is in suitable form for computing. As vy, My are only found directly over the

points on the map where pressure is tabulated, the mean of four surrounding values
must be used here.

Cu. 6/7. DYNAMICAL CHANGES OF TEMPERATURE IN THE STRATOSPHERE
Cu. 6/7/1. MEAN HORIZONTAL TEMPERATURE GRADIENTS

Radiation-equilibrium does not explain why, when tropical are compared with polar
regions or anticyclones with cyclones, the stratosphere is found in each case to be
cooler where the air beneath it is warmer. Prof. V. Bjerknes* has published a
dynamical explanation. Taking the case of the pole and equator he begins by .
assuming, as is more or less borne out by observation, that the lower part of the
atmosphere is spinning about the polar axis more rapidly than the earth, while the
upper part is spinning less rapidly than the lower part. From the distribution of
velocity he finds the form of the isobaric surfaces, assuming that the motion is steady,
and that it i1s uncomplicated by minor circulations. The vertical separation of a pair
of adjacent isobaric surfaces varies from place to place proportionately to the volume-
per-weight of the air between them. Bjerknes takes the volume- -per- -weight to be
proportional to the absolute temperature, This last step is unconvincing as the weight
depends not only on latitude but also on the eastward velocity relative to the earth.
However a closer examination confirms Bjerknes’ remarkable result, unless the varia-
tion of speed with latitude is unnaturally large. In any case it relates only to a
steady motion along the parallels of latitude.

Bjerknes’ theory of the temperature difference between cyclones and anticyclones

is similar to the above, except that the rotation considered, instead of being around
the polar axis, is around the vertical.

* V. Bjerknes, Comptes Rendus, Paris, t. 170, p, 604 (1920).



Cu.6/7/1,2 DYNAMICAL THEORIES OF TEMPERATURE DISTRIBUTION 141

In the same publications Prof. Bjerknes explains the smaller height of the tropo-
‘pause in cyclones by the fact that the angular velocity of the troposphere about a
vertical axis is greater in cyclones than in anticyclones, while the angular velocity of
the stratosphere is in both cases small. This explanation agrees with one given in
other terms by Mr W. H. Dines*. It may easily be illustrated by floating oil on
water in a glass vessel and stirring the lower layer.

But we must pass on; for in this book we are not concerned to explain mean dis-
tributions, but to forecast.

CH. 6/7/2. DYNAMICAL INFLUENCE ON VERTICAL ISOTHERMY

It is indicated in Ch. 6/5 that radiation alone is probably insufficient to maintain
the uniformity of temperature in a column. Let us enquire whether the compressions
and rarefactions are so distributed as to produce the same adiabatic temperature
changes at all heights. Sir Napier Shawt has discussed this problem in a special
case—that of the initial motion of a stratosphere disturbed from rest by the passage
of a cyclone beneath it—and the conclusion is that the temperature change is the
same at all points of a vertical. Let us now rework the problem more generally.

Indeed it must be solved as part of the general process of forecasting for the
uppermost stratum. The case of the lower strata is different. In them we find oR/ot
from the equation of continuity of mass. Next by summing ¢ . 0R/d¢t downwards from
the top we get 9p/ot at the boundaries of the strata. Then by a process equivalent
to interpolation a change of pressure is found for a mean level in the stratum so as
to correspond to 9R2/ot, or to op/ét which follows from 0£/6t. Having thus obtained op
and dp at the same level, the temperature change follows at once from p=bpf.

This process fails in the uppermost stratum for there 9, gives dp,, and we have
ap,=0, but the range of pressure is far too great to allow us to interpolate between
op, and 9p, a value for comparison with some mean density to be derived from oL,.
The failure is thus not due to isothermal conditions but to the application of finite
differences to a quantity varying in an infinite ratio.

But we can proceed as follows. The equation for the conveyance of heat
Ch. 4/5/2#11s

oo oo oo oo Do
‘a?‘l"UE ae"*"UN%‘*"UHa‘}‘L —-E ;' Eo0a06000300008000005000 (1)

where Do is the change due to radiation which has been discussed in Ch. 6/5. As the
instantaneous distribution of velocity components may be supposed, in view of the
discussions in Ch. 6/3, Ch. 6/6, to be known at all heights, and as the same applies to
the entropy-per-mass, equation (1) may be expected to give us temperature changes
at all heights. In the following process it is assumed that

00/oh =0, all over the map at the instant considered, ............ (2)

¥ 'W. H. Dines, Phil. Trans. A, Vol. 211, p. 276.
t “The Perturbations of the Stratosphere,” Meteor. Office London Publications, No. 202, 1909.
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but not necessarily at neighbouring times before or after so that

aa] gt R 10 R P e e e i e (3)

Begin with the expression for the entropy-per-mass Ch. 4/5/1 # 8 which may be
written

A do=—b.dlogp+y,.dlogh. .......coevvevriinrinn..n. (4)
Then by (2)
o0 ,dlogp
5}; = b _a}?_ s sssccscrscssccasscstnctttesreenas soe (5)
But by the hydrostatic equation
ologp_ g
3 TRt rrrrrereeeeeseeeseii (6)
So from (5) and (6)
do _ g
B S P e e (7)

Thus @ the stratosphere the entropy-per-mass is a linear function of height in-
creasing by g/0 per unit of height. The statement applies to our hypothetical initial
instant or to any other instant at which 20/0h is shown by observation to vanish
everywhere, In these circumstances do/de, 0o/on are also linear functions of height
although they increase at a different rate thus

o gof o gof

ahae 6‘386 Wl—-_— —‘05%. ........................ (8)

It appears from (7) that temperature can be found more directly from do-/ok than
from o. Accordingly let us differentiate (1) with respect to height. The result is

o ovg 80' vy 83‘_’_81),{ oo do Qo e 0 [Do g
a\Dz ) )

T REIRE TR A TRk et R e

Substitute in (9) expressions in 6 for derivatives of o, by making use of (4), (7),
and (8). Then (9) becomes
6<g> _i_aLE {__b.dlogp+ 8log0} +8'vN{ b. dlogp+ o log 0}

ot\f oh de Y? "o oh on Y» "on
vy 9 g { o6 of Do
+ ah 0 02 L'ae+ Nan} ah(Dt) ......... (10)

It will be found that the theory is simplified if we differentiate (10) once more
with respect to height, making use of (2) and of the hydrostatic equation in the form

dlogp_ _ g
ah - = 1“)9. .................................... (11)
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Thus we obtain .
g @0 vy [ b.dlogp dlog Q] vy [ b.dlogp 9 log 6}
T ¢ ahet T { e 7" o f ol TR (™ J
g vy g [vy 00 8_1@ AN i Do
+5208_o {ah Lo i R (12)

So far no assumption has been made which is not well-founded, with occasional
exceptions in respect to (2), the isothermal state of the column.

To simplify (12) we must bring in the relation of horizontal velocity-components to
height. We therefore now make the geostrophic assumption about this height-variation
which is accordingly expressed by Ch. 6/3#7, 8, thus

Wop s gt 18lg P, vy, g odlog# (12)
oh ~ ' 2wsing ode ’ Al Ty e

On introducing (13) the three terms of (12) in curly brackets disappear, and there
is left after multiplication by — /g
1_82—821)”_9_61 DU) (14
Boh06 " DR g BB\ D) e (14)
This relation between vertical velocity and temperature change is interesting.
Now the theory of vertical velocity in the stratosphere, already given in Ch. 6/6, is based
upon the use or avoidance of exactly the same assumptions as those used or avoided

here, and in particular on (3). Differentiating the formula for 8v/oh, namely Ch. 6/6 #21,
it follows that

o "5““71,375(7@7)’ .............................. (15)
where by Ch. 6/6 # 23
A Yo g  0logf (tan ¢+cot qS)
i (1 y>—_—2wsm¢ L g e (154)
so that @ is independent of height. On eliminating 8*v,/0k* from (14) by means of (15)
the result is
<8log0> P o 8.2 Do’)
()= =+ A (ﬁ? B - (16)

since as 00/0h =0 it follows that

0 (0log B\ 1 &0

a7< o >_9ahat. ................................. (17)
The condution that the vertical distribution should not be departing from isothermy is
that the second member of (16) should vanish. We may distinguish the terms in it
calling —®/g the adiabatic term and the rest the radiation term. In the latter

Da/Dt has already been discussed in Ch. 6/5 and its smallness suggested that the

adiabatic term must also be small, for otherwise 8°6/(chot) would be noticeable in the
observations.
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For corhparison with balloon records the adiabatic termn may be put into a form
which avoids horizontal temperature gradients, which have large observational errors.
For, neglecting radiation, (13), (14), (15), (15 a) yield

L glohs Slaitandircotig) o (18)

0 ohat oh a
Here 0288 is the value of 1—7,/y, for dry air.

The presence of an infinite tan ¢ at the pole is of purely geometrical origin. The

: 4 - 0 ] ]
term in cot ¢, infinite at the equator, comes from = <m> and so arises from the

known failure at the equator of the geostrophic approximation. But let us consider
middle latitudes.

Both 08/0t and 26/oe have their ups and downs, so that on the average of many
balloon ascents both sides of equation (16), apart from the radiation term, are likely
to vanish, without yielding any check on the theory. Individual sets of observations,
sufficiently comprehensive to test (18) are scarce, but I have found a few. One
relates to 1920 May 19, the day before that of the example of Ch. 9. Strassburg is
150 kin NNW of Ziirich and for the present purposes, on account of shortage of
observations, we must regard them as one place. The theodolite observations yield the
following up-grades of the north component of wind

Quyfoh
May 19¢ 8" Ziirich —2:0 x 10-3sec?
May 209 8" Strassburg ... —1'9 x 10~ sec™?
Ziirich oo —06 x 10-3sec™™.

- 12 2]

The first of these is read from the diagram on p. 129. The last is very doubtful,
being obtained by rejecting the highest reading. There is however an indication of
persistent decrease of vy with height during this 24 hours, and we may put the mean at .

ovy/oh=—1'5x 10 *sec™
At this latitude
a”(tan p+cot ¢) =315 x 10" em ™,

It follows from (18) that

10

6 ohot
The sign implies that the temperature would decrease more rapidly with time in the
higher levels. Let us find the difference in temperature-increases during one day at
two points separated vertically by one kilometre. The required quantity will, according
to (16), be obtained by multiplying —1'4x107*em™sec™ by the temperature, by
86,400 seconds, and by 10° ecms. It works out to

o0

ohot

Now the balloon observations provide a check on this figure, for the record at
Strassburg reaches to 15°5 km at 8 o’clock on both days. The differences between the

—14%x10%cm™'sec™

= —2'7° C per km per day.
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two temperature curves are within the observational error. On both mornings the
lowest temperature is at about 12 km and there is a large recovery above that. It may
be said with some confidence that between 12 and 155 km the observations show that

aiz_gt is less in absolute value than 1° C per km per day.
The table summarizes this comparison and adds others given thus briefly. They all
are taken from the international balloon ascents* for the year 1910.

a0 ’ dvy (tan ¢+ cot ¢) 00
Time ak 02§89'.7. Vg dhdt
Place G.M.T. - i
Year 1910 °@ °C °C
km km.day km . day
Ziirich 12 to 14 k Feb. 34 9h -23
Strassburg 12 to 14k | 218b to 348k 00 -40
Ziirich 194 8h _9q
9,
Strassburg} 106 30,k 3 Moy {20d 8h
Strassburg 12 to 155k | 194 8 to 209 81 +1-6 0-0
: May 194 4n +09
Lindenberg 14 to 17 k{ 18"%“ sEnba b 4. 08 +17
: May 194 8t ‘ -09
Vienna 14 to 18 k {, 1904 to & +06 _96

The temperatures were taken from two thermometers of the same pattern,
those by a different pattern being rejected.

Uccle 14 to 20 k Aug. 10 8" +03
14 to 165 k 94 8 to 114 8h +03 -~ 02
Aug. 92 8b +04
Hamburg 12 to 14 k { R4 8h to 114 &b 0-0 +0:2
c Aug. 94 8t : +14 '
Lindenberg 10 to 15 k{ Bduég;, to 94 8b 01 00

The numbers in the last two columns of the table should, according to equation (18),
be equal in each row. Actually their standard deviations are of the same order, and
there is a suggestion of a positive correlation between them. The observational errors
are considerable. Before we can draw any sure conclusion there is a need for discussing

* Beobachtungen mit bemannten, unbemannten Ballons,...... , 1910, herausgegeben von Prof. Dr H.
Hergesell ; Strassburg, Druck von M. du Mont Schauberg.
19
R.
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observations, more in number, further removed from the disturbhed layer at the base of
the stratosphere, and having the time-step correctly centred. But it looks as though
equation (18) would be found to be inaccurate. As I have carefully checked its
deduction, I suspect the error to reside in the hypotheses. It might be in the neglect
of radiation, especially in the long-wave part. Now MrW. H. Dines* has calculated the
warming or cooling at different levels by long-wave radiation in various circumstances.
Over England between 11'7 and 160 k on the average of his four diagrams

20~

YT
That is a small number compared with some of those in the table, and so probably
neglect of radiation is not the cause of the discrepancies, unless indeed the absorptivity
per mass for long or short waves varies remarkably with height. Instead suspicion
fastens on the hypothesis of geostrophic variation of wind with height, because in Ch. 2
a completer use of the geostrophic hypothesis was found to lead to pressure-changes
having an unnatural signt. In the stratosphere the correlation between observed and
geostrophic is apparently going to be at least positive. However that may be, yet for
purposes not connected with finding the divergence of wind, the geostrophic hypo-
thesis appears to serve as well in the stratosphere as elsewhere. Of this Sir Napier
Shaw gives one good example in his Manual of Meteorology, 1v, p. 91, and the diagrams
in the present chapter illustrate the same thing in a different way.

—02° C per km per day.

CH. 6/7/3. TO FIND THE TIME-RATE OF TEMPERATURE

It is not clear just at what stage of the proceedings the geostrophic wind ceases to
be a good approximation. For the immediate purpose of computing the temperature
changes in the stratosphere, it seems best to take the permanence of vertical isothermy
as an observed fact, and therefore to neglect ® wherever it occurs, both in the .
equation for temperature change and in that for vertical velocity. As 96/0t is taken
as independent of height, we can find it at any one height. The height of the centre
of mass h,+0f/g commends itself as being the one that would be chosen on general
principles, if there were no theory at all concerning variations with height.

The locus of the centres of mass of all vertical-sided columns, having their bases at
a common level %,, is not quite a level-surface, since bf/g varies. However that does
not appear to lead to any error in the following theory, in which the east and north
differentiations are made strictly on the horizontal. Similarly time-changes must be
taken at fixed heights.

Beginning again at the equation for the conveyance of heat Ch. 4/5/2 #1 and ex-
panding do we have

0 0 0 o\.. 0 0 0 0 Do
Yo <a—t+'LEa—e+’lNé7l+’UH5—h>10g 0—b(52+1)],;'a~é+'01\'8—n+vya—h> Ing)—TD—t. ...(1)
* W. H. Dines, Q. J. R. Met. Soc. 1920 April. In finding the temperature-change from the radiation

he apparently ignores any vertical velocity produced by the radiation. See Ch. 5/4, Case ii.
T See p. 10.
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Oue of the terms in vy disappears. In the other put 2log pfoh = —g/bf. Then take
the equation to apply to the height A, + b8/g so that by Ch. 6/3 # 14 and Ch. 6/1 # 8

N PR O PO (2)

Since we now neglect ® we thereby take the vertical velocity to be, like the east and
north velocities, a linear function of height and therefore

,l’H:MHZO/R‘-"O' .................................... (3)

In simplifying the term in (1) which contains log p we must remember that the
differentials of log p in latitude, longltude and time are to be taken at the fixed
height %, + b6/g, so that # in this expression alone must be regarded as fixed at its
instantaneous local value, which we may distinguish by a dash. In all other con-
nections 6 is variable and undashed. Thus

log p=logp, +Qg.ag}%p logpz—%. G R Pl )
Whence

alogp_alogz% 9’89 8_l9g_p_2+8£g_9_ (5)

= s = sp e
And

dlogp _odlogp, 690 _ alogpz_l_alogﬁ (6)

N » 7 5 = Fe e

And similarly for the northward differentiation. These terms in log # combine with
those in (1) which explicitly contain log # in such a way as to change the thermal
capacity at constant pressure to one at constant volume, thus

L A AT RS AT {
On inserting these relations in (1) and rearranging terms we get what is required, thus

30_ A[Ezoaa MN2OBB bo {ﬁ+Mmo_ My, © gMH20 ED({ 8
R, oe ' Ry on[L* Yo Io ' 7y, Dt 1)

This gives 90/0¢ in terms of known quantities for 9p,/ot is found from the accumulation
of mass by Ch. 6/2#1, 3, and My, is found from Ch. 6/6 # 28 in which @ is to be
neglected.

+

E R20 ae RZO an ’)/vp.z at

Cu. 6/8. SUMMARY

An effort has been made to treat all the air above 118 km as a single conventional
stratum in the sense that the momenta, pressures, and densities in a column should each
be represented by a single number. To do this, all quantities have to be integrated
with respect to height. The integrals of p, p, o come out simply because the tempera-
ture is independent of height. But integrals involving velocity can only be obtained
from the relation at any level of velocity to pressure. The strict treatment of this
relation by analysis is too difficult, and so the geostrophic approximation has been

19—2
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introduced. This is probably good enough for transforming the dynamical equation,
but when applied to finding the temperature change it yields results which are
unlikely.

If on further consideration the single stratum has to be abandoned, another plan
is ready. Divide the stratosphere into several conventional strata. For all of these
except the uppermost the general processes of Ch. 4, Ch. 5 will apply. The mass of
this one having been made small, any errors committed in treating it will be of
little consequence near the earth where we live. Or again a conventional division
may be made at a height of 20 km in order to benefit by the observed steadiness of
pressure at this level, a steadiness to which Mr W. H. Dines has called attention*.

¥ “Characteristics of Free Atmosphere,” p. 71, Meteor. Office, London, Geophys. Mem. No. 13.



CHAPTER VII

THE ARRANGEMENT OF POINTS AND INSTANTS

Ca. 7/0. GENERAL

It will be convenient to have a brief distinctive name for the arrangement here to be
discussed. For this purpose we may borrow from crystallography the term “lattice.”

The approximate representation of a differential coefficient by a ratio of finite
differences is notably more exact when the differences are centered™. If 4, B and «
be any three variables, the ideal arrangement would be such that:

(i) Wherever B has to be equated to %l—i , then B should be tabulated at points

on the u-scale half-way between the points where 4 is tabulated.

(i1) Wherever two variables have to combine in an expression, not involving
their differential coefficients, they should be tabulated at the same points and instants.

(itl) When 4 is a function of %% , special difficulties arise. See below under the

arrangement of instants, Ch. 7/2.

Unfortunately it is not possible to satisfy conditions (i) and (ii), in their entirety,
for the given differential equations. The best we can do is to satisfy (i) and (ii) for
the largest terms, and to leave the rest to be centered by interpolation.

Cu. 7/1. THE SIMPLEST ARRANGEMENT OF POINTS

3 Mo R c .
(@) To fit with éjl%:—gp it 1s convenient to tabulate p at the heights where

strata meet, so that, for example, p,—p,=gR,, where R, is the mass per horizontal
area of the stratum bounded by %, and #,.

(b) To fit with the equation of continuity of mass, 2 should be tabulated at points
intermediate between My and My, when seen in plan; thus:

to T north
My
M, R M, —> to east
M,

* Vide W, F. Sheppard, Proc. Lond. Math. Soc. 1899 Dec.
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(¢) To fit with the two horizontal dynamical equations, when all terms are
neglected except:

oM, oP

Y s 2w sin ¢ M
oM, oP

—‘%‘A —a—+2ws1n M,

My and My should be tabulated at points intermediate between P when seen in plan,
thus :

2 i
DN B r M, P
P r

(d) Fortunately condition (c) is consistent with both () and (@). The frontispiece
shows the arrangement adopted. It satisfies (@), (), (¢). The points at which pressure
and momenta are to be tabulated are indicated respectively by P and M. The
coordinate differences are 200 kilometres of are in a north-south direction, and in
longitude the intervals between 128 equally spaced meridians.

(e) To fit with the characteristic equation of moist air, and with the expression for
the entropy, it is convenient to have W the mass of water per unit area of a con-
ventional stratum, & the mean entropy-per-mass of the stratum, and # the temperature,
all tabulated at the same points as I? the mass per horizontal area of the stratum.

Cu. 7/2. THE ARRANGEMENT OF INSTANTS

To fit with g R, =p,—p, it would be Best to tabulate L2 at the same instant as p.

To fit with

aMN

ai?' aMF o

ot
R should be tabulated at instants intermediate between those at which My, My are
tabulated, But there is no arrangement in time which will fit neatly with the above
and with

+ ete.

My oP .
——a—t-— 8—6—20) Slnd)MV
oM, oP
——-——-at = 5—' +2 Sln ¢]l1E

without interpolations. For this reason it has seemed best to tabulate all quantities
at the same set of instants. Then progress in time is made by what may be called
the “step-over” method, in which, in order to secure proper centering, we multiply
dfot of any quantity at the instant ¢, by twice 8, and add this product to the value
of the quantity at ¢ — &8, in order to find the new value at ¢+ &t.

It is seen that this “step-over” method requires two initial distributions separated
by an interval 8. Various ways of obtaining the second of these will now be described.
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(1) The first step may be made by the inaccurate “advancing differences” and
then we may return to the centered step-over progress. But the errors of the first
step will persist.

(i) Perhaps the best plan would be to make the first few steps with smaller but
progressively increasing time-differences, of which only the first step would be
uncentered. For instance from the distribution at 0" we calculate, by an uncentered
but short step, the distribution at 13". From the time rates deduced from the distri-
bution at 11* we make a centered step of 3 hours from 0" to 3". Next, from the time
rates at 3" we make a centered step of 6 hours from 0" to 6" Then we begin the
normal process, using the time rates at 6" to step from 0" to 12",

(i1) Two initial distributions a few hours apart might be obtained by observation.
But the errors of observation would be magnified in the difference. However, two
sets of observations would form a valuable check on any purely deductlve way of
beginning, such as that described above,

(iv) There is another way of commencing, which is convenient and falrly exact
when we are dealing with simple equations such as 80/ot =*0/6z, but which is probably
unworkable in the present case, on account of the complexity of the system of equations.
Still it may be worth mentioning here. We have, let us suppose, arithmetical values of
all the dependent variables at 0", given by observation. We assigu algebraic symbols
to values of these variables at 6". The mean between the arithmetical value at 0" and
the symbol at 6" is taken as the value at 3" and this binomial expression is substituted
for the variable in question wherever it occurs in the differential equations, except
where it is differentiated with respect to the time. The differential equations then
yield the rates of increase of all the dependent variables at 3% The rate of increase
of any variable at 3" when multiplied by the time-step is put equal to the difference
between its algebraic value at 6" and its numerical value at 0% Thus we obtain a set
of algebraic simultaneous equations, which when solved yield the required arithmetical
values at 6" In the case of the weather the algebraic equations would be quadratic,
because the differential equations contain some quadratic terms.

(v) There is another process which may be said to have a sort of inherent stability,
because it allows the first step to be made in the simplest way possible, and yet gives
high accuracy later on. If 6,, 6,, 6,, ... 8, be successive values of # at equal intervals
ot, the process is equivalent to using as many terms of the Maclaurin expansion as
are available at each step, so that we put

0,=6,+dt. > 0 to two terms,

6,=0, +28t = + e 20, to three terms,
T
00, (nSt)“ G (ndt)" 6,
0,=6,+ndt. a—t" TR °+...up to =, 6t"o’ that is (n+1) terms. ...(1)

Now what the differential equation gives us is not these successive differential
coefficients of the initial value 6,, but instead the first differential coefficients of
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the successive values 8,, 0,, 0,, ... 8,. However we can find the former from the latter,

because, by differentiating (1)
P 0°0, , (ndt)* 20,
a—tﬁn—a—t0°+’n8t.—a—t7 +"2'1-—at—3
and all the differential coefficients in the second member of this equation, except the
highest one, can be expressed in terms of 8,, 8,_,, ... 6,, 6,, 6,. On making the substi-

tutions it is found that the series begin thus:

81: n an+1
+as far as (nn') Wg’, ......... (2)

0,=06,+3t. %z—" an uncentered first step.

0 A
0,=06,+20t. 6_0;, a simple step-over.

0,=16,+30,+218¢. %—Z—’ a step-over from an interpolated value 218t previous.
o0
0,=—-0,+ %90, + 320, + §%ot . 52".
| 00,
b= {— 18236, + 17850, + 49500, + 20000, + 16875 3¢ . W}'

These hold true quite independently of the nature of the differential equation which
is to be solved.

These various methods will now be illustrated in a very simple case. Suppose that
the differential equation is 26/0t = — @ and that the initial condition is that §=1 when
t=0 so that the exact solution is §=e% Let the normal interval between the tabu-
lated values of 6 be taken as 8t =0-2.

' 6 by centered time-steps of 04, stepping over intermediate
values, except at the beginning, where the following
0 by methods are employed 0 by
advancing Maclaurin
time-steps as far as
t Exact of 02 FromAL il ) Small initial I available
time 0=et throughout of 0°2 P | steps; only Double Algebraie
s e first initial data first step
uncentered
Excess of approximate over exact
0 ' 1-0000 i 0000 | 0000 0000 0000 0000 {0000
0-025 | -9753 —+0003
0-05 l 9512 | 0000 |
01 9048 ‘ ‘0001
| $80:0 | 8187 — 0187 —-0187 10003 0000 — 0005 —-0187
| 04 6703 - 0303 ‘0097 ‘0021 | -0022 ‘0024 ‘0097
! 06 5488 | —-0368 —+0208 ‘0012 0009 ] ‘0003 —-0048
L 08 ‘ 4493 | —-0397 ‘0195 0031 0033 | ‘0038 ‘0024
10 | 3679 —+0402 —-0274 ‘0011 0008 l ‘0000 ~+0012
I I
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On examining the last two rows of the above table it is seen that advancing time-
steps have produced errors of about 10 per cent., while the errors of the four methods
on the right are only about 0°5 per cent. There is a curious oscillation in time about
the errors of the step-over method, the amplitude increasing as it goes. “Maclaurin
as far as available " has also produced an oscillating error, but its amplitude decreases
with time. If we consider not merely accuracy but also ease of performance, the most
satisfactory process in this case must be judged to be the one which begins with a
very small uncentered step and doubles the length of the step-over several times, in
the manner described in (i1) above.

Cu. 7/3. STATISTICAL BOUNDARIES TO UNINHABITED REGIONS

On parts of the oceans, near the poles, and within the desert tracts of land there
are no people to provide observations or to appreciate forecasts. For lack of obser-
vations some assumption has to be made.about the behaviour of the atmosphere in
those regions. This difficulty is not peculiar to finite-difference methods, but is
common to all systems of forecasting. The favourite assumption is that the climato-
logical values of the elements—say monthly means based on statistics of former
years—are a suflicient representation. This assumption is very easily translated into
our numerical process by writing the monthly means around the edge of the table of
principal variables. The edge is thus maintained in being, and by contrast with the
example of Ch. 2 the wasteful shrinkage of the table at each successive time-step no
longer occurs. But of course errors are mntroduced if the monthly means at the edge
do not represent what actually happens there.

Cu. 7/4. JOINTS IN THE LATTICE AT THE BORDERS OF
SPARSELY INHABITED REGIONS

Again there are other portions of the globe, especially seas, where some rough sort
of forecast might be possible and desirable if it could be carried out with a much
opener network than that in use where population is dense. But the two networks
must be united on the computing forms in such a way that air, represented by
numbers, can flow across the joint. The fignres (A) and (B)* show two kinds of joints
between chessboard patterns. In Fig. A the number of stations per area on the map
is reduced fourfold, in Fig. B the reduction is ninefold. An attempt has been made,
in accordance with Ch. 7/1, to surround each M point by four equally spaced P points,
and conversely. This has not sncceeded in the case of the points marked by letters
in parentheses (P), (M), (I”, M). The quantities thus indicated are required in making
the prediction at other points, but they cannot be directly predicted by the scheme
of Ch. 7/1 themselves. Instead they must be filled in by interpolation between their
neighbours. Such interpolation is always possible. It is seen that the ninefold
reduction gives a neater joint than the fourfold, in the sense that the latter involves
more interpolations.

Seplibd
R. 20
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Fig. B.
Joint reducing the density of stations in ratio 9: 1.
See p. 153.
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Cn. 7/5. THE POLAR CAPS
At the poles the terms in tan ¢ become infinite and are balanced by an infinity of
ou L e b : 0 8 : b PN e
opposite sign in the terms in ~pt These infinities are artificial in the sense that

they are not present in the weather, but arise solely from the polar co-ordinates by
whieh we measure it.

If we had to deal only with local polar meteorology the most satisfactory plan
would probably be to neglect the curvature of the earth and to arrange pressure and
momentum points on a “chessboard” formed by straight lines intersecting at right
angles. But there does not seem to be any way of making a smooth joint between
the reetilinear chequers which suit the poles, and the chequers formed by meridians
and parallels of latitude which suit the rest of the globe.

The erowding of meridians as the pole is approached has already been discussed
in Ch. 3/5, Ch. 3/6, where it has been proposed to begin at the equator with 128
meridians, to omit alternate ones in latitude 63" or thereabouts, and again to halve
the number at successive stages until only four are left close to the pole. The joint
near latitude 63° could be made like Fig. A on p. 154. On drawing the scheme
out it is found that in higher latitudes the joints follow oune another so closely that
their interpolations overlap. In other words, for latitudes between 70° and 90°, a
special pattern needs to be devised together with a corresponding special trans-
formation from infinitesimals to finite differences. This pattern, when it has been
made, may have some influence on the number of meridians chosen for lower latitudes.
The number 256 has been suggested as being a power of 2 and so making possible a
series of joints like Fig. A. Alternatively a power of 3 such as 243 = 3° would fit with
a series of joints like Fig. B. Or we might have a product of a power of 2 into a
power of 3 corresponding to some joints like Fig. A, some like Fig. B. But joints in
which the number of meridians was reduced in a ratio as large as 1:5 would mark
a violent change in the lattice, so that the number of meridians on the equator could
not suitably contain 5 as a factor, still less 7 or any higher prime-number.



CHAPTER VIII

REVIEW OF OPERATIONS IN SEQUENCE
Cu. 8/o. GENERAL

In writing the chapter on the fundamental equations the ideal was to obtain a
description of atmospheric phenomena which should be in the first place correct, and
which, secondly, might be used in prediction. Here in Chapter 8 the order of emphasis
is reversed. The ideal is now to make a scheme first workable and secondly as exact
as circumstances permit. After a new machine has emerged from the experimental stage,
its workability is tested by the cost and the value of its product, by its satisfaction of
human needs. But the present scheme has not yet emerged. The questions still are: does
it conform to the nature of the external world? will the wheels go round at all ? So the
essence of workability is here taken to be that, when we have made a step forward in
time, we should find ourselves provided with the data for making the next step. The
initial data are arranged in a pattern which, by borrowing a term from crystallography,
we may call a “space-lattice.” Wherever in the lattice a pressure was given, there
the numerical process must yield a pressure. And so for all the other meteorological
elements. Such a numerical process will be referred to as a *lattice-reproducing
process.” All other processes have been rejected. There is an exception, as we have
seen in Chapter 2, at the edge of the map covered by the lattice. In Chapter 7 two
ways of dealing with this exception have been discussed under the heads of *‘ statistical
boundaries ” and ¢ joints in the lattice.”

A notation 1s needed for partial differences, for whereas a partial differential
coefficient such as 3p/dn is usually sufficiently clear, yet when we translate it into
differences the 8p often becomes detached from the 8n so that it is necessary to write
8xp, the suffix indicating the coordinate which alone varies.

In Ch. 4/8/6 we noted the difficulties arising from having a lowest stratum of air
as thick as 2 km. InCh. 4/10/8 we came across the notion of a conventional film just
thick enough to contain the vegetation. On further examination this film proves to be
inconveniently thin, because its thermal capacity is in places negligibly small. If the
lowest stratum is to be divided into two, the division might suitably be taken at a
height of ‘about 200 metres.

Those operations which have already been adequately described are in the present
chapter but briefly mentioned in their proper sequence. More space is taken up in
making good previous deficiencies, especially in regard to the entropy of moist air and
the earth-air interface. The procedure to be described is certainly very complicated,
but so are the atmospheric changes.
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Cu. 8/x. INITIAL DATA

Suppose that, at the initial instant, we have numerical values of the dependent
variables given by observation at points distributed in the following pattern with
reference to the map which appears as frontispiece. Above every point marked 3 on
the map, suppose that the momenta-per-area, 3, and My, are given for each of the
five conventional strata. Above every point marked /> on the map suppose that the
pressure is given at the ground and at the heights of exactly 2-0, 4'2, 7°2 and 118 kilo-
metres above sea-level, that is to say at the dividing surfaces between the strata. Also,
above the points marked P, suppose that the mass-of-water-per-horizontal-area, W, is
given for the four lower strata; and that the temperature is given for the uppermost
stratum only, Suppose further that, where the points marked P fall on land, we are
given the temperature and water-content of the soil at the surface and at a series of
depths below. Suppose, lastly, that the sea temperature is given at the other points
marked . A sample of the data described above will be found in the large table in
Ch. 9, but the information for the soil is there lacking.

Cu. 8/2. OPERATIONS CENTERED IN COLUMNS MARKED “P” ON THE MAP
COu.8/2/1. THE MASS-PER-AREA, R, OF EACH STRATUM
This is found from p at the upper and lower limits of the stratum. Thus, for

example, ;

-p

R el

86
where g, is the mean acceleration of gravity for the stratum. The result is entered on
Computing Form P 1.

Cn. 8/2/2. THE FORCE-PER-HORIZONTAL LENGTH

iiis s P = f pdh and is found from the formula (Ch. 4/4 # 9), which for the stratum

h, to h; beecomes
P (s — he) (s — ps) ;
- 10ga Ds— loge Ps
For the uppermost stratum this formula is replaced by
2:870 x 10%6,
=—.p
Yo

See Ch. 6/1 #7. The result is entered on Computing Form P 1.

P,

Ch. 8/2/3. MEANS ACROSS A STRATUM

Where, m what follows, we require to know the mean values aeross the thickness
of any stratum of the quantities p, p, w, my, my, they are usually taken respectively
as P[8h, Rf8h, W [oh, My/8h, My/6h, where 8/ is the thickness of the stratum.
Similarly, mmean values for a stratum of p, vy, vy are usually taken respectively as
W/R, My/R, My/R. If some other process has to be employed in any case, it will
be mentioned speeially.
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Cu.8/2/4. SATURATION

For each stratum, except the uppermost, we find whether the air is saturated
or not by means of Ch. 4/1# 5, employing for p, p, u the mean values which have
Just been indicated. From the appropriate characteristic equation (Ch. 4/1) are next
found the mean temperature of the stratum and also if neeessary w,, the density
of aqueous vapour saturated at this temperature. We may note that when the air is
dry, the particular kind of mean temperature yielded by this process is

f Bpdi = J 457 )

The temperature is entered on Computing Forin P 1.

Cu. 8/2/5. UNIFORM CLOUD AND PRECIPITATION

We follow the scheme described in Ch. 4/6. For each stratum, in which the air is
saturated, we multiply the density of saturated vapour w, by 8k so as to obtain W,
the mass of vapour per horizoutal area of the stratum. Then W— W, is the mass of
condensed water per horizontal area. If W — W, exceeds 0'4 grm cin™?, we deduct the
excess from the stratum and transfer it to the ground as precipitation. See Ch. 4/6.
The cloud is entered on Form P 1, the precipitation ou Forms P 1 and P xvin. Local
cloud and precipitation due to heterogeneity are treated separately, see Ch. 8/2/8
below.

Cu.8/2/6. SHALL WE USE ENTROPY-PER-MASS ¢, OR POTENTIAL TEMPERATURE 7?

In the classical thermodynamics euntropy occupies a central position, whereas
potential temperature is rarely mentioned. In meteorological theores these positions
are almost reversed.

Let us adopt the definition of entropy favoured by G. H. Bryan as being most
suitable in connection with irreversible internal processes such as the smoothing out .
of heterogeneity :—* If' from any cause whatever, the unavailable energy of a system
with reference to an auxiliary medium of temperature #; undergoes any (positive or
negative) increase and if this inerease be divided by the temperature 0, the quotient 1s
called the increase of the entropy of the system*.”

It should be noted that the choice of 6, makes no difference whatever to the
numerical value of the entropy provided that 6; is lower than any other of the
temperatures concerned. If 6; is not lower, the interpretation is unphysical.

Let us define 7 as * that temperature which the air would attain on being brought
to equilibrium at a standard pressure p; without loss or gain of either heat or moisture.”
The numerical value of = then depends upon the conventional p;.

The entropy when condensation occurs. Error in Ch. 4/5/1 # 13 and in the
Hertz diagram.

Even if the sky be cloudless, evaporation or condensation is usually in progress at
the foliage. From general thermodynamics it is evident that a quantity de of radiant

* Bryan, Thermodynamics, §71. B. G. Teubner, Leipzig, 1907.
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energy absorbed by a leaf at 8, and given out again to the air at almost the same
temperature will increase the entropy of the atmosphere by de/f , irrespective of whether
the energy goes in warming or in separating water molecules during the process of
evaporation. Therefore when entropy is stirred upwards by eddies it may be con-
sidered as going as the sum of two fluxes, one depending on sensible heat, the other
on the water-vapour, and the latter flux must involve the latent heat. But we have
shown that the flux of entropy, except for a possible modification depending on irre-
versibility, is

oo

%

Therefore do must involve the latent heat =, even if the air is clear. Now Hertz's
well-known formula ;
o=t dlopdl —bdlog, il (1)

for the entropy of clear moist air does not involve the latent heat « and is therefore
inapplicable for finding the eddy-flux of entropy even in clear air. On examining the
manner in which Hertz derives this formula it is seen that he considers the addition
of heat but not the addition of moisture, so that the formula gives do correctly for two
samples of clear air provided that both have the same p, but not otherwise. Now in
the vertical u is usually variable, so that it is only exceptionally that
do=vy,dlog,0 —bd log p.

I did not understand this at the time when Ch. 4/5/1 was printed off and so un-
fortunately the value of a, given by Ch. 4/5/1 # 13 depends only on the variations of
¥, and b with p and negleets the more important effect of the latent heat.

To find the true difference of entropy we must trace in imagination some process
of adding water-substance reversibly, and the question then arises: what energy and
entropy are to be ascribed to unit mass of the incoming substance? As there is an
arbitrary constant of integration in the entropy, we must ask what would be the effect
of an increase in this constant for the incoming water. Approximations are not here
permissible, for the constant might be made indefinitely large. Now it will be found,
on examining the system of prediction, that all the caleulations with o and u lead up
to finding Do /Dt and Dp/Dt, and that the sole use to which these are put is in the
equation for the vertical velocity, which they enter together in the form

Do /Dt —a, Du/Dt.
Now a, is here defined by the statement that
B =l £ &y p Py Tl NI (2)

for any arbitrary variations of p, p, u so that a, = <gg> . An increase in the
P' P, p const.

arbitrary constant which oceurs in the entropy of water would increase a, by the same

amount everywhere and would therefore leave (Do/Dt —a, Dp/Dt) unchanged since

this expression is equal to (a, Dp/Dt + a, Dp/Dt) and the latter has nothing to do with

the arbitrary constant in the entropy of water.
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However it is convenient for many purposes to take account of the entropy of
water, for otherwise the latent heats would lack any material embodiment. And if we
deal with the entropy at all, we must reckon its variations with temperature.

The most natural way of reckoning the entropy of the water-substance would be
to take it as zero at the absolute zero of temperature. It was formerly supposed that
the presence of @ in the denominator of the integral which gives the entropy would
make the integral have an infinity where #=0; but the measurements of Nernst,
Lindemann, Koref and others* have shown that the specific heats tend to zero at =10
in such a way that the entropy remains finite there.

However the most natural reckoning may not be the most expeditious, in view of
the existence of the Hertz and Neuhoff diagrams of adiabatics of moist air.

If the earth’s atmosphere were so hot that water-vapour never condensed in it, we
could entirely ignore the latent heat of evaporation of water even as we now ignere
those of oxygen and nitrogen. This thought suggests that we must recognise any
energy which can be extracted from water substance by cooling it to the lowest
temperature ocenrring in the atmosphere, say to 180°A, but that with regard to any
energy or entropy remaining at that temperature we may either ignore it altogether
or else give to it an arbitrary fixed value per mass of ice.

Now although Hertz’s calculation of the entropy difference of two samples of air
saturated with ice refers, as in the case of clear air, only to the putting in of heat and
not of moisture, yet it may be used to compare samples having different quantities of
moisture. For let all the samples be expanded adiabatically until their temperatures
fall to 180°A. Then practically all the water will be condensed. Now we have seen
that we may if we please ignore any energy remaining in ice at 180°A. Therefore, at
that temperature, the ice-content may be taken to have no effect on the entropy of the
sample. That is to say the difference of entropy per mass of two samples of atmesphere,
both at 180°A, is taken to be simply

o= —b. AdToZP, 1o shiusnnorasteh i N (3)

even if they contain different amounts of ice. And then, by the addition of heat
according to Hertz's process we may compare any samples whatever in the snow stage.
Hertz states that the 1sopleths for the snow stage satisfy the equation, in our netation

o =const. =y, log —blog p + (¥ -;»"”)p, ..................... (4)

where ¥, is the latent heat of fusion. At 180°A the water per mass p would be
practically zero, so that do is simply —b. d log p as above. As the isopleths of o are
drawn at intervals of 0°0025 calorie/degree C, it follows that do at any temperature
and pressure in the snow stage may be read off easily, without any need to trace the
air down to 180°A, which lies beyond the limits of the diagram.

When we wish to find the difference of entropy-per-mass of twe samples of air,

* Quoted by J. H. Jeans in his “ Report on Radiation and the Quantum Theory,” published by the
Physical Society, London, 1914,
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in a form approximately valid under all meteorological conditions, we may therefore
proceed as follows. By the aid of Hertz's diagram trace the expansion of each sample
when no heat or water is lost. Its course will in general be broken by the jump
peculiar to the hail stage. On arriving at the snow stage read off the entropy differ-
ence at the rate of 0:0025 (kg-calorie) (kg)™'. (degree C) * per interval between consecu-
tive adiabatic lines. In erg units the same interval is 0°1045 x 10° erg grm ™ degree™.

If instead we had read off do on the lines in the same diagram representing the
behavionr of unsaturated air, we should have obtained a quite different result. These
lines in fact appear to have the right slope, but, unless u is the same for all, a false
spacing. They might with advantage have been made asymptotes, at a very low
temperature, to the adiabatic lines of the snow stage.

Only if the limits of the diagram be reached before the air is saturated is there a
need for calenlation. In that case it is best to use the value of a, given below to correct
the entropy of saturated air to that of the given unsaturated air.

In whatever way do be reckoned it is essential that a,, defined as (30/9p),, ,const.»
should be reckoned correspondingly. So to find a, we should take a pair of points on
the Hertz diagram corresponding to the same p and p but to slightly different p.
Owing to an approximation which Hertz makes, these points coincide. In other

words, Hertz's diagram makes
MG ERE T =N 000 ) lh: 5. . Jeonceiiinaniiitilonionann. (5)

But on tracing the samples down the adiabatic, they become saturated at different
pressures, and so arrive at the snow stage with different values of o. In this way the

following values of a, have been computed for unsaturated air:
3\

temperature pressure m ap
Ui mb 103 % 108 ergs/degree
300 1000 6 96
300 1000 18 84
280 700 ] 98 Py, <5 (6)
272 600 3 101
263 450 3 117
253 500 15 120 roughly

For aur saturated with water the effect of adding more water is, according to the

Hertz diagram, merely to increase the hail stage, and on this account
EESNESROT O degrte. | 0. s (7)

For air saturated with ice the addition of more ice is apparently to leave the
entropy unchanged. That is because Hertz neglects the thermal capacity of the ice.
Neuhotf’s computations appear to he more accurate in this respect. But if great
accuracy is to be attempted, it will no longer be possible to consider, as Hertz does,
that p and @ suffice to define the density, irrespective of p.

In the actunal troposphere the entropy-per-mass is so very nearly independent of
height—much more nearly so than would be supposed if we took the observed
temperatures to apply to dry air—that quite small changes in procedure are enough
to change the sign of the computed 9,,0.

R. 21
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In reckoning the entropy of water from 180° A, we include the latent heat of fusion

. o K 0
of ice, divided by 273° A, so that the eddy flux of entropy in the form § 8_]0)- would also

include the same. Now a flux of entropy found in this way at the level %, will often
have to be compared with the flux at the foliage in order to find the accumulation in .
the air between 0 and 2 km. If we were to treat the latter flux as the radiant energy
divided by the temperature of the foliage, the water substance leaving the foliage
would be supposed to car ry with it the latent heat of evaporation, but not that of
fusion. The proper course is evidently to reckon the ground as supplying, vid the
plant stems, water having a certain entropy-per-mass which includes the effect of the
latent heat of fusion. In general, wherever water-substance occurs, we must credit it
with an entropy-per-mass reckoned from the same temperature, in this case ideally
from 180° A, but with an approximation introduced by Hertz.

The behaviour of entropy-per-mass and of potential temperature in regard to
turbulence. One of the chief questions is whether, when condensation occurs, either

T or o satisfies the three conditions Ch. 4/8/0 # 2, 3, 9 which any quantity x must
satisfy if it is to diffuse according to the equation

I)X ox
Di Pa/)/( a/)]) ........................... Leseee (8)

The first of these conditions, Ch. 4/8/0 # 2, is equivalent to, and perhaps finds a clearer
expression in, the “mixing-rule” of W. Schmidt*, which states that samples having
masses m,, i, and x,, x. must give a mixture having y, such that

2 X (9)t

3_— L I I A I A I I I B B B B A I )
m, +m,

The answer to this question becomes fairly clear if we adopt v. Bezold’s { view of
the process of mixture. Let us consider only processes which occur without loss or’
gain of heat or moisture. Bezold replaces in imagination the natural process by two
artificial ones in sequence. In the first artificial process there is supposed to be neither
evaporation nor condensation. So that as the specific heat v, is nearly a constant, the
temperature 6, of this mixture is given approximately by the mixing rule (9) above.
And a similar rule will be followed, without approximation, for u the total water
substance per mass of atmosphere and for » the mass of water-vapour per mass of
atmosphere, so that u—» represents the liquid or solid. So that if subseripts 1 and 2
denote the component, and subscript 3 the mixture, the mixing rule (9) may be written

P's_l-"q_Va_Vl__as—al__me
T Tl g T e (10)

* Wm Schmidt, “ Der Massenaustausch...,” Sitzb. dkad. Wiss. Wicn, Mathem.-n. Klassc, Abt. 112, 126
Band, 6 Heft, §4. 1917.

t By an exception to the convention holding in the rest of this book, subscr;ipts in Ch. 8/2/6 do not
denote heights.

1 Sitzber. Akad. Wiss. Berlin, 1890, pp. 355—390. English translation in Abbé’s Mechanics of the
Earth’s Atmosphere (Smithsonian Institution, 1891).
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This first process is not reversible because the mixture cannot be separated by
reversing the motions. Therefore although no heat enters from outside, the entropy
must increase.

The second artificial process is one of adiabatic condensation or evaporation of the
intimate mixture of moist air and liquid or solid particles. During it p is fixed, but
v and @ change in such a way that :

BB ey ORI 2 i e e 2 s 50 oo 8 8008 e e (11)

where ¥ is the latent heat of evaporation or of sublimation. This change proceeds
until either the air is saturated or p—v is reduced to zero. Bezold gives a pretty
diagrammatic representation of it in the g, # plane, which however does not concern us
here. Owing to the intimacy of the mixture this second process must be almost perfectly
reversible, and therefore during it both entropy-per-mass and potential temperature
are unchanged.

The question arises whether in the natural adiabatic process of mixing, the changes
in 7 and o would be the sum of their changes in Bezold’s two consecutive adiabatic
processes. If we provisionally assume that tlus is so, then we can deduce the following
important proposition. Take at one height a salnple of cloud having properties 7, o,
o v, and at another height a sample of clear air having properties 7,, o,, p,, v,. Let
eddies move them adiabatically to the same level. In these journeys 7, 7,, oy, o, i,
p, are all unchanged but »,, v, probably alter. Now let the samples mix and come to
equilibrium as regards evaporation. Then from what has been said it is evident that
the mixing rule (9) applies to 7 and to p but not to o nor to v.

The second condition to be satisfied by y, if the diffusion equation (1) is to hold,
is that x should not be changed by delay. See Ch. 4/8/0 # 3. This applies obviously
to o or to 7 provided that the processes are really adiabatic or that we account
separately for their non-adiabatic parts, as we do here in the case of radiation. )

The third condition to be satisfied by the diffusing quantity y is that the upward
flux of (x x mass) should vanish when ox/oh vanishes...................... Ch. 4/8/0 # 9.
This is satisfied by either o, 7 or p since they are not changed when a portion of air
is raised or lowered without loss of heat or of moisture; and when these losses occur
they are taken into account separately.

As all three conditions are satisfied for =, the flux of (r X mass) is seen from

Ch. 4/8/0 # 17 to be —cor/oh or equivalently g Z;) But now we come to a pecuharity.

Suppose that a portion of cloud and a portion of dry air are in contact at the same
temperature and pressure. Then it is impossible to say which has the greater potential
temperature until the standard pressure p; has been fixed. For if p; be larger than
p, then in changing from p to p; some cloud will evaporate and the dry air will have
the higher 7. Wherecas if p; be smaller than p, then in changing from p to p, more
water will condense in the cloud, so that the dry air will now have the lower . Thus
the flux of (r X mass) may be reversed in direction by a mere change in the conventional
pressure p;. But the fluxes of latent or of sensible heat are not thus fantastical,
21—2
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and the explanation of the behaviour of 7 must be sought in its relation to heat. It

or

is therefore evident that ga—]—) does not in general measure the flux of sensible as dis-

tinet from latent heat, as it does at least approximately in the special case of clear alr.
The difference of entropy-per-mass between the cloud and clear air is free from the
kind of artificiality that complicates dr.

Thus to sum up : if we use potential temperature we must attend to any local and
temporal variations of p;, and to the relation of the flux of heat to that of (v x mass),
but irreversible mixing does not matter. If we use entropy-per-mass we must add on
the gains due to irreversibility, but the flux of entropy at a surface is simply the heat
entering per area per time divided by the temperature, and to compute it we need not
know the evaporation which the heat produces.

Increases of entropy by irreversible internal processes such as the smoothing
out of eddies or of patchiness by molecular diffusion. It has been noted on p. 40 that
irreversible mixing of cold and warm air increases the total entropy but not the mass-
mean of potential-temperature if the air is dry. For this reason on p. 69 the diffusion
equation appears in a simpler form in potential temperature than in entropy. The
latter equation Ch. 4/8/0 # 20 may, for clear air, be expanded to read

D(T_ 0 aO' f ao' g ¢
i _a])<§@>+;<é§> .............................. (12)

This equation is, for dry air, of the same form in o as it would be in the potential
temperature 7 except for the presence of the last term. Now in a paper on the “Supply
of energy to and from atmospheric eddies*” a term of just this form &fy, . (2o/op)* is
found to correspond to the irreversible part of Do/Dt. The square seems appropriate
as the irreversibility is not likely to depend on the sign of 9o/dp. However the
argument so far is limited to the case of dry air, for in the paper on the “Supply of
energy...” the coeflicient a, is simply neglected in
do=a,.dp+a,.dp+a,.dp.

In the general case the terms in Do/Dt which express irreversibility may perhaps be
found in all cases to have even indices.

It may be asked whether this irreversible increase of entropy has any importance.
It is worth attending to if there is any practical difference between uniform air and
thermally patchy air. Undoubtedly that is so, but we must take account of the
difference consistently thronghout our computations. For instance in usiug the hydro-
static equation to find the change of pressure with height in dry air, if the temperature
of the air is specified by giving the mass-mean of its potential-temperature, that
apparently would suffice, whereas if instead the temperature is specified by giving the
total entropy, then we must also bave given a measure of the heterogeneity.

Another increase in entropy is due to the dissipation of eddying kinetic energy by
molecular viscosity.

* Roy. Soc. Proc. A, vol. 97, p. 366, equation (6:4). But note that in the second member (30/dp) should
be squared. ! .
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From what has been said it is seen that there ought to be some correction to the
vertical velocity equation because in it entropy is used as a measure of density by way of

do=a,.dp+a,.dp+a,.dp.

The correction which would be applied to a, would depend on the thermal hetero-
geneity of the air and would vanish if the air were not patchy.

All these matters connected with rreversibility are of rather secondary importance,
and as they are still somewhat obscure I have thought it best to omit the irreversible
terms until they can be fully investigated.

Plan Adopted.

It appears to be more convenient to use entropy-per-mass for treating the eddy
diffusion in the upper air. This is done on Computing Form P x1. On the contrary,
for dealing with the thermal boundary condition at the earth's surface, the procedure
is simpler if we use mstead the potential temperature at the local and instantaneous
surface pressure. Computing Forms P 1x, P x are arranged accordingly. It remains
an open question as to whether o or 7 is the better when we discuss Stability. As an
interim procedure I have used 7 for this purpose on Forms P11, P taking the
standard pressure as p;. In order to explain these values of 7 the formula from which
they were computed will now be deduced.

To compute the potential temperature of air which is clear and which will
remain clear at the standard pressure p,.

According to Hertz's well-known formula which is derived above in Ch. 4/5/1,
o=vy,log, 0—blog, p+const. ......ocoviiiiiiiiiiiiie, (12)

and y, and b are functions of u only.
Therefore if air at 6, p changes to 7, p; while o and p remain fixed, y, and b are
also fixed and y,log v — b log p; =7, log 8 —blog p so that, without approximation,

AZE7)
7;0(%> s ST (13)

and, as the moisture in the clear air increases, b and v,, though both increasing, do so
in an almost constant ratio: thus

p="000 ‘010 020 }
bfy,="2893 2881  '2870

A formula for = will now be derived, which is convenient in the present scheme
because we have given p as a function of 4. On combining the hydrostatic equation
opfoh = —gp with p=0>ph there can be obtained

ERAS& ol
o--9(; logp>vm"y, .............................. (15)

which is strictly correct provided b be given its value corresponding to the existing
p. Now on multiplying (15) by (pi/p)’» and assuming that b/y, is independent of
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height, while admitting arbitrary variations in b proportional to those in v,, there
results
LR b/v{.dh.} 16%
T = S kR T I . eeesesacsemesialsfone s eisision 6
Yo P d (([)b/‘y") vertically ( )
or approximately, with values of the constants corresponding to an ordinary value of u
dh
7=—0'983 x 107, ,r"ﬂ( m) I ¥ 17
P APp™/ verticatly (17)

Here % is the height in centimetres. The unit for p is arbitrary provided that the
same 1s used for p;.

A table giving p*™ as a function of p will be found in the Quarterly Journal of the
Royal Meteorological Society for July 1921.

Cu, 8/2/7. ARRANGEMENT OF LEVELS FOR THE EDDY-FLUXES
The moisture is tabulated at the mean levels of the strata. Its rate of accumula-
tion is also required at these levels, and therefore the fluxes must be tabulated at the
intermediate levels where strata meet. At the ground the boundary is somewhat
blurred by the presence of vegetation; but if we imagine it as viewed from the
neighbouring boundary, 2 kilometres above, it would appear to be sufficiently definite.

Cu. 8/2/8. ESTIMATE OF TURBULENCE AND HETEROGENEITY
The estimate is intended to be based on the instantaneous distribution of entropy,
of velocity, and of water-substance. The time taken to establish or destroy a state of
turbulence or of patehiness is thus neglected. Common observation of the diurnal varia-
tion of gustiness, or of the rising and dissipation of cumuli, show that this time 1s of
the order of an hour, and is therefore unimportant in comparison with the time of
passage of a cyclone, with which forecasts are usually concerned.

An alternative plan, more correct and physically more interesting, but not attempted here on _

account of its probable toilsomeness, would be to take suitable measures of turbulence and of
heterogeneity as main variables in addition to the seven chosen in Ch. 4/0, and to trace their time
changes step by step. The equations expressing their changes might include Ch. 4/8/1 # 22,
Ch. 4/9/7 #6, Ch. 4/9/8#8, but this system is not in itself complete, and I do not know the
equations required to complete it.

The coefficient & developed in Ch. 4/8/5 for finding the amount of water moving up
through the thick stratum is estimated from the wind measurements set out i the
last column of the table on page 84. The coeflicient 22, introduced in Ch. 4/8/4 for
finding the upward flux of heat in the thick stratum, is similar to & and is, pro-
vistonally, put equal to it.

Observation and theory both suggest—although they do not yet prove—that these
two measures &g, and 22 of turbulence near the ground could be expressed fairly well
as functions of three variables, namely of the locality, of Mg, the momentum per area
of the lowest stratum, and of 74, —7,, where 7, is the mean potential temperature of
the stratum and 7 is the temperature of the interface where radiation is converted to

* Compare Exner, Dynamasche Meteorologie (Teubner), Art. 70.
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heat. This functional relationship could probably be made more definite by lowering
the height denoted in these symbols by the suffix 8. But however much it is lowered
we should still require to base the estimate on the temperature actually at the surface
of the soil or vegetation. This temperature is computed below in Ch. 8/2/15, 16 from
an equation which is non-linear, and which involves & and 22 in certain terms. Thus
the best way to disentangle these processes appears to be to make first a trial estimate
of 7,4, on which to base corresponding values of & and of 2. These are then used,
together with the radiation, to find a corrected value of 7, and thence corrected values
of &, and 22,

On the other hand the radiation cannot be computed until the amount of detached
cloud has been estimated, and detached cloud, being an effect of heterogeneity, is
naturally grouped together with turbulence. Thus after estimating the amount of
detached cloud and of local showers by the aid of statistics (Form P111) we next
compute the radiation, and come back to the diffusion produced by turbulence at a later
stage (Ch. 8/2/17, 19).

Cr.8/2/9. RADIATION

From Ch. 8/2/5 we know in each stratum the density of any continuous cloud which
there may be. In Ch. 8/2/8 we estimated the amount of detached cloud. The radiation
can therefore be traced downwards and upwards. For long-wave radiation I have used
the “approximate simplified process” of Ch. 4/7/1, for solar radiation the process and
constants of Ch. 4/7/2. The processes have been so fully described there, that it should
suffice here to refer to the computing forms P1v, v, vi and to note that the upward
long-wave radiation from the interface, althongh to appear on Form P vi, is not com-
puted until the subsequent Form P x has been filled up according to Ch. 8/2/15.

Cn. 8/2/10. THE EVAPORATION FROM THE SEA

The rate of evaporation depends only on the up-grade of p and on the distribution
of eddy-motion in the air.
According to Ch. 4/8/5 the rate of evaporation is taken as

el (2‘91;*“133)=E for brevity,
where pg is the value of p which would be in equilibrium with the water at the
surface of the sea. It is assumed here that the air actually in contact with the water
is practically saturated. Observations made at the height of a ship’s deck are no
proper test of this assumption.

Cn. 8/2/11. EVAPORATION FROM FOLIAGE

At the mean level of the stratum (@, 8) we know by Ch. 8/2/3 a mean value gg or
say u, of the water per mass of the atmosphere. In the intercellular spaces of the
leaves p according to Brown, Escombe and Wilson has, except in case of wilting, its
saturated value at the temperature of the leaf. The latter is not a main variable but
has to be derived from the temperature of the highest stratum of soil and that of
the lowest stratum of air, taking into account the radiation. It will be convenient
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to defer this problem to Ch. 8/2/16. There is not room for much water to accumu-
late in the air close to the leaves, so that the rate at which water is coming through
all the stomata, above say a hectare of soil, may be put equal to the rate at which 1t
is being carried aloft by eddies across the upper boundary of the vegetation film.
There is thus an analogy to the electrical instrument known as the potentiometer
in that there is a current through two resistances in series; and p plays the part of
the potential. The transpiration equation Ch. 4/10/3 # 3 may be written thus in terms
of p
Mass of water evaporating per time -
{from foliage abovepunit arge£ of land} = Kp {puteares = pror}=F, wooveoeee (1)

where wgy, is the value of p for the air surrounding the leaves and picaves is the value
within the leaves.
For a field of growing barley «p is of the order of

025 x 10™° grm sec™’ per horizontal em®. ......o.cue S (2)

But by Ch. 4/8/5 the upward flux of water between the vegetation film and the
middle of the stratum next above is

£on (s Bnina W1 LANI e o o) oo NS 3)
g9 % (pG _Ps) y

where &, may be taken as the same as £s given in Ch. 8/2/8 and where fiz; is
practically the same as fig since the vegetation cannot hold mueh moisture.
Equating these two values of the same flux,

on (pran—fimly 0 Ll (4)

9 % (Po=Ps)

By the analogy to the potentiometer or by solving these equations, we see that Kl and
9 (Pa—1s)

2€6s

Then the common flux 1s

Kkp {Mleaves 31 I“'GL} =

play the part of resistances in series. Call them 4 and B respectively.

Hleaves — [

A+ B
which is the formula used to determine it on Computing Form P vir. The water per
mass in the air surrounding the vegetation is not required if our only object be to make

a “lattice-producing” system. But this quantity may be of interest for its own sake.
It is determined by

= A A S (5)

A+ DB Hre-

A portion of rainfall is caught on vegetation and evaporates there without ever
reaching the ground. From what is known about eddy diffusion we should expect that
the amount evaporated would be proportional to . — p, the difference between the
saturated water-per-mass at the vegetation and the actual water-per-mass at A,, and
also to be directly proportional to 2&4/{¢ (pe—p.)} which is the eddy-conductance

B. Fleaves“_i‘_{l_-_ﬂag_ =
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between these two levels. It is for direct observation to show how it is related to
rainfall. Two raingauges were kept by the author, one in an open exposure, the other
a few hundred metres away in a beech forest. (Compiegne, 1916, Dec. 8 to 28.) The
ratio of the daily readings varied less than their difference. On this, admittedly far
too scanty evidence, it is suggested that the downcoming water should enter the
expression as a factor, thus

( rainfall ) _< rainfall

evaporated/ \received

-‘f(,q
X sat. — Mo
> (st = 1) X 9 (Pa—pa)

In this case one-fifth of the whole was evaporated on the average, whence with
appropriate values of the other quantities in c.G.s. units

n=12x 10° for beech forest bare of leaves.

Cu. 8/2/12. EVAPORATION FROM BARE SOIL

In the absence of precipitation this may be treated in much the same manner as
the evaporation from vegetation, except that there is a term added to the difference
of p. For, in the notation of Ch. 4/10/2 the upward flux of water in the soil is say F,
where

r d dF
ﬁ=g{a——y}+xt—5, .............................. (1)
which may be written
g dY ‘
L dz ;l": + p.S (l f *ggg ........................... (2)

The coeflicient of du/dz in this is a function of the humidity of the air in the
pores of the soil, since the density of this air is known. So for brevity we may write

as . dFf
gdp;‘*'x(TIJ:—f(p,). ................................. (3)
Now changing to finite differences, make our usual approximation
df" o T
ds = gD e (4)
Then (2) becomes
T (5)

But, neglecting accumulation, the flux in the air is the same, so that

» _’ﬁ%‘ .................................... (6)

where, as in Ch. 8/2/11,
e I S 7
2§GS ( )

Let us assume that at the interface p is continuous, that is to say

(L5553 V0. 1090000 600000008 SO0 0T R B S T R (8)

R. 29
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On eliminating p,, and pg from (5), (6), (8) and solving the resulting equations
for F, we arrive at an expression for the flux which is suitable for use in computing.
Thus at the interface
e ek A e (9)

wff(n)+ B

In the electrical analogy z,/f(u) is the resistance of half the soil stratum, B is
the resistance of half the air stratum and ®g. z,/f (g) corresponds to the potential
difference due to a battery in the circuit. An outside potential difference p, — figs is
also applied.

Provided the soil is not saturated, we do not require to know the temperature 8,
of the interface. The temperature 4, suffices.

If the soil is saturated, as it often is in winter, then w in the soil corresponds to
the saturated vapour density and scarcely changes with depth, whereas Y the

“negative pressure in the soil-water” varies. Thus d¥/dp is nearly infinite and so
by (8) is f(r) also. Thus (9) reduces to '

41|

just as for the sea.

Cu. 8/2/13. THE HEAT RENDERED LATENT BY EVAPORATION

This usually concerns the evaporation of liquid water. In that case the heat
absorbed is 597 — 0'6 (8 —273°) calories grm™ = 3182 —2'5160x 10" ergs grm™. In
Ch. 8/2/6 we have found it convenient to suppose that water carries its latent heat of
fusion about with it. But if so, that is supplied by the ground, and received again by
the ground when an equal quantity of water falls upon it as rain. Radiation is
converted into latent heat of fusion only when ice, snow or hoar frost are actually
fused by radiation. y

Cu. 8/2/14. THE THERMAL BOUNDARY CONDITION AT THE SEA-SURFACE

From Ch. 4/8/0 it appears evident that the upward flux of entropy can only
depend upon (i) the distribution of entropy-per-mass, (ii) the distribution of eddy
motion in the air.

Now it is observed* that the temperature of the air in contact with the ocean has
a very small daily range —1°C. or less, and differs very slightly from the slowly
changing temperature of the surface water. Thus over the sea we are not so frequently
confronted with the principal complication which occurs in respect to the flux of heat
on land, namely that the rapid changes of surface temperature produce an upgrade of
potential temperature next to the land which has little connection with the mean
upgrade in the first kilometre of height. Nevertheless the same difficulty occurs at sea
in a lesser degree as is shown by G. I. Taylor’s observations in the Report{ on the
work carried out by S.8. “Scotia” 1913. Apparently the only thorough way out of this

* Hann, Lekrb. der Meteorologie, 3 Aufl. pp. 56—70, T Sold by T. Fisher Unwin, London, W.C.
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difficulty is to take a thinner lowest stratum of air. To continue however with the
thick stratum, we represent the distribution of entropy per mass by

59-2—‘1";, ....................................... (1)
o (Pe=p)

where o is the potential temperature of air having the surface pressure p; and having
the temperature of the sea water.

The liveliness of turbulence itself depends on (os — 7 gs) and on Mg the momentum
per area of the stratum. So that, as (pe — ps) does not. vary much, the flux of entropy
might be taken as a function of only two variables (o¢ — &) and My. Observations
of the flux, when there are any, might suitably be expressed in this form. However
in the meantime let us express the flux as the product of two factors, one 22 measuring
the liveliness of turbulence and the other being the expression (1) above. So that the
entropy rising from unit horizontal area per time is expressed as

SRECE T F 0 s A bk o (2)

g(PG ~ Ps)
Until better values become available, 22. may be taken as equal to the mean

turbulivity €., defined in Ch. 4/8/5 # 9, determined from wind observations, and set
out numerically in the last column of the table on p. 84.

Ch. 8/2/15. THE THERMAL BOUNDARY CONDITIONS AT THE INTERFACE WHERE BARE SOIL
AND ATMOSPHERE MEET

The treatment in Ch. 4/8/4 will now be improved.

It would be convenient if we could believe that the temperature of the soil and of
the air were the same where they touch one another. The nearest approach to a test
of this question that I have seen was made by 1. Bedford Franklin (Ldinburgh Roy.
Soc. Proc. Vol. 39, Part 2, No. 10; 1918-—1919). A thermometer just above the soil
was compared with one 1°3 em under the surface. On clear nights the upper thermo-
meter tended to have a minimum about 1° C colder than the minimum of the other,
if the soil was firm, or 2° C if the soil was raked loose. But we can hardly regard a
thermometer covered by soil as measuring the temperature of the surface. A better
test might possibly be made if the surface temperature could be measured by the long-
wave radiation which it emits, and the air temperature by a special aspirated thermo-
meter. However in the meantime it appears reasonable to assume that soil and air
share a common temperature at the interface. In other words, on crossing the inter-
face, temperature changes continuously. .......c.oooieiiiiiiiiiiniiiinie W (1)

In contrast with the temperature, the flux of sensible heat, regarded as a function
of height, increases discontinuously at the surfece of the soil by a jump equal to the
radiation absorbed, plus the heat carried down by precipitation, and minus the heat
IEfOered latent by CVAPDESRIINNNIER .. .. ... ...l (2)

This relationship is a sort of equation of continuity.
22—2
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The surface conditions are seen to be analogous to the conditions in a system of
electric conductors at a point where three wires meet. That is to say the ordinary
thermal conduction in the ground is analogous to the electric flow in one wire, the
eddy conduction in the air is analogous to the flow in the second wire, while the heat
brought in or out by radiation, precipitation and evaporation is represented by the
third current. On looking along any wire towards the junction, the other two wires
appear to be in series with it and in paralle] with one another. The meteorological
phenomenon is more complicated than its electric analogue, because the “conductances™
depend upon the “ potential ” at the interface.

Now in order that the changes of a temperature may be determinable from the
accumulation of heat, it must be the temperature of some substantial body of matter
such as a stratum of soil or of air; it cannot be the temperature of a surface. For this
reason among others the temperature is not tabulated at the surface, but, just as for
moisture in Ch. 8/2/7, at certain heights above and below. On the other hand, the
surface * temperature is needed in order to give us the fluxes, which are a necessary
part of the scheme of prediction. The surface temperature is also of immediate
interest to agriculturalists.

It is not satisfactory to find the surface temperature by interpolation between air
temperature at some height above and soil temperature below, as may be seen by con-
sidering such facts as the following :—

(i) The surface of dry sand in sunshine on a calm day is sometimes as much as
30° C hotter than the air at head level.

(i1) The grass minimum on a still clear night is sometimes as much as 10°C
below both the temperature of the soil at 30 cm depth and the temperature of the
air at head level. J

On account of the 4th power in Stefan’s law, these differences of temperature must
make notable differences in the outgoing radiation. The rate of evaporation from bare
soil depends on the surface temperature if the soil is wet. Again the turbulence
depends much upon the surface temperature when the temperature of the upper air
and its velocity are given. For all these reasons we must try to determine the surface
temperature exactly.

It will be convenient to have a suffix-notation for conventional strata which shall
run on without a break from air to soil. As 4,= 2 km above sea-level and A,=roughly
halfway between the surface g and A, so let z,, denote the surface also, let z, be
somewhere in the midst of the top stratum of soil and let z,, be the lower surface of
this top stratum. The suffixes are then continuous in spite of the fact that 4 is height
above sea-level while z is depth below the surface of the soil. Let f'stand for the flux
of sensible, as distinct from latent, heat. That is to say let f be the number of ergs of
sensible heat rising through one square centimetre per second. Then the following

* The phrase “surface temperature” is used by some writers to denote the temperature in a radiation
screen placed at head level, This is such an obvious misuse of the word “surface” that it is not entitled

to the respect usually accorded to custom. In the present work “surface” is used in a more geometrical
sense.
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arrangement of temperatures and fluxes upon the height-scale fits with the schemes
proposed for the upper air and for the soil:

h, 0,
h, 0,
G
hg-—-zm ............... {f
10
zll 611
~13 013

Here f, is intended for the value of f just above the surface, and f;, for its value
Just below.

In the air we must work not with 6, but with the potential temperature 7, which
the air would have if brought adiabatically to some standard pressure p;. By choosing
the surface pressure as the standard, the surface temperature is made to enter in a
simple manner into the equations for the fluxes in both the air and the soil.

Similarly in the air, for the reasons explained in Ch. 4/8/0, it is desirable to attend
to the flux of (potential temperature x mass) which is connected with the up-grade of
potential temperature, thus:

Flux of (potential temperature x mass) = 52—;; el 3 d 4 Ch. 4/8/0 # 17.

By the above choice of surface pressure for the standard, the flux §/g xo7/op becomes
equal, at the surface only, to 1/y, times the flux of heat. So that

f 81') f G
== == 08600006 0SB0 0B R SR 3
<98p ¢ Y» )
As we have to replace the differential coefficient o7/op by the difference ratio
(0c—7.)/5 (pe—ps) it is necessary to replace ¢ by the compensated value which has

been called 22 in Ch. 4/8/4 and which is provisionally taken to be equal to &g of
pp- 91 and 84.
o e e RS S e (4)

Thus — . )
fe=Ye 5 1 (po=ps)

To simplify the subsequent algebra introduce Cg, defined as :

2. (0g—1,)

222
L 5
=Yg (pe—py) ®)
Then from (4) S e AR S (6)

and Cg may be called a ““ conductance ” from its analogy with electric conductance.
Similarly if C,, ,, is the ordinary thermal conductance of the soil between z, and z,
in a vertical column of unit cross-sectional area, we have :

P ENIEMBENERt, o= (0= 0.) Ciinee -+eviiiiiiiennininnans (7)
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There is an error of centering in equations (6) and (7) because the flux is at the
surface while the temperature difference is centred above or below. This error appears
to be inevitable. It would be reduced if the strata were thinner. But we must leave

it and pass on.

In (7) AL WL"'?maIZCO“S“"“V‘tY B L e (8)
- a1 —=-#10

The thermal conductivity of soil has been repeatedly measured. For a loam rich in
humus, T. B. Franklin* gives for the conductivity 0:004 calories sec™ cm ™' degree ™,
which is

167 x 10°ergssec 'em ™ degree™. .......oiiieseiioninsas (9)

Next let us consider the heat taken in and out by radiatioun, precipitation and
evaporation. As our first business will be to find the surface temperature, these
quantities should be classified according as they depend on the surface temperature
or not. Let I' be the radiation coming from the sun or the atmosphere and absorbed
by the S0i). ....e.oininennn s siibnge i vonobiading stk din SRR S S SR (10)

I' bas been computed on Forms P1v, v, vi and is thus known. The long wave

radiation emitted by the interface may be expressed as ¥ 00, ..c.ceevevvnennnnn. (11)
where > 1s Stefan’s constant =536 x 10 ergem™*sec™ ...ccoeuennn. (12)
and ¥ is the emissivity of the solid for long waves. ............... (13)

The effect of precipitation has been mentioned on p. 46 but is not easy to syste-
matize, and with this reference will be omitted for the present, after giving to the
ergs per second brought to a horizontal square centimetre by precipitation the symbol .

The rate of evaporation has been denoted by E gram sec™ per em’ of a horizontal
SUTFRCE.  <ieinevonbonnssaionsesstioe qon SRBBRIR S § .0 o uiaye SWes SR LT (14)

If the top layer of soil is wet, evaporation takes place there and increases rapidly
with the surface temperature. If the top layer of soil is dry, evaporation may still go .
on underneath but then it is conditioned not by the so-far unknown 6,, but by 8, which
is a main-variable, traced step by step.

Let the latent heat of evaporation be denoted by t

= (8182—2:51 ) X 10" erg grimn=", ..u. 0. chuh L ot S (15)

The whole flux of heat arriving on a horizontal square centimetre per second by
radiation, precipitation and evaporation is therefore :

T =8 58, = TRE. | & diwisah Somaie - o 1omsp ¢ s aebia (16)

This, together with the inflow f,, coming up from the ground and the inflow —f5
coming down by eddies in the air, must amount to zero, since no heat can accumulate
at a surface. But f and f,, are given by (6) and (7). Therefore

0=Cgy(1,=0)+ Cphio(Ou—0)+T— 8 00, '+ —%E. ......... (17)

This is to be looked upon as an equation to determine the common temperature

f¢ or 0, at the interface. The best way to solve it is first to assume some trial value

* Edinburgh Roy. Soc. Proc. Vol. 39, Part 2, No. 10. t = is a Coptic letter named “he.”
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¢ for the surface temperature. The error of such a guess will seldom exceed 5° C for
this is one of the more familiar of meteorological elements. So that if we write

then 2% is a correction to be determined and /6’ is small compared with unity.
So that if F (6;) denote the second member of (17), we have F(#'+2)=0, and
therefore by Newton’s rule or Taylor's theorem
S
T dF(0)/do
This written out in full, with dashes to denote values of the various quantities when
0g=0, reads

S PRGRAIMETELY. .. el (19)

C”Gﬂ (T9 T 0,) ! C,n.lo (011 F 0,) +I =800+ ~4E .
V7 Y7 7 T
8_3(10762(79_6’)_ a%ﬁ(all_a,)+4 8 00/3_8(73' aa'/‘ 5 )
oz PU RS PRI MR (20)

This equation determines 2 and so by (18) the surface temperature 6,. Of course
there are simpler less accurate ways of arriving at ;. One is to be content with the
guess ¢, that is to say to neglect 2 altogether. Another simplification would be to
neglect various portions of the long equation for 2, but it seems best to draw up
Computing Forms P 1x, x for the full equation, and to leave the relative importance of
the various terms to be decided by further experiencet.

Terms such as 9C"4/0" imply that we have a table, based on observation, giving
the conductance (g, which depends on turbulence, as an empirical function of Mg,
the momentum per area of the stratum, of (r,—6;), and of the locality. Observation
and theory both indicate that such a functional relationship exists, at least approxi-
mately. Then taking the fixed actual Mg, and locality, we pick out corresponding
vanations of Cg, and of 6, around a central value @, and we call the ratio of the
variations 9C" /08",

The best sequence of this portion of the computing-operations is thus seen to be the
following. Estimate the detached cloud (Form P 111) and compute the solar radiation
and the descending radiation from the atmosphere (P 1v, v, v1), make a guess 0’ at the
surface temperature, and put on Form P 111 the corresponding measures of turbulence
near the ground which we have denoted by & and #22. From these find the trial
values of the fluxes of evaporation and of heat at the interface. Find also the long-
wave radiation which would leave the earth if it had the temperature #. Put all these
quantities into equation (20) and so determine the temperature correction 2. This is
done on Forms P 1x, x. Then correct the separate quantities to the true temperature
of the surface, and proceed to other parts of the computing.

The partition coefficient, which was discussed in Ch. 4/8/4, does not appear in this
revised treatment.

+a=
= C,GQ + C”n,m i

* = is a Coptic letter pronounced ¢dalda.”

T In the example in Ch. 9 the terms €’y 4 + C'4y in the denominator are together ten times greater
than the sum of the rest.
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Cu. 8/2/16. THE THERMAL BOUNDARY CONDITION FOR VEGETATION

This may be discussed as a variation of the process described in Ch. 8/2/15 for
bare soil.

We may neglect any accumulation of heat in the vegetation film itself. Thus, for
example, in a field of ripe wheat the mass* of the vegetation is about 24 tons per acre,
that is 6 tons per hectare, which is 0°06 gram em™, The mass of the vegetation is
therefore of the same order as the mass of the layer of air between the tops of the
stalks and the soil; and the sum of the two masses is negligible in comparison with
that of the conventional stratum of air which extends up to 2 km.

It is at the height where the foliage is densest that most of the radiation is con-
verted to heat, and most of the water is evaporated. A suffix is needed for this height;
let it be 4. In place of the conductance C, ,, of Ch. 8/2/15 we have now two con-
ductances in series, one C,, ,, as before, the other C, 4 so that

1
1/6111,10'*‘ I/Q(:A

* T. Bedford Franklin (£dinburgh Roy. Soc. Proc. Vol. 39, Part 2, No. 10) has called
attention to the great resistance offered to heat-flow by moss, by a carpet of dead
leaves or by grass, instancing a primrose flowering with its roots and flowers in
temperatures differing by 10°C. This thermal resistance may come into either 1/C,, ,,
or 1/C,,, 4 but not into both. Similarly we may regard 1/C,, as in series with 1/Cp,.

For the evaporation from the foliage we have, according to Ch. 8/2/11 # 5, if u(6)
be a contraction for the u of air saturated at temperature 6 and pressure pg,

(711,/1=

64) — )
= e (0= b
where C, is a contraction for 1/(4 + B) of Ch. 8/2/11.

Otherwise the process 18 so similar to that for bare soil that it has been possible to
set them both out on the same computing forms P 1x, x.

I

Cu. 8/2/17. THE EDDY-FLUX AND ACCUMULATION OF WATER-SUBSTANCE IN THE UPPER LAYERS

This is required at the height where strata meet, and may be typified by the
expression, applicable at the height 4,,

& PuPu _& =i
9 3 (p—p) 9 P—p°
which is a mass of water per area and per time.
From the difference between the fluxes at adjacent levels there follows the rate of
accumulation of mass of water per area of each stratum. On dividing by the mass of
atmosphere per area of the stratum we get the rate of increase of u. But the mass

* Fream’s Klements of Agriculture, 10th edn. pp. 320—321. An acre is 4:047 x 107 ¢cm2
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of air is, for example, (p, —p,)/g. This g cancels with those in the preceding expressions
so that it is more convenient to omit ¢ throughout. This may also be seen from the
fact that the diffusion equation for p is
E}L 0 op
AT T f iy
e [-8p.\ P
which does not contain g. The computing form is denoted by P x1.

Cu. 8/2/18. THE FLUX AND ACCUMULATION OF ENTROPY BY STIRRING

We have arrived at the flux of entropy-per-mass at the surface of sea, bare soil
and vegetation (Ch. 8/2/14, Ch. 8/2/15, Ch. 8/2/16 respectively).

It now remains to continue the process in the upper layers. This is done in a
manner so similar to that already deseribed for water in Ch. 8/2/17 that it is only
necessary here to say that, although the coefficient £ is provisionally taken as the same
for both o and pu, yet we must expect a discrimination between the two cases as more

knowledge is gained.

Cu. 8/2/19. COLLECTING THE VARIOUS GAINS OF ENTROPY-PER-MASS

Those due to eddy diffusion, to emission or absorption of radiation, to precipitation
and to molecular-dissipation are brought together on Form P xm and added. The
gain of entropy due to radiation is reckoned in the usual way as the gain of energy
divided by the temperature. ,

The entropy-change which would be produced by the change in water-content,
if pressure and density were unaltered, is required in connection with the vertical
velocity. This entropy-change is a,. Du/Dt. These -quantities are also collected in
Form P xi1.

Cu.8/2/20. THE HORIZONTAL DIVERGENCE OF MOMENTUM PER VOLUME

This, expressed in symbols, is §§_§r + SSA#’—M = i 39& and is next computed for
each stratum. This expression will be denoted by divyy M ; the dash serving to dis-
tinguish it from the corresponding expression with differential coefficients in place of
difference ratios. The arrangement of the computing has been shown on p. 9. The

computing form is P x11r,
Cn. 8/2/21. PRESSURE CHANGE AT THE GROUND

Then divy M in each stratum is multiplied by the corresponding value of ¢ and
g divy M is summed for all strata. This sum is equal to the rate of decrease of
surface pressure. The pressure changes at higher levels cannot be determined until
the vertical momentum has been found, but it has been thought convenient to
collect all pressure changes on the same form P x111.

Cn. 8/2/22. THE UP-GRADE OF THE VERTICAL VELOCITY IN THE STRATOSPHERE

This is found by Ch. 6/6#21 on computing form P x1v. Closely connected with the
vertical velocity in the stratosphere is the temperature-change, which has therefore
been placed on the same form. It is computed from Ch. 6/7/3 # 8.

R. 23
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Cu.8/2/23. THE VERTICAL VELOCITY IN THE FOUR LOWER STRATA

This is computed from an equation which is identical in effect with Ch. 5/5 # 9 if the
air is clear, but which is more general in so far as expressions in a,, a,, a, which are
defined with reference to air that is either cloudy or clear, replace those in v, ¥, which
are correct only for clear air. This equation is obtained directly from the general
form Ch. 5/1# 12 by using the permissible approximations Ch. 5/2#13, 14. It is
here employed in the differentiated form as follows

@ fa o oPtnl e 5 Filey ) Sy O gl oS R Dﬂ)
610{%9" , '810} _dwE“’Hap{app 'dlv”@}%p{ap(l)t * Dt

¥ TN W

Alternatively Ch. 5/2 # 18 might have been used, after reinsertion of a,, a,, a,, but
I doubt if the computations would have been any simpler, especially as the varying
thickness of the lowest stratum implies that

Zs divgym . dh is not equal to ~ divgy ’8 m . dh.
G ‘G
Whatever process is employed we require it to yield vy at the heights where strata
meet, for those are the heights at which v, has to be inserted in the equation of
continuity of mass. That being so, dvy/op must be tabulated at the middle heights
of the strata, and 0% ,/0p®, or other second derivatives, at the same heights as vy.

As explained in Ch. 5/3 the first running sum is made downwards, because ov,/oh
is known at the top from Ch. 8/2/22; but the second running sum is made upwards,.
because vy is known at the ground in terms of the slope and surface wind, thus

V2o =\ E e * ¥ onls

The surface wind is not a main variable and has to be estimated specially, for inser-
tion in (2), from statistics of its relation to M.

The vertical velocity equation might be called the keystone of the whole system,
as so many other equations remain incomplete until the vertical velocity has been
inserted. :

Cn. 8/2/24. THE PRESSURE CHANGES AT ALL LEVELS

These are found, by way of the equation of continuity of mass, which can now be
completed by the introduction of the vertical momentum. It gives first @R /ot for each
stratum. Then forming g¢.2R/et and making a running sum from above downwards
we get op/fot at the boundaries of the strata. Computing Form P x111.
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Cu.8/2/25. THE CHANGES IN THE WATER-CONTENT

For each of the lower strata these are next calculated by means of the equation
Ch. 4/3/ # 8 which brings together the changes due to turbulence and to ‘“advection.”
This equation spreads itself over four coordinate differences in both latitude and

longitude. Terms such as 885 / M, I};) involve horizontal interpolations, since My is
\
not given above the same points on the map as is = W/R. Form P xvIL

Cu. 8/2/26. CHANGES IN THE SOIL

The changes in the water-content of the soil can now be computed by means of
Ch. 4/10/2 # 5 and the change in its temperature by means of Ch. 4/10/3 # 10. Com-
puting Forms P xvir and P xix have been drawn up for this purpose.

Ch. 8/2/27. CHANGES IN THE SEA

The change of temperature of the surface of the sea during our time-step will
next need to be estimated. Its surface temperature may in many places be sufficiently
forecasted by mean values for the same date in previous years. If that does not
suffice, a more elaborate procedure has been sketched in Ch. 4/10/1.

Cu. 8/3. OPERATIONS CENTERED IN COLUMNS MARKED «M”
ON THE CHESSBOARD MAP*

Cu.8/3/1. EDDY-SHEARING-STRESSES

The surface-shearing-stress is estimated from statistics with reference to the
“roughness” of the surface and to the strength of the wind, as represented by
My, My. The angle by which the vector (Mg, My) is veered from the surface-shearing-
stress is also estimated from statistics. The table on p. 84 was prepared for this
purpose. Then the east and north components of the stress are calculated by expres-
sions Ch. 4/8/3 # 4, 5, or more easily by a chart ruled with both polar and Cartesian
coordinates.

The shearing stresses at the upper levels %, %, %, are computed by equations such
as Ch. 4/8/2 # 2, equations which are derived from the diffusion equation Ch. 4/8/0 # 15.
But the constant £ is not necessarily the same for velocity as for water or potential
temperature. See the observations on pp. 72 to 76. The computing form is marked
M1 The difference between the shearing stresses at the bottom and at the top of
each stratum is transferred to the appropriate dynamical equation.

Cn. 8/3/2. DYNAMICS OF THE STRATOSPHERE
The stratosphere has some special terms in its dynamical equations, as set out in
Ch. 6/4 #7, 8. These are computed on Form M1 They spread over six times the
smallest coordinate difference in use. We also require v, vy at the height A,. To find
these, an extrapolation is made to %, from above, using equations Ch. 6/3#7, 8. A

* See the Frontispiece.
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second extrapolation is made to A, from below, assuming that my, my do not vary
with height in the stratum Z, to /,. The mean of these two extrapolated values is used
in the dynamical equations. :

Cn. 8/3/3. DYNAMICS OF LOWER STRATA

Finally oMgpfot and 0My/ot are determined from the dynamical equations

Ch. 4/4#11, 12. The terms such as 8% (MJ}?[N> spread over four times the least
coordinate difference in use, They are best expanded in forms such as

8 (MyMy\ 138 . 3 /1

e ) = g (MaM) + Ml g <R> :

CH. 8/4. CONCLUDING REMARKS

The cycle is now complete, for it has been shown that the time-changes of each
one of the initially tabulated variables can be computed approximately by means of
the stated equations, without bringing in any outside information, except a few
statistical data. The system is thus *lattice reproducing.” The above applies to points
not too near the edge of the region on the map for which the initial values were
given. New values after 8 can only be obtained for a smaller area. Ways of avoiding
this loss have been proposed in Ch. 7.

It is curious that of the two very similar equations, one for the conveyance (or
“advection ”) of water-per-mass, the other for the conveyance of entropy-per-mass,
given respectively in Ch. 4/3 and Ch. 4/5/2, only the one for water appears explicitly
in the calculations for the lower strata. The equation for the conveyance of entropy-

per-mass is used in finding the equation for the vertical velocity, and does not arise
again.




CHAPTER IX

AN EXAMPLE WORKED ON COMPUTING FORMS
Cu. gfo. INTRODUCTION

Ler us now illustrate and test the proposals of the foregoing chapters by applying
them to a definite case supplied by Nature and measured in one of the most complete
sets of observations on record. Ch. 9/1 deals with the initial observations, Ch. 9/2
with déductions made from them. The computing forms which are used for this
purpose may be regarded as embodying the process and thereby summarizing the
whole book. In Ch. 9/3 a large error is investigated.

Cr. 9/1. INITIAL DISTRIBUTION OBSERVED AT 1910 MAY 20p 7n G.M.T.

The initial pressures are tabulated at the ground and at exactly 2:0, 42,72, 11-8
kilometres above M.s.L. They are read from V. Bjerknes’ maps for the instant in
question. These maps give the “dynamic height” of the isobaric surfaces, so that
various conversions were necessary. V. Bjerknes has provided suitable conversion-
tables. In the first place 2-0, 4-2, 7°2, 11'8 km are equivalent to 1959, 4113, 7:048,
11-543 “dynamic kilometres” when g=98000 cm sec™ at sea-level. The pressures
corresponding to these “dynamic heights” were obtained from the maps with the aid
of V. Bjerknes’ table “10M.” Then a small correction has to be applied for the
variation of gravity. This was obtained from tables 2M, 4M and 10M and worked
out as follows :

Corrections in millibars to be SUBTRACTED from pressures at fixed

Kilometres ‘“dynamic heights,” to bring them to pressures at fixed heights
from corresponding to the dynamic height for g=980'00 cm sec~2 at sea-level
equator

| p=200mb ‘ p=400 mb | p =600 mb i »=800mb | »=1000 mb
6000 04 | 0-5 04 ( 03 00
5800 04 05 04 ! 03 00
5600 0-3 04 03 i 02 00
5400 L B0y e ST e R 00
5200 0-2 i 0-3 0-2 ! 01 I 0:0
5000 02 | 02 0-2 01 ' 00

l

To find the pressure at the ground, the height of the ground was first assigned by
reference to V. Bjerknes’ maps of idealized topography*. The pressure at sea-level
was next read from V. Bjerknes’ map for the particular instant, and was then corrected

* Dynamic Meteorology und Hydrography, Plates XXVTI1 and XXIX.
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to the height of the ground by means of the usual tables (Observer’s Handbook).
In the case of very high land the surface pressure was obtained from the maps of the
heights of the 800 mb and 900 mb surfaces, with the aid of table 10 M.

At some points there is a large uncertainty as to the appropriate value of /q; for
example in Switzerland the uncertainty amounts to several hundred metres. How-
ever, as the assigned value of %, will be used consistently throughout, the resulting
errors will be small.

The initial values of W, the mass-of-water-per-unit-horizontal-area-of-a-con-
ventional-stratum, were obtained as follows. First the density, w, of the water vapour
was calculated from the temperature, and relative humidity recorded by the registering
balloon at successive heights. Then w was plotted against . From areas on this

diagram W = f wdl was obtained for each conventional stratum. These values of W

above the observing stations were plotted on maps, and values above the points marked
P on the map shown in this chapter were read off by interpolation. At Vienna and
at Trappes observations were lacking and those for a time 24 hours previous were
taken as a guide. At Pavia the relative humidity data cease at 7 km and values at
greater heights were filled in by reference to statistics.

The initial momenta-per-unit-area, M, My, were obtained from the data published
in Verdffentlichungen der Internationalen Kommission...Beobachtungen nut bemann-
ten, unbemannten Ballons, u.s.w., edited by Hergesell. The first process was to undo
the computing already done® by the observing stations, by reconverting the winds to
components and the heights to pressures. The component velocities vy, vy were then
plotted against the pressures. The divisions between the conventional strata, at 20,
42, 7°2 and 11'8 km were then marked off on the pressure scale, and areas on the

diagram were measured with an Amsler planimeter so as to obtain f vedp, f vydp

between the limits of the strata. Then, for instance,

8 8
I’IIEGB=J’ pvgdh = — lf vrdp.
e 9gJe
. Mg My . M
The mean velocities T p o vere compared with the mean resultant velocities and
directions published by V. Bjerknes for his 10 standard sheets, on this occasion, and
in general there was good agreement. In the data for Pavia and Strassburg, however,
there were some discrepancies for which I could not account.
To extrapolate the velocities upwards to p=0, vy and vy were plotted against
height, and straight lines were fitted to the curves in the stratosphere. In accordance
with the theory of Ch. 6/3 the mean velocities M gyof Ry and Mys/ Ry, were taken as

the velocities on these straight lines at a height of A, + l—)gg‘ =11'8 4+ 6'3 =181 kilometres. -

The lines could be drawn satisfactorily for Vienna, tolerably well for Hamburg and
Strassburg, and with considerable uncertainty for Copenhagen and Ziirich. At Ziirich

* Probably, but I have no definite information.
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the highest observation was neglected. The lines were drawn at Lindenberg by
ov,; vy
oh’ oh
probable from the horizontal distribution of temperature in the stratosphere, taken in
conjunction with equations Ch. 6/3 #7, 8.

Having thus obtained My, My for each stratum, they (or, alternatively, M /R,
My/R) were plotted on maps at the observing stations, and values at the conventional
points were estimated by interpolation, or, in some cases, by extrapolation. This
process was an uncertain one, especially in the stratosphere, where the data were
sparse; and near the ground, where the winds were irregular. It makes one wish that
pilot balloon stations could be arranged in rectangular order, alternating with
stations for registering balloons, in some such pattern as that formed by the points
marked M and P on the frontispiece. In the present example, in spite of all the care
taken, the tabulated values of the momenta-per-unit-area remind one of the stories
which are “founded on fact.” In consequence they give absurd values to

82)0_ © strata

LE — _gdi s M.
ot e all

We shall return to this point in Ch. 9/3.

The initial temperature of the stratosphere. The observations show that the mean
temperature over Central Europe was about 214° A- and that the temperature over
South Germany, Switzerland and Lombardy was some 13° lower than that over
Russia and England. But there were considerable irregular variations with height
amounting to +5° C at some stations.

Probably the most exact method* of mapping the temperature in the stratosphere

assuming that were the same at Lindenberg as at Hamburg. This appears

is to use (ae ; gg obtained from the variation of wind with height according to equations

Ch. 6/3#7, 8. The following table gives the temperature gradients gg 3 gz computed
from the observations of wind. They have been used to smooth the distribution of
temperature.

vy vy 8.2wsin ¢ a8 a0 '
Station oh ok g de on
el e
L e BRRERT T Rl NS 4 e =
Copenhagen ... + 22 -19 26 x 10-° +1-2 +1-0 |
Hamburg ...... +10 - 14 2:6 +05 +07
Strassburg ... -19 | +22 2:4 - 09 —-12
Zmrich: T - 6 +15 258 —-03 —-0-7
Vienna S aile S TR 24 + 01 | -01

* Sir Napier Shaw, “Upper-Air Calculus,” J. Scott. Met. Soc. 1913.
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The temperature of the soil is required at a series of depths. The depths proposed
in Ch. 4/10/0 appear to be unnecessarily thin when their thermal conductance is
compared with that of the atmospheric strata, and so the alternate divisions are here
omitted, leaving those at z,=6'39, z,,=53'6 cm etec. The temperature is required at
intermediate depths which, by following the process of gradation proposed in Ch. 4/10/0,
are taken to be 2,=1'72, 2,=19'1 cm.

In default of direct observations the temperature at z,, may be estimated from the
statistics of E. Ebermayer*, for these refer to Bavaria in which the P point to be

treated is situated. The mean of six stations for May 1868 shows that the air at a
[continued on p. 186]

” %4
(200 Km. from Equator
) Copénhagen
P NG
@Hamburg
M P Me 58
. De Bilt Lindenberg
Dltcham U('cle
5600 ®
P @ P
M Aachen P M p M
5400 @
Trappes 'l) @ﬂ[ P M @ P
—— Strassbu rg e Munchen Vienna
5200 Zurich® | Fried'sh'n
5 M P
\
@
5000 Puy de Dome
®
ol Moncalieri
| 22 l—sp | ~F

MAP OF POINTS FOR PRESSURE (P) AND MOMENTUM (&) USED IN
THE EXAMPLE of Ch. 9.

Nore: These points are placed at the centres of the chequers, and to the centres also the latitude and
longitude refer. Each chequer measures 3° from west to east and 200 km from south te north.

* Die physikalischen Einwirkungen des Waldes, Berlin, Verlag von Wiegandt, Hempel und Parey, 1873.




kilometres north from equator

Cu. 9fx

6000

5800

5600

5400

TABLE OF INITIAL DISTRIBUTION
Obtained by interpolating or extrapolating from observations taken at 1910 May 20¢ 7% G .M. T.
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Iongitude 5°E longitude 8° E longitude 11° E longitude 14° E Iongitude 17° E
1000 X 1000 X
0, 214°A | Mpog—65 DMy +8 6, 216° A Non;!: The following strato-
sphere temperatures have
Mgz +137 My - 104 also been uls)ed
Mygy +81 M ygy —25
Wi — 81, M o0 261D long 11°E, lat 6200 N, 216°
le] K o]
Mygs — 198 M yys + 84 w  2°E, ,, 5600N, 217
» 20°E, ,, 5600N, 216°
hy=0
1000 X 100X 1000 X
0; 215° A | My — 170 0 214°A | Mgy -160 6, 216° A
P2 2047
My - 62 W45 00 | M40 +40
244090
My - 114 Wy 0-2 Mgy — 60
Pe 6086
]‘Im -91 ”’86 04 Alm -60
Py 7983
M pes — 160 W00 M pes— 219
Pe9883
hg 15000 hg 20000 hg 10000
1000 X 1000 X 100X 1000 X 1000 X 100 X 1000X -
Mg - 30 Mys—110 6, 212°A| My —56 Myy ~18 0,214°A | Mugo —100 Mgy — 32
722047 P2 2049
ﬂIEﬂ - 245 DIAv.]g +300 “’42 0-0 ]’1542 -146 JIA\—” - 62 "'42 0-0 1'[@;2 zero ]|IN42 - 260
py 4083 744091
Mgy — 223 M ygy+ 158 Wy 0-2 Mgy - 95 Mgy +29 Wes 01 Mygq — 65 Mygy —135
pg 6067 pe 6087 1
1”15‘86 -91 AIA’%+87 7860'5 ]Um -62 M,\vgo+58 ]Vsﬂ 04 ]lll,vgo -25 ]’IAvgg +48
s 7950 s 7979
Mpes—18 Mygz+15 es12 Mg~ 110 M g+ 55 809 M pgg — 190 M ygs + 160
Pe9834 169763
hg 20000 hg 20000 he 40000 hg 30000 hg 30000
100 X 1000 X 100 X 1000 X 100 X
01 214°A | Mpoy +27 6y 212° A | M g zero 6,214° A
P2 2030 P2 2050 py 2044
12070 My — 328 Wi 00 My ~166 Wig zero
pyg 4049 ps 409 Py 4082
102 Mgy —136 e 01 Mgy — 95 Wea 01
g 6044 g 6079 P
Weg0°7 Mpsg — 33 W 0°4 Mpgg ~19 Wi 0-4
Ps 7928 ps 7960 ps 7978
Wesl: My0s+48 Was0'9 M yes - 65 W09
Pe9744 P 9626 PeIB882
he 20000 he 40000 hg 40000 hg 40000 hg 20000
100 X 1000 X 1000 X 100 X
0, 214° A | Mpog -50 DMpg +80 6; 214° A
P2 2039 P2 2043
Wi 00 Mpgg — 280 M pyp +41 W43 00
pg 4062 . p; 4075
Weq 0°2 Mggs — 175 M gy +150 Ves 0°1
pg 6050 pg 6065
W06 | Mysg—105 M ysg +80 Wag 074
s 7949 3 7967
I.VggO'Q J‘IIL’GS - 155 ]U‘\v(,vs + 40 o8 1-0
P 8746 pe8458
ha 120000 hg 180000 I 150000
100
6 213° A All the quantities in any one square
& P2 2034 refer to the same latitude and longitude,
S W42 0:0 namely to those stated in the margin. The
= s py 403 notation is defined in Ch. 12. A numerical
2 Wes 0-2 value, when multiplied by the integral
u POpel 06 power of ten, if any, standing at the head
=] e of its eolumn, is then expressed in c.G.s.
ST e 067 its. To save the equality symbol
£ Wegl-d units. To save space the f&;&: ity symbols
=t Pe9972 are omitted, thus Mp—66 stands for
i 10000 Moo= — 65000 grm em~1 see~1,
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height of 1'6 m had a temperature exceeding that of the soil at z, by 0:8°C in the
open or 3-3° C in the forest. Again at Tiflis*, in a latitude only 2° nearer the equator,
the difference between soil and air-at-3-metres-height passes through its daily mean
value at just about the time of day that concerns us, namely at 8 hr.a.r. On 1910
May 20d 7 h M.E.z. the air temperature at the Bavarian stationst is recorded as
about 291° A and for the above reasons the earth temperature at 2, has been assumed
to be 290° A in the open, or 288° in the forest.
The Table of Initial Distribution will be found on p. 185.

Cu. 9/2. DEDUCTIONS, MADE FROM THE OBSERVED INITIAL DISTRIBUTION,
AND SET OUT ON THE COMPUTING FORMS

The process described in Ch. 8 has been followed so as to obtain 9/0¢ of each one of
the initially tabulated quantities.

The units employed on the computing forms follow the same rule as elsewhere in
this book. Any numerical value, after being multiplied by the integral power of ten,
if any, standing at the head of its column, is in centimetre-gram-second units; unless
the contrary is stated. Temperatures are in degrees centigrade absolute. Energy,
whether by itself, or as involved in specific heat and entropy, is expressed, not in
calories, but in ergs. Some numerical quantities are total amounts during the time
step 8¢ of 2°16 x 10 seconds, for example the energies of radiation. Other quantities
are reckoned as totals for unit area of the individual strata. Others again are reckoned
per second and per gram.

The arithmetical accuracy is as follows. All computations were worked twice and
compared and corrected. The last digit is often unreliable, but is retained to prevent
the accumulation of arithmetical errors. Multiplications were mostly worked by a

25 centim slide rule. But in calculating 9/°/de, 9P/on it was found to be essential to-

use five-figure logarithms. The chief features of the arithmetic are displayed on the
computing forms, and i1t will suffice here to call attention to a few of the more in-
teresting points, and to confess to certain imperfections and errors.

The forms are divided into two groups marked P or M according as the point on the
map to which they refer is one where pressures (P) or momenta (/) are tabulated.

Only two points on the map have been taken as centres for the equations, namely
the “P” point at 11° east, 5400 km north, and the “J” point 200 kilometres due
north of it. These two points are really not enough, because the vertical velocity is
required over the “JM” points, but is only found directly over the “P” points. At an
“M” point the vertical velocity should be taken as the mean of that at the four sur-
rounding “P” points. However here the vertical velocity from the single “” point
has been inserted for illustration.

The results for radiation on forms P1v, Pv, P vr have quite a plausible appear-
ance. Much fuller exemplification of P vr or its equivalent will be found in a paper

* Hann, Lekrb. der Meteorologie, 3 Aufl. p. 64.
T Deutsches Meteorologisches Jakrbuch fir 1910, Bayern, Miinchen in Kommission bei A. Buchholz.
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by W. H. Dines*. The fact that some clouds were present was not noticed until after
these forms had been filled in and for that reason a cloudiness of 14 tenths has been
neglected.

The potential temperature at pressure p, increases considerably aloft, as shown in
the last column of Form P 1. By contrast the vertical changes of entropy-per-mass on
Form P x11 are small and irregular, because the upgrade of water-per-mass compensates
that of potential temperature.

The rate of rise of surface pressure, pg/ot, is found on Form P x111 as 145 millibars
in 6 hours, whereas observations show that the barometer was nearly steady. This
glaring error is examined in detail below in Ch. 9/3, and is traced to errors in the
representation of the initial winds.

The vertical velocity (Form P xvI) is nowhere more than +3 cm sec™; and, as
1t is probably exaggerated by the errors in the winds, the real value must have been
very small—quite beyond the possibility of observation{. The small values given on
Form P xv1 are found to have quite notable effects when inserted in the equation of
continuity, in the equation for the transport of water and in the dynamical equations.

It is interesting to notice on Form P x111 that the vertical velocity is such as to
smooth the pressure changes, making them increase regularly from above downwards.

Coming now to the horizontal velocities in the stratosphere, it is seen on Form M 11
that there 1s a misfit at %, between my as extrapolated from below and from above.
The misfit may well be due to unnatural initial values of 26/de, 20/on in the strato-
sphere. This opinion is strengthened when we consider the dynamical equations in
the stratosphere, as set out on forms M 111 and M 1v, because the terms 3P,/8e and
0P, /8n are seen to be unnaturally large; and these two terms depend, on this occasion,
mainly on 96/0e and 86/on since 2p,/oc and 9p,fon are small. In fact it appears necessary
to have the temperature in the stratosphere tabulated to 0°'1 C. If it cannot be
observed with this accuracy, the observations will have to undergo a preliminary
smoothing, before being used as initial conditions. Near the base} of the stratosphere
ovfoh and &vfoh* are often so large, that their numerical treatment is sure to be
difficult.

In the dynamical equations in the lower strata the terms 0P foe, 0 Pfon, — 2w sin ¢ My,
+2wsin ¢ My are usually the largest, but the “curvature of the path” has a con-
siderable effect and so also has that much neglected term, the rate of change along the
path of the square of momentum. In the lowest strata the terms 9P/de, 9P fon are very
large owing to the slope of the ground, and are for the greater part balanced by

ohg g
Po Pon
Ch. 4/4 # 14.

* Q. J. R. Met. Soc. April 1920.

T Of course there may have been larger vertical currents locally; the statement in the text refers to the
mean over a chequer on the map.

1 Vide G. M. B. Dobson, Q. J. R. Met. Soc. Jan. 1920,

Special care has to be taken in computing these, as described in

24—2
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HETEROGENEITY AND SOLAR RADIATION
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AN EXAMPLE WORKED ON COMPUTING FORMS
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SOLAR AND LONG-WAVE RADIATION
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Ca. g/2 FLUXES OF WATER AND OF HEAT AT THE INTERFACE 195

CompuTiNGg ForMm P viir. Fluxes of Heat at the interface

Long. 11° E. Lat. 5400 km N. Time from 1910 May 20° }* to 100 G.M.T.

Note: Water and bare soil are treated by the same process as is the vegctation, but terms
marked with a heavy O vanish.

Character of surface......... forest [other crops| bare soil | water
Height (h, —A,) at which radiation converted ems | 1000 30 — —
Part of depth of top soil stratum =z, ems | 17 77 At —
Thermal conductivity of soil =% erg cm~2sec™! degree! 1% | 16 16 16 1:;;{3
Trial value of 6, the temperature of the surface =6’ °Abs 290
1/C' =g (ps—pa)[(222y,) cm?grm~tsec 10-¢x | 0780 0780 0780
Trial s
Resistances | 1/C',, = r " s 0005t | 0010 | 000 (0]
above %, £ 2| S R B
Sum of previous pair = 1/C", , - M .4 0785 0785 0780
' 1/Cn0=2fk ” ” ) 0-106 0106 0106
Trial e e e e L R —
Resistances | 1/C"y, , = % - 57 TS 0:05 1 0]
below &, LN LEw g I
Sum of previous pair =1/C";; , ,, . A 161 0156 0106
Here fill up Forms P 1x, P x to find corrected 6,, which is 2943
Corrected value C 4 of O 10% x 170
- For 8/36' see Form P x —
Corrected value C,, of C'y,, 10 x 7y
Temperature at 2, in soil =6, °Abs | 288 290
9= 6, plus 9-9° C per km of I (ks %,) if air clear *Abs | 2954 2954
Trial jump in Flux of sensible heat
=T —806*—%E +=. See form P 1x 10 x 346
Corrcetion to preceding == . 616’ (-800"—vE +w') 104 x 47
Corrected jump, fio—f% erg cm~?sec™? 10¢ x 299
Flux of sensible heat upward just above &, =f,=C (0, — 1) 10*x 17
9 ”» ”» below ,, , =.f10= CII,A (011 - 0A) 10% x A —-31-3
Difference of preceding pair. This should agrec with f,—f, 104 % 298
Mean f;, for whole chequer ' erg em~?sec™! 10* x | say —1-7
* Layer of dead leaves on ground. Guess. T Guesses inserted for illustration.
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FINDING THE TEMPERATURE OF THE INTERFACE
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AN EXAMPLE WORKED ON COMPUTING FORMS
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EDDY-DIFFUSION, AND GAINS OF ENTROPY
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STRATOSPHERE

CHANGES OF PRESSURE.
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AN EXAMPLE WORKED ON COMPUTING FORMS
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MOTION OF WATER WITH AIR AND THROUGH SOIL

CH. g/2
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EDDY STRESSES

TEMPERATURE IN SOIL.

CH. 9/2
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INCREASE OF MOMENTUM
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Cu. 9/2 THE RESULTING “PREDICTION” 211

Summary of changes deduced from the Initial Distribution

A here means the increase of the quantity concerned, during the period of six hours,
which was centered at 1910 May 20 7" G.M.T.

At longitude 11° East, latitude 5600 kilometres North

From computing forms M 111 and M 1v

103 x 108 x
AM gy, —730 AMy,, —337
AM, —196 AMy,, +238
AMg, — 89 AMy,, + 138
AM s — 153 AMyg — 43
AMpes—179 AMygs+ 63

At longitude 11° East, latitude 5400 kilometres North

From computing forms P x1i1, P x1v, P xvinr

100 x
A6, 1976
Ap, 483
AW, 0007
Ap, 770
AW, 0024
Apg 1032
AW 0149
Apg 1265
AWgs 0402
Apg 1451

It is claimed that the above form a fairly correct deduction from a somewhat
unnatural initial distribution.
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AN EXAMPLE WORKED ON COMPUTING FORMS Cu. 9/3

Cu. 9/3. THE CONVERGENCE OF WIND IN THE PRECEDING EXAMPLE

The striking errors in the “forecast,” which has been obtained by means of the
computing forms, may be traced back to the large apparent convergence of wind. It
may be asked whether this spurious convergence arises from the errors of observations
with balloons, or from the finite horizontal differences being too large, or thirdly from
the process by which the winds at points, arranged in a rectangular pattern, are inter-
polated between the observing stations. We may examine this question by eliminating
the third source of error hy computing the convergence in a triangle formed by three
observing stations. The formula for a triangle was given by Bennett in an appendix
to the Life History of Surface Air Currents, by Shaw and Lempfert. Bennett's
formula can be expressed for our purposes as follows: Let the triangle formed by the
three balloon stations be drawn on a map. The momentum per horizontal area of a
conventional stratum at each station is next to be resolved along the perpendicular to
the opposite side of the triangle. Each resolved part is to be divided by the length of
the corresponding perpendicular and the quotients are to be added. Their sum would
be the rate of increase of mass per unit area of the stratum if there were no vertical
motion. In selecting three stations to form a triangle I have chosen those at which
the extrapolation of momentum in the stratosphere was the best. These were Hamburg,
Strassburg and Vienna. They form a triangle which is nearly equilateral but rather
large, the sides being roughly 700 kllometres long®. The computations are set out in
the adjoining tablef, the interesting column of which is the last one headed “sums for
all three stations,” for the figures in it would be the rates of increase of mass per
horizontal area of stratum, if there were no vertical motion. Unfortunately we have
no direct observations of vertical motion for this occasion, but thanks to the extra-
polation to the upper limit A, of the atmosphere, we can find the total rate of increase
of mass for all strata by adding up the figures in the last column. Their sum is
+305x10"°grm em~*sec™. As the whole mass of the atmosphere is about one kilo--
gram per horizontal square centimetre, this rate of increase implies a barometric rise
of 0°003 millibar per second, that is about 60 millibars in six hours. Actually at
Bayreuth}, which lies near the middle of the triangle, the barometric readings were as
follows:

May 19 May 20

-]

14 21 7 14 21
700 mm of Hg +

Lo
(1]
@

250 253 256 247 256

Other neighhouring stations observed a similarly constant pressure, and the hourly
values for Hohenpeissberg} and for Potsdam, which lie outside the triangle on opposite
side of it, tell the same tale. Thus there is a marked disagreement between observa-
tion and calculation.

* See the map on p. 184. + The second table on p. 213.
+ Deutsches Meteorologisches Jahrbuch fiir 1909, Bayern.



Cn. 973 ACCUMULATION OF MASS AND DETAIL OF WIND 213

Convergence of Winds in a Triangle
1917 May 20¢ 7®

1

HAMBURG VIENNA j STRASSBURG
Length of perpendicular | 57 x 107¢em | 61 x 107¢m | 4-8 x 107 ¢m
Azimuth of perpendicular| S (exactly) WI°N | N50°E
Inward component of M along
perpendicular divided by length of
perpendicular
Unit =10~ grm cm~2 sec™!
Sums for all
three stations
Hamburg Vienna Strassburg
h, to h, + 33 - 20 - 19 - 6
hyto h, + T4 + 136 - 215 -
hg to Ay - 14 + 102 - 29 + 59
hg to hy + 7 + 36 + 48 + 91
hoto kg - 142 + 243 + 65 + 166
Sums for all &
gy itls } ~ 42 + 497 ~150 + 305

It is possible to suppose that the marked convergence in the lower strata was
actually balanced by a large divergence in the upper part of the stratosphere, a
divergence which does not appear in the table and which would have to be explained
by casting the blame on the newcomer: the extrapolation in the stratosphere. That
explanation would imply an upward current in the middle layers of some 700
metres in 6 hours at a height of 42 kilometres. So large an upward speed would
probably have produced cloud, whereas the sky remained almost clear*. So we turn
to the alternative explanation, which is that stations as far apart as 700 kilometres
did not give an adequate representation of the wind in the lower layers. That
appears almost certain when one thinks of the irregularities of the surface wind
exhibited on the daily weather reports. The wind stations in the proposed rectangular
pattern are nearer to one another, being 400 kilometres apart, and that distance might
well have to be halved in practice. This being admitted, let us refer again to the con-
vergence of the horizontal winds set out in the last column of the table. It is seen
that for the layers above 72 kilometres the divergence is quite small and therefore
credible. The suggestion is that at these great heights the flow was so smooth and
lacking in detail that observations even as far apart as 700 kilometres gave a fair
representation of it; and further that the extrapolation for the upper part of the
stratosphere was, at least, not strikingly in error.

* An uplift of 14 km would have produced general cloud, whereas the mean cloud amount at
16 Bavarian stations was below 2-5/10 until after May 21¢ 7,



CHAPTER X
SMOOTHING THE INITIAL DATA

WE are not concerned to know all about the weather, nor even to trace the entangled
detail of the path of every air-particle. A judicious selection is necessary for our
peace of mind. For some such reason it is customary, at stations which report wind
by telegraph, to replace the instantaneous velocity by a mean value over about ten
minutes. An extension of this process must be contemplated, for there is a good deal
of evidence to show that the wind is full of small “‘secondary cyeclones” or other whirls
having the most various diameters. The arithmetical process can only take account
individually of such whirls as have diameters greater than the distance between the
centres of the red chequers in our co-ordinate chessboard, and this length has been
taken provisionally as 400 km.

If we smooth out these whirls we shall have to make amends by introducing
suitable eddy-diffusivities. So far meteorologists do not appear to have attended to
eddy-diffusivities of this kind. We shall refer to them again in Ch. 11/4.

The evidence for the existence of such eddies includes the following:

(i) The impossible rate of accumulation of air deduced in Ch. 9/3 from observa-
tions at three stations.

(ii) The irregular wind-arrows shown on the unusually detailed wind-maps
prepared by the Norwegian weather service. In Norway many of the irregularities
are obviously due to mountains. They none the less come under consideration here.

(iii) The irregularities noticeable on the British Daily Weather Report between
the pilot balloon observations at neighbouring stations ™.

(iv) The errors of forecasts which have been attributed by G. M. B. Dobson{
mainly to small irregular variations in the pressure distribution.

Let us now consider various ways in which the smoothing could be effected.

A. Space Means. If instead of one station observing wind at the centre of each
red chequer on our chessboard we had a number of stations distributed, preferably
regularly, over the area of the chequer, then some sort of mean of their observations
would be the proper quantity to choose as an initial datwn for the computing. This
plan would be technically preferable to the processes described below, but as observa-
tions are scarce and stations costly we should explore other ways.

B. Time Means. Suppose that there is only one station on each red square of the
chesshoard, but that the observations of wind at it are made every hour during say
n successive hours, and that their mean is taken and used as the initial datum of the
computing. If the large eddies are distributed at random, the result will be much the

* See also especially “The variation of wind with place,” by Capt. J. Durward, M.A., London Met.

Office Professional Notes, No. 24.
+ “Causes of Errors in Forecasting Pressure Gradients and Wind,” Q. J. R. Met. Soc. 1921 Oct.
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same as if we took a space-mean along the line travelled by a point moving with the
mean wind during # hours. We want this line to be equal in length to the distance
between the centres of our red co-ordinate chequers. So for an ordinary wind velocity
of 10 m/s and a chequer 200 km in the side the observations would need to be con-
400 % 10°
10% 3600

The advantage of this scheme over A is that it would require fewer observers. It
appears also to be more practical than C, D, E which follow.

tinued for =11 hours.

(. Potential Function. The irregularity in the observations which has forced
itself on our attention is the large value of divgym. It may be possible by slight
adjustment of m to remove large values of divzym especially if the latter are scattered
at random and if they vary, as is to be anticipated, symmetrically around & mean near
to zero. Thus we might introduce a potential function f;, and replace the observed

my, my by
0 0
mE+éJ—;-‘, mN+b{—i.
Then divgy of these new momenta per volume would be
diVENm + V2ENj;’

where V?;y is what V* becomes when 9f,/0h is ignored. If then this expression be put
equal to zero or to some function of the observed ‘barometric tendency” we should
have a problem to be solved to determine f; from V*py f; =a given function of position.

Either there is a boundary of the sort contemplated in Ch. 7 in which case we have
a “jury” problem®. Or else the region covers the whole globe, as if the boundary
had contracted to a point. There must be no discontinuity of f; at this point and for
that reason we have to do, not with a “marching” problem¥, but with one more akin
to the “jury” variety. ,

The solution of such problems by analysis is the subject of an extensive literature }
and their solution by arithmetic has been illustrated by examples elsewhere}. In any
case it is rather troublesome.

D. Stream Function. The method C would leave the distribution of curl m un-
altered by the smoothing. But curl m is almost certainly irregular and in need of
preliminary smoothing if we are to avoid awkward consequences in the application of
the dynamical equations. We might imagine a stream function f, introduced and
mg, my replaced by

o, o,

Il N——a_e'

on
Proceeding as with f, we could by the solution of a jury problem find a distribution
J: which would remove or diminish the irregular curl, without affecting the divergence.

See p. 3 above.

or example Byerly, Fourier Series and Spherical Harmonics. Wiley & Co., New York.

3
Tl
i L. F. Richardson, Phil. Trans. A, Vol. 210, p. 307 (1910).
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E. Smoothing during the forecast. While beginning the forecast with the un-
smoothed velocities we might temporarily introduce into the dynamical equations terms
representing a considerable fictitious viscosity. These would have the effect of
smoothing out irregular motions whether waves of compression or whirls. As is well
known, the shorter the wave length or the smaller the diameter of the whirl, the more
rapidly would the corresponding motion be damped out.

Arithmetical processes, somewhat analogous to that here suggested, have been used *
to smooth an arbitrary function of position and to make it approach gradually to f,
where V'f,=0. In the atmospheric case we should aim to remove the fictitious
viscosity after it had smoothed the irregularities and if possible before its effect on the
larger motions had become noticeable. :

* L. F. Richardson, Phil. Trans. A, Vol. 210, p. 307 (1910).

b



CHAPTER XI

SOME REMAINING PROBLEMS
Ca. 11/0. INTRODUCTION

THE two great outstanding difficulties are those connected with the completeness
necessary in the initial observations and with the elaborateness of the subsequent
process of computing. These are discussed in Ch. 11/1 and Ch. 11/2. The scheme of
numerical forecasting has developed so far that it is reasonable to expect that when
the smoothing of Ch. 10 has been arranged, it may give forecasts agreeing with the
actual smoothed weather. When that stage has been attained, the other difficulties
will tend to group themselves with questions of the desirability of weather forecasts
and of their cost. We need here an estimate of the economic value of a forecast reliable
for » days ahead, given as a function of n. As with improved methods » is likely to
increase, so forecasts will become of more value to agriculturalists. Now the annual
value of the world’s food crops is at least £1000,000,000, so that a very tiny fractional
saving would correspond to a large sum.

Cu. 11/1. THE PROBLEM OF OBTAINING INITIAL OBSERVATIONS

Pattern

When the observations are taken at stations scattered irregularly, an interpolation
has to be made to find the initial data at the centres of the chequers of our chessboard.
It has been mentioned in Ch. 9/1 that this interpolation was found to be both trouble-
some and inaccurate, as may be evident from the map on p. 184.

An existing meteorological station in the British Isles has been either an outgrowth
from an astronomical or magnetic observatory, or it has adjoined the house of an
enthusiast who lived there for reasous unconnected with meteorology, or it has been
pushed out to the confines of the islands to grasp as much weather as possible, or it
has been placed in charge of coastguards because they are on duty at night, or it has
been set on a mountain to test the upper air. Excellent practical reasons all these,
but it is remarkable that the properties of the atmosphere, which are expressed by 1ts
dynamical equations and its equation of continuity, appear to have had no influence
on the selection™.

There would be a great advantage, from the point of view of meteorological science,
if observing stations for pressure and for velocity could be arranged alternately in
rectangular order in the pattern shown in the frontispiece, modified where necessary
by devices such as those proposed in Ch. 7/3, 7/4, 7/5.

Wind
Velocities given, as is customary, to 0'1 metre/sec, and at stations 400 km apart,
have been found to be nearly but not quite sufliciently accurate (supposing the decimal

* See resolution xx1 in the Report of the International Commission for the Investigation of the Upper
Ar, Bergen 1921.
R. 28
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figure correct) to give reasonable values of 9p¢ /ot when they are inserted in the equation
of continuity of mass. Greater accuracy could, of course, be obtained by using larger

theodolites. Further, a pilot balloon observation naturally gives [ vpdh, f vydh and

if these integrals were published for certain limits of A, the calculation of

My = jfvEp.dh, MN=f?)Np.dh

could be improved. There remains the problem of gusts and local eddies of larger size
which has been discussed in Chapter 10.

The circumstances, in which wind can be observed, are extending. Thus during the
war 1t became customary to observe pilot balloons at night by attaching to the balloon
a candle in a small paper lantern. The wind data available at present relate mainly
to clear air. But for observing the wind above fog, or low cloud, kite-balloons can be
used, or the elaborate method of location by sound*. For the same purpose projectiles
have been used at Benson up to heights of 600 m. The projectiles have been spheres
of about the size of a cherry and they have been projected nearly vertically but in a
direction slightly inclined towards the wind so that the returning sphere struck earth
near to the hut which protected the observer.

Temperature

The example of Ch. 9 sets out from the records of registering balloons. But these
would not serve as a basis for actual forecasts because the balloon is often not found
until a week or more after its ascent.

During and since the war temperature observations by aeroplanes have been taken
in great number up to about 5 kilometres. Also kite-balloons have been utilized.

Experiments have recently been conducted at Benson Observatory with a view to
finding methods of observing temperature, or its equivalent, which should give im-
mediate records and which should be cheaper than aeroplane ascents. The results
obtained are described in publications entitled ¢ Lizard Balloons for signalling the ratio
of pressure to temperature f,” “Cracker balloons for signalling temperaturef” and
““Sun-flash balloons for ‘continuous signalling}.” It is hoped also to describe some
experiments in which the time of flight of a projectile shot upwards served as an
indication of the temperature aloft.

Water in Clouds

Another gap in the existing observational data relates to the amount of water in
clonds. Attempts have been made to measure this photometrically. And it has been
shown to be possible§ when the cloud particles are all of one known size. But in actual
cases we are often w1thout definite information concerning the size of the particles.

* Schereschewsky, Report Intern. Commiss. Upper Air, Bergen 1921, p. 22.

1 Meteorological Office, London, Professional Notes, Nos, 18 and 19.

+ Q. J. R. Met. Soc. 1920 July, p. 293.

§ L. F. Richardson, “Water in Clouds,” Roy. Soc. Lond. Proc. A, Vol. 96 (1919), p. 19.
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Cu. 11/2. THE SPEED AND ORGANIZATION OF COMPUTING

It took me the best part of six weeks to draw up the computing forms and to work
out the new distribution in two vertical columns for the first time. My office was a
heap of hay in a cold rest billet. With practice the work of an average computer
might go perhaps ten times faster. If the time-step were 3 hours, then 32 individuals
could just compute two points so as to keep pace with the weather, if we allow nothing
for the very great gain in speed which is invariably noticed when a complicated
operation is divided up into simpler parts, upon which individuals specialize. If the
co-ordinate chequer were 200 km square in plan, there would be 3200 columns on
the complete map of the globe. In the tropics the weather is often foreknown, so
that we may say 2000 active columns. So that 32 x 2000 =64,000 computers would
be needed to race the weather for the whole globe. That is a staggering figure. Per-
haps in some years’ time it may be possible to report a simplification of the process.
But in any case, the organization indicated is a central forecast-factory for the whole
globe, or for portions extending to boundaries where the weather is steady, with indi-
vidual computers specializing on the separate equations. Let us hope for their sakes
that they are moved on from time to time to new operations.

After so much hard reasoning, may one play with a fantasy ? Imagine a large hall
like a theatre, except that the circles and galleries go right round through the space
usually occupied by the stage. The walls of this chamber are painted to form a map
of the globe. The ceiling represents the north polar regions, England is in the gallery,
the tropies in the upper circle, Australia on the dress circle and the antarctic in the
pit. A myriad computers are at work upon the weather of the part of the map where
each sits, but each computer attends only to one equation or part of an equation. The
work of each region is coordinated by an official of higher rank. Numerous little ““ night
signs ” display the instantaneous values so that neighbouring computers can read them.
Each number is thus displayed in three adjacent zones so as to maintain communica-
tion to the North and South on the map. From the floor of the pit a tall pillar rises
to half the height of the hall. It carries a large pulpit on its top. In this sits the
man in charge of the whole theatre ; he is surrounded by several assistants and mes-
sengers. One of his duties is to maintain a uniform speed of progress in all parts of
the globe. In this respect he is like the conductor of an orchestra in which the instru-
ments are slide-rules and calculating machines. But instead of waving a baton he turns
a beam of rosy light upon any region that is running ahead of the rest, and a beam of
blue light upon those who are behindhand.

Four senior clerks in the central pulpit are collecting the future weather as fast as
it is being computed, and despatching it by pneumatic carrier to a quiet room. There
1t will be coded and telephoned to the radio transmitting station.

Messengers carry piles of used computing forms down to a storehouse in the cellar.

In a neighbouring building there is a research department, where they invent
improvements. But there is much experimenting on a small scale before any change

is made in the complex routine of the computing theatre. In a basement an enthusiast
28—2
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is observing eddies in the liquid lining of a huge spinning bowl, but so far the arith-
metic proves the better way. In another building are all the usual financial,
correspondence and administrative offices. Outside are playing fields, houses, mountains

and lakes, for it was thought that those who compute the weather should breathe of
it freely.

Cm. 11/3. ANALYTICAL TRANSFORMATION OF THE EQUATIONS

Tt is conceivable that by a change of variables the equations could be much shortened.
But as we are always required in the end to arrive at quantities of direct interest to
the public, namely wind, rain, temperature and radiation, so it may be that analytical
simplicity does not simplify the arithmetic. There is a tale of a philosopher who suc-
ceeded in reducing the whole of physics to a single equation 77 =0, but the explanation
of the meaning of I occupied twelve fat volumes.

The sort of transformations that suggest themselves are those to log p, log 6, instead
of p, p or else to stream functions and velocity potentials™.

No use has been made in this book of Mr W. H. Dines’ correlations between
temperature and pressure, and it is felt that while it would be very rash to assume
the correlation to be exactly unity, yet its proved approach towards unity might
suggest an economical choice of variables.

Then again experience must decide whether the various transformations, from
equations true at any level, to equations true for strata as a whole, are worth the
extra trouble they involve. Would it be easier and more exact, for example, to com-

pute with 20 strata using un-transformed equations, rather than with 5 strata and
the equations given in the computing forms ?

Cu. 11/4. HORIZONTAL DIFFUSION BY LARGE EDDIES

We are led to consider this by the proposal in Ch. 10 that small secondary cyclones
should be smoothed out. For any smoothing process requires compensation by the
introduction of eddy-diffusion of an appropriate kind.

There is the hypothesisi that we may measure the diffusion of heat, water,
momentum, dust, ete., by first measuring the diffusion of mass of air and afterwards
considering how much heat, water, momentum or dust is carried by unit mass. This
process is easy and the numerical estimates for vertical diffusion show that it gives
results at least of the right order. Let us apply it to horizontal diffusion.

The smoke trails from cities have been observed by aviators to be hundreds of
miles long. If aviators would also take note of the horizontal breadth of the trail at
various distances from the source, and of the speed of the mean wind, it might be

possible to extract a measure of the horizontal diffusivity. The formula has been given
by the author] thus:

* Compare A. E. H. Love, “Notes on the dynamical theory of the tides.” Proc. Lond. Math. Soc.
Ser. 2, Vol. 12, Part 4.

+ Due to G. L Taylor and W. Schmidt. See p. 76 above.
t Phil. Trans. A, Vol. 221, p. 6. Compare A. Einstein on Brownian movement, Ann. Phys. xvir. 1905.
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Square of standard deviation of smoke f1 om its middle line

Eddy-diftusivity = Rl 2O e 1t

Twice time taken by smoke since leavmg source

’

provided always that the time is long enough. There might be difficulties owing to
the precipitation of the smoke, or to its becoming too faint to be seen.

In these respects manned balloons are better. The Gordon Bennett races furnish
suitable data. The balloons simply drifted, the control of the aeronauts being limited
to letting out gas or ballast. Even that amount of control rather confuses the data
for the present purpose. But as there is no other information this is not to be despised,
On 1906 Sept. 30, between 16" and 17" 20 in the ufternoon, sixteen manned balloons
started from Paris. The landing places of all of them™* and the log of onet are printed
in the deronautical Journal. From these records I estimate, by means of the above
formula, that the horizontal eddy-diffusivity] was of the order of 2 x 10°em®sec™. This
figure is also the ratio of viscosity to density, and it lies between the observed values
for shoemakers’ wax and for pitch. The eddy-diffusivity when multiplied by the density
of the air, which we may put at 107° grm em™’, gives the eddy viscosity

2x10°em™ grm sec™.
The mean velocity of one balloon on this occasion was about 400 cm sec™,

To explain the geometry let us take rectangular axes Ox, Oy, Oh. Let Ox be
.drawn horizontally in the direction of the mean wind, so that # increases for a par-
ticle moving with this smooth motion. Let the y axis be drawn horizontally to
the left, and, in accordance with the right-hand screw rule, let the A axis point
upwards. Let vy, vy, vy be the corresponding components of the smoothed wind
velocity. Then in a viscous liquid free from eddies there would be§ three shearing

stresses, 37&, ha, @, connected with three rates of shear by the following equations in
which CY%, Cy, Cy would be equal to one another and would be called the viscosity :

£ vy | . ovy

=0l 5]+ %)
avg vy

01,{ < [_aﬂ}}. .................................... (2)

GUBANG)
m;/ O_H { ke F aZA}

In the smoothed motion of the atmosphere the two terms in square brackets are
usually negligible. The eddy-viscosity which has usually been measured is either
Cy or Cy or some combination of Cyand Cy for it has been customary to assume that
these viscosities are equal. However in one case the author has found some evidence
that C} was seven times greater than Cx. (See p. 73 above.) It has now been shown
that C;; must be taken to be 1000 or more times greater than either Cy or Cy if we

* Aer. J. 1906 Oct. + 1bid. 1907 Jan,
1 The corresponding race of 1921 Sept. gives diffusivity = 36 x 10®cm sec™.
§ Lamb, Hydrodynamies, 3rd edn. Arts. 30, 311 to 314.
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are going to smooth out not only gusts but also “secondary cyclones” as has been
proposed in Ch. 10. All eddy-viscosities imply some conventional coordinate element.
The element chosen in this book is shaped like a railway ticket as its edge extends
about 200 km on the map, while it is only a few kilometres thick. Apparently the
flat shape of the element is the cause of the great excess of Cy over Cy or Cf.

Equations (2) are valid if the fluid is isotropic. But, now that we have proved
that Cy, Cy, Cy to be unequal, the form of the relationship between the six eddy-
stresses and the six rates of mean strain becomes again an open question. In Ch. 4/9/5
it has even been suggested that there may be nine independent components of stress.
But apart from that possibility, the general theory is to be found ready-made in
connection with the elasticity of crystals. May we perhaps liken our coordinate
element to a crystal having three unequal axes at right angles to each other ? If so
equations (2) would still be correct® and the complications would be confined to the
direct stresses.

In order to form some idea of the order of magnitude of the eddy-shearing stress

@ which would be produced by this enormous viscosity Cy, an attempt has been
made to estimate the rate of shear ovy/ox +0dvx/0y. For this purpose daily weather
maps have been taken, local irregularities have been smoothed out of the isobars, and
then the wind has been assumed to be geostrophic. In the well-marked cyclone of
1919 March 27 at 7" the rate of shear on the slope of the depression across the
British Isles appears to have been of the order of 4 x 107*sec™.

Taking the viscosity Cy as 2 x 10°cm™ grm sec™ we find by multiplication an eddy

shearing stress .;c?/ of 8 dyne em™. This is only some 1 to 10 times greater than the
shearing stress on the ground, so that the large viscosity is associated with the small
rate-of-mean-shear, and vice versa.

Cu 11/5. A SURVEY OF REFLECTIVITY

We have been led to attribute considerable importance to the fraction of solar
radiation which is absorbed at the surface. The mean value of the reflectivity over a
large area could perhaps best be observed from aeroplanes. A very light and simple
photometert would serve to compare the brightness of a uniform stratus cloud above
the aeroplane with that of the ground beneath.

* Winkelmann, Handb. der Physik.
t See, for example, Roy. Soc. Lond. Proc. A, Vol. 96 (1919), p. 25.



CHAPTER XII

UNITS AND NOTATION
Cu. 12/1. UNITS

ExcepT where otherwise stated, centimetre-gram-second units are employed. Tempera-
tures are in degrees absolute centigrade. Energy, whether by itself or as invelved in
entropy or in specific heat, is expressed not in calories but in ergs. A power of ten
standing at the beginning of a row or column of figures, and followed by a multiplica-
tion sign, is intended to multiply each number in the row or column.

Cu. 12/2. LIST OF SYMBOLS

The following list shows the meanings which have been used throughout the book.
Where the symbol requires an extended definition reference is made to the place where
the definition will be found.

Mathematical notation is international, so that a foreigner, who is unable to read
the letterpress, may yet grasp the purport of the book if he knows the meanings of
the symbols only. So here I should like to explain the symbols in “the second language
for all mankind,” if there were such a one. Unfortunately there are several rivals, each
apparently easier to learn than any national language. Thus there are Esperanto*,
Idot, Esperantidof, all much alike, and differing considerably from Interlingua§.

A comparative study of these languages is being made by a committee of the Inter-
national Research Council (at Washington, U.S.A.)¥ and the choice of one language
should rest with some supremely authoritative body. Here without expressing any
opinion as to which language is best, one namely Ido is selected for illustration. In
making the translations I have been guided by my brother Gilbert H. Richardson
and by the large ‘Dictionnasre Frangais=1Ido par Beaufort et Couturat|.” Words
marked with an asterisk * are not in the dictionary and so are merely suggestions.

* British Esperanto Association, 17 Hart Street, London, W.C. 1.

t International Language (Ido) Society of Great Britain, Hon. Sec. J. W. Baxter, 57 Limes Grove,
Lewisham, London, S.E. 13.

1 “Esperantido,” 10 Hotelgasse, Bern, Switzerland.

§ Headquarters in Turin, Italy. [| 1915 Paris, Imprimerie Chaix, 11 Boul. St Michel.
€1 1701 Massachusetts Avenue, Washington, D.C., U.S.A,
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UNITS AND NOTATION

ENGLISH
Radius of the earth
Gas constant
Eddy-viscosity
Differentiators
Base of natural logarithms
=a.cos ¢ . O\ =distance eastwardst
Various functions
Acceleration of gravity
Height a.bdve mean sea-level
Subseript for arbitrary height
Special coordinate in soil
Thermal conductivity
Length. Distance
Momentum per volume
Mass of molecule
Number
= adp = distance northwards t
Pressure
Radius. Correlation coeflicient
Diffusivity of soil for temperature
Time
Thermal capacity per volume
Velocity

Mass of water-substance per volume

-Horizontal rectangular coordinates

J

Depth in ground

2 2

: C d
1 Caution: 550 18 not equal to e

DO
Radio di la tero
Gasala konstanto
Viskozeso efektigata da vortici
Infinitezima kreskuri di
Bazo di logaritmi naturala
Disto vers esto T
Diversa funcioni
Acelero efektigata da gravito
Alteso super la meza surfaco dil maro
Subskribajo indikanta alteso segun-vola
Specala mezuro di profundeso en la sulo
Konduktiveso kalorala
Longeso. Disto
Rapideso multiplikata per denseso
Maso di molekulo
Nombro o numero
Disto vers nordo t

Preso

Radio. Korelatala koeficiento
Difuziveso di la sulo ye temperaturo
Tempo

Kalorala kapaceso po volumino

Rapideso

Maso di aquo-substanco po volumino
Horizontala koordinati ortangula

Profundeso en la sulo

& ne egalas L
nde e

+ Atencez: oom

Cu. 12/2

FURTHER
DEFINITION
OR REFERENCE

Ch. 4/5/1
Ch. 4/8/0

271828

Ch. 4/10/0
Ch. 4/10/2

Ch. 4/10/2 # 6
Ch. 4/10/2 #7

=pp

Ch. 4/10/0
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ENGLISH
A
B | ¢ Various meanings
c
D | Infinitesimal increase, accompanying

&
— .

S S T S - . |

Qq N we N

w

X

the motion, of...
Subseript for eastwards
Radiant activity in a “parcel”
Vzu:ious functions

Subseript for ground level

Subscript for upwards
Brightness

Subscript for upper surface of vege-
tation

Momentum per area of stratum

Subscript for northwards
= [ pdh  across stratum

Liquid water per area of stratum
Mass per area of stratum
Entropy per area of stratum

Time

Velocity of cloud particles relative
to air

Water-substance per area of stratum
} Subscripts indicating horizontal

rectangular components

In theory of stirring

LIST OF SYMBOLS

IDO
Diversa signifiki

Infinitezima kreskuro, akompananta la movo,
di...

Subskribajo indikanta ulo direktata vers esto

Radiada energio trairanta “pako” po tempo
Diversa funcioni

Subskribajo signifikanta ulo ye la surfaco di
la sulo

Subskribajo indikanta vers supre

Girado di brilo

Subskribajo indikanta ulo ye la supera
surfaco di la vegetantaro

Denses-opla rapideso po areo stratala

Subskribajo signifikanta vers nordo
= f pdh  tra strato

Liquida aquo po areo stratala
Maso po areo stratala
Entropio® po areo stratala

Tempo

Rapideso, relativa al aero,di nubala partikuli

Juntata maso di vaporo, aquo e glacio po
areo di strato

Subskribaji indikanta horizontala kompo-
zanti ortangula

Ye teorio pri vortici

225

FURTHER
DEFINITION
OR REFERENCE

pp- 50, 51

pp. 50, 51

Ch. 4/2 #7
Ch. 474 #9

Ch. 4)2#6

Ui.4/6

p- 27

Ch. 4/8/0

29
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UNITS AND NOTATION

ENGLISH
} Coefficients relating to entropy

Thermal capaeities per mass
Finite difference operator
Energy per mass

Zenith distance

Absorptanee of stratum

Temperature, absolute
Moleeular diffusivity
Longitude, always eastwards

Joint mass of vapour, water and ice

per mass of atmosphere
L

Mass of liquid water per mass of
atmosphere

Turbulivity *

3-14159...

Density

Entropy per mass of atmospherc

Potential temperature

Internal energy per mass of atmo-
sphere

Latitude (reekoned negative in the
sonthern hemisphere)

In theory of stirring

Gravity potential (increasing npwards)

' Angular velocity of earth

IDO

Koeficienti pri entropio*

Kalorala kapaeesi po maso
Finite-mikra kreskuro di...

Energio po maso

Angulo inter zenito ed ula direeiono

Fraciono di radiada energio absorbata da
strato

Temperaturo de — 273°-1 C.
Molekulala difuziveso
Longitudo (sempre vers esto)

Juntata maso di vaporo, aquo e glacio po
maso di atmosfero

Maso di liquida aquo po maso di atmosfero

Speeala mezuro di vortieado

Denseso
/
Entropio* po maso di atmosfero

Temperaturo ye ula preso normala se nek
kaloro nek aquo esas perdita

Interna energio po maso di atmosfero
Latitudo (negativa en la suda mi-=sfero)

Ye teorio pri vortici
Gravitala potencialo (kreskanta ad-supre)

Angulala rapideso di la tero

Cu. 12/2

FURTHER
DEFINITION
OR REFERENCE

{179

Ch. 4/5/0

Ch. 4/7/1 #13

Ch. 4/9/8

Ch. 4/8/0#15

Ch. 4/5/0
Ch. 8/2/6

Ch. 4/5/0
{Ch. 8/2/6

Ch. 4/5/0

Ch. 4/8/0 # 6

0:729211 x 10-*sec?
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ENGLISH

I' | Radiant cnergy absorbed at interface
per area and per time

A | Increase of

® | Eddy-heat per mass

A

I

= | Mass of water evaporating from inter-
face per horizontal arca and per time

5, | Summing operator

Y | Pressure in water in soil

&

}Relate to vertical velocity in the
stratosphere

=

Q | =2wsin ¢
F | Vapour density in soil
¢

Rate of evaporation from leaf

2 | Correction to the estimate of surface
(dalda)t| temperature
228 | See flux of heat at the interface
(mi)

= | Latent heat of evaporation per mass

Conductivity of soil to soil-water

X | Porosity of soil to vapour

x| Partition coefficient of W. Schmidt
2 Stefan’svradiation constant

A | Absorptivity per density

2 | Scatterivity * per density

% | Emissivity of interface for long waves

LIST OF SYMBOLS

IDO

Radiada energio absorbata an interfaco
[
po areo ¢ po tempo

Kreskuro di

Energio di vortici po maso

Maso di aquo vaporeskanta de interfaco
po horizontala areo e po tempo

Sumigilo

Preso en aquo en sulo

} Relatas vertikala rapideso en la snpra
strato

= 2w sin ¢

Denseso di vaporo en sulo

Vaporeskala rapideso de folio

Korektilo al konjekturo di -temperaturo
interfacala

Pri fluado di kaloro ad o de l'interfaco
Energio vaporigiva mezur-unajo di maso
Konduktiveso di sulo por aquo sulala
Porozeso di sulo por vaporo

Koeficiento di W. Schmidt pri divido
Konstanto di Stefan pri radiado
Absorbiveso po denseso

Dissemiveso po denseso

Emisiveso di interfaco por ondi longa

227

FURTHER
DEFINITION
OR REFERENCE

Ch. 8/2/15

ok Aff

Ch. 8/2/11, 12

Ch. 4/10/2

Ch. 6/6 # 23
Ch. 6/6 # 22

p- 15
Ch. 4/10/2
Ch. 4/10/3 #1

Ch. 8/2/15

Ch. 4/8/4#17

Ch. 4/10/2 #1

Ch. 4/10/2#3

p. 89
Ch. 4/7/1 #
Ch. 4/7/2#5
Ch. 4)T[2 #5

Ch. 8/2/15

t I am indebted to Prof. Flinders Petrie for the names of these Coptic letters.
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UNITS AND NOTATION Cn. 12/3, 4

Cu. 12/3. RELATIONSHIPS BETWEEN CERTAIN SYMBOLS

The symbol in the third column below is equal to p times the corresponding symbol
in the second column. The symbol in the fourth column is the integral, with respect
to height across a conventional stratum, of the symbol in the third column, or if that
is absent, of p times the symbol in the second column.

I II III v

Per mass of | Per volume of |Per horizontal area of
atmosphere atmosphere |conventional stratum

Mass 1 P L
Momentum e ) v m M
— — p 2
Mass of water in all forms}
. I w ]V
jointly ...
Mass of condensed water v Q
Entropy ... -

CH. 12/4. SUBSCRIPTS FOR HEIGHT

We have to do with many quantities which are functions of height. Any of these,
say p for illustration, may be limited to one particular height by a subseript. Thus p,
means the value of p at the dividing surface between two conventional strata, a surface
at which the normal pressure is roughly 8 decibars. Similarly p,, p,, p., p, refer to
conventional heights at which the normal pressure is about 6, 4, 2, 0 decibars. The
actual heights selected are exactly as follows :

Height above m.s.L. ... 20 km 4:2 72 118
Subscripts e 6 4 2

For intermediate levels the odd numbers are occasionally used as subscripts. The
following letters are also used as subscripts for height:

¢ Ground level

¢ Base of stratosphere

z Upper surface of vegetation

4 Height in vegetation at which radiation is converted to heat
¢ Arbitrary height.

To make the foregoing notation run on without a break from air to soil, the surface
of the soil is denoted by z, and successive depths by z,, 2, 2,, ete. (See Ch. 8/2/15.)

The same subscripts are nsed to denote limits of integration with respect to height,
thus

hig

8
f w.dh 1s a convenient abbreviation for f w. dh.

G ha
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Again the same subscripts are used in pairs to denote the particular stratum to

which R, M, P, W, @, S refer; thus for example

8
Wi = j w. dh.
@

Ca. 12/5. VECTOR NOTATION

Scalar quantities are denoted by ordinary letters, vectors by black letters (Clarendon
type), their tensors by ordinary letters, and their components by ordinary letters with
the suflixes & », # attached. In conformity with the custom in mathematical physies
the subscripts # and » denote to, not from, the east and north. As this is opposite
to the usage in practical meteorology it may sometimes be desirable to emphasize the
sense by writing for example vy, vgy for the velocities to the east and to the north
respectively. The subscript z denotes the component directed vertically upwards.

Scalar products are represented by simple juxtaposition, with a dot to separate the
factors and parentheses to enclose them, when either or both of these are needed to
make the meaning clear. Thus v(vv) can be distinguished from (vy)v. Vector pro-
ducts are enclosed in square brackets with if necessary a dot to separate the factors.
The right-handed screw rule is used. The Laplacian operator

& foat + 8/oy” + 0oz
is denoted by v* not by A.

To denote the divergence which a vector would have, if its vertical component
became zero, while its horizontal components remained unchanged, the operator div gy
is used. So that

divpyv = l At | Vy talldy
oe. " on 77

In describing spatial variation it is very desirable, as Sir Napier Shaw has pointed
out, to have a word which makes a clear distinction between vertical and horizontal
directions, and for this reason he uses “ gradient” for the horizontal, “lapse-rate” for
the vertical. This entire change of term gives no reminder that the horizontal and
vertical changes are components of the same vector. Again “lapse-rate” is to be
reckoned positive when the quantity which varies is greater below than above, and
this convention of signs is not always convenient. Lastly, some writers use lapse-rate
without specifying the quantity which lapses ; one assumes it to be temperature ; but
having done that, one hesitates to speak of the lapse-rate of anything else. As a way
out of these difficulties the following notation is suggested. Let p be any scalar

0 A
8%) =up-gradient of p; ZJZ = east-gradient of p ; g—j—z =north-gradient of p.
0 ; )

- ;‘31/% =down-gradient of p ; —g% = west-gradient of p ; —gﬁ = south-gradient of p.

op\ |, [OpY _ : IS I T T
f\/<§§> + (55) = level-gradient of p ; \/<55> E{ (2%-) 4L 87L> = gradient of p.

In the foregoing pages ““grade” is sometimes used for “gradient,” but that was
perhaps a mistake.
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Taylor, G. 1., 65, 67, 72, 75, 76, 77, 82, 83,
84, 87, 91, 93, 106, 112, 170, 220

Thomson, Sir J. J., 45
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INDEX OF SUBSIDIARY SUBJECTS

(For the main topics the reader is referred to the table of contents on p. xi.)

Absorptivity-per-density of air, for long-wave radiation, 50 et seq.

— in stratosphere, 134, 135

for solar radiation, 60 et seq.
Accuracy, gain of, by centred differences, 3, 149

Adiabatic expansion, 35, 158 et seq.
— and clouds, 99
— and mixing, 162, 163

— in stratosphere, 135, 141 et seq.
law, indcpendent of gravity and motion, 39

Adsorption of water by soil, 108, 109
Advection (see Conveyance)

Aeroplanes, observations from, 44, 65, 66, 94, 218, 222

< Austausch ” of W. Schmidt, 67, 91

Balloons, free, and horizontal diffusion, 221

registering, precision of observations, 128

Barley, evaporation from, 111, 113, 168
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Carbon-di-oxide, absorption of long-wave radiation by, 47, 49
Characteristic equation, 22, 23, 41
smoothmg of, 97
in stratosphere, 126
Cloud, continuous, 44, 188
detached, 99, 190
particles, size, 44, 45, 218
— rate of fall, 44, 45, 225
and radiation, 57, 63, 167
(see also Cumnlus)
Computing, cost of, 18, 219
Condensation, and entropy, 158
-nuclei, 45
Conductance, of stomata of leaves for water, 112
of crops for water, 113, 168
thermal, of surface strata, 173 et seq., 196, 197
Conductivity, of soil to soil water, 108, 109, 227
thermal, of snow, 114
Continuity, of energy, equation of, 38
of mass, equation of, 23, 178, 200
—- -— allowance for precipitation, 45
— — smoothing of, 97
— — in stratosphere, 127
of mass of water substance, equation of, 25, 179, 204
— — —— allowance for eddy-flux, 80, 81
— — — — allowance for precipitation, 45
— —- —- - smoothing of, 97
Convection, 65
Conventional strata, 1, 17, 19, 30, 34, 220, 2"8
in so11 104 105 172, 184
in stra.tosphere, 20, 125, 147, 148
thick versus thin near ground, 20, 92, 156, 171, 174
vegetation film, 113
Conveyance of entropy-per-mass, 43, 180
of water (see Continuity)
Cornfield, roughness of, 85
Correlation, between temperature and pressure in troposphere, 24, 220
—  time-rate and east-gradient of pressure, 10
Cost, of computing, 18, 217, 219
of observing stations, 18
Criterion of turbulence, 77, 100, 190
Crops, evaporation from, 111, 113, 168
Crystallography, term borrowed 149 156
and eddy-stresses, analo«y, 222
Cumulus eddies, 65, 66, 73, 76, 99, 166

“ Definite ” portion of turbulent fluid, 66, 98

Density of air, time-rate at fixed point, 21

Diffusion of atmospherlc eddies, 77, 78, 79

Diffusivity, thermal, of soil, 110, 294

Distillation of water in soil, 109

Diversity (see Heterogeneity)

" Dust, 21, 45, 59, 220

Dynamical equations, 30, 180, 209, 210
allowance for eddy-flux of momentum, 79, 80
importance of small terms, 10, 132, 187
smoothing of, 98
in st,ra.tosphere, 32, 208

Eddies, atmospherie, diffusion of, 77, 78, 79
energy of, 65, 71, 77, 100, 164
Eddy-motion (see Turbulence)
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Eddy-viscosity, lack of isotropy in, 222
Electrical analogy, to evaporation, 112, 168, 170
to thermal conditions at surface, 172, 173, 176
Energy, atmospheric, 35
of eddies, 65, 71, 77, 100, 164
-theory of stability, 77
Entropy derivatives, 42, 117, 159 et scq., 189 ; see especially 159 to 166
-per-mass, 35, 39, 40, 41, 42, 177, 198, 199
behaviour in regard to turbulence, 40, 69, 162
conveyance of, 43, 180
when condensation occurs, 158
linear function of height in stratosphere, 142
versus potential temperature, 40, 69, 158, 187
Erosion by Siberian rivers, 33 ===
Errors, due to finite differences, 1, 3, 4, 7, 12, 13, 14, 18, 53, 141, 151, 153
in initial data, forecast spoilt by, 2, 212
Evaporation, 90, 194
from sea, 167
— soil, 107, 169
— vegetation, 111, 112, 158, 159, 162, 167, 176, 227
— crops, 111, 113, 168
and surface temperature, 174

Finite differences, analytical preparation, 22, 220
centering of, 3, 149 et seq., 174
errors due to, 1, 3, 4, 7, 12, 13, 14, 18, 53, 141, 151, 153
¢ step-over ” method, 150
Forecast, spoilt by errors in initial data, 2, 212
-factory, 219
Forecasts, economic value of, 217
for sea, 104, 106, 153
for soil, 104
Free balloons and horizontal diffusion, 221
Friction, surface, 82, 179, 207
in stratosphere, 128
in vegetation film, 113, 114

Gas constant in stratosphere, 126
Geostrophic hypothesis, test of, 5, 145
inadequate, 9, 14, 146

-approximation in stratosphere, 128, 131, 135, 143, 144, 146, 147
Gradient, use of term, 229
Gravitational energy of gas, 35 et seq.
Gravity-potential, 17, 19, 30, 36, 125, 226
Ground, account taken of height of, 2, 24, 34, 92, 181, 182, 187

L3
Heat, conveyance of, by air, 43, 180
eddy-flux of, 70, 76, 177, 198
transference of, by precipitation, 45
motion of, in seil, 110, 179, 206
—  in snow, 114
flux of, at interface, 86, 170 et seq., 195
emissivity of leaves for, 112
Height of ground, account taken of, 2, 24, 34, 92, 181, 182, 187
of tropopause, 16, 141
Heterogeneity, 76, 94, 166, 190
¢ pressure of,” 97
 Horizontal,” defined, 17
Horizontal diffusion, by large eddies, 214, 220
Hydrostatic equation, 81, 115, 117, 164
in stratosphere, 126
“ Hygroscopic ” water, in soils, 108

R. 30
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International languages, 223
Intrinsic energy of gas, 36, 226
Ionisation of upper atmosphere, 125, 135
Ions and condensation, 45
Irreversible mixing, 162 ¢f seq.
Isobaric and level surfaces, 17

map, general equation of, 15

“ Jury” problems, 3, 215

Kinetic energy of gas, 35 et seq.
of eddies, 65, 71, 77, 100, 164

Lapse-rate, use of term, 229
Latent heat, 170
and entropy, 158 et seq.
and temperature in soil, 110
and surface temperature, 174
Lattice, term borrowed, 149, 156
-reproducing system, 2, 156, 168, 180
Leaves, emissivity of, for heat, 112
turgescence of, 113
(see also Vegetation)
Level and isobaric surfaces, 17
Local showers, 99, 167

Magnetic stresses, 99

“ Marching ” problems, 3, 215

¢ Mixing-rule ” of W, Schmidt, 162

Momentum, behaviour in regard to turbulence, 69, 70
eddy-flux of, 79, 179, 207
-per-volume versus velocity, 24, 97

N itrogén, absorption of long-wave radiation by, 47

Observations, upper air, method of obtaining, 218

by registering balloons, precision of, 128

from aeroplanes, 44, 65, 66, 94, 218, 222

of wind, extrapolation in stratosphere, 127, 179, 182, 208
Observing stations, cost of, 18

distribution of, 16, 183, 217
Occlusion of water by soil, 108, 109
Oxygen, absorption of long-wave radiation by, 47
Ozone, absorption of long-wave radiation by, 48, 135
in stratosphere, 135

*“ Parcel of Radiation,” 50, 225
Partition of heat at surface, 89
coefficient, 89, 175
Percolation of water, through soil, 107
transference of heat by, 110
Photometric measurements, of light transmitted by clouds, 63
of reflectivity of surface, from aeroplanes, 222
of water in clouds, 44, 218
“ Polar-front,” 43
Porosity of soil to water vapour, 109, 227
Potential-density, 40, 85 :
—  in sea, 106
-function, 220
—  smoothing by, 215
-temperature, defined, 40, 158
— behaviour in regard to turbulence, 40, 67, 68, 70, 87, 88, 162
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Potential-temperature, versus entropy-per-mass, 40, 69, 158, 187

— computation of, 81, 165, 188
- diversity of, 101

— peculiarity arising from choice of standard pressure, 163

Precipitation, 44, 158, 188
and surface temperature, 174
transference of heat by, 45
Pressural energy of gas, 36 et seq.
¢ Pressure of heterogeneity,” 97
Pressure, not reduced to sea-level, 2, 181

and temperature in troposphere, correlation, 24, 220
time-rate and east-gradient, correlation, 10
in water in soil, 107, 108, 109, 227 e

Radiation-equilibrium theory of stratosphere, 134, 1
“parcel ” of, 50, 225
and surface temperature, 174
vertical velocity, due to, 119
long-wave, 46, 167, 193
— and sea, 57, 106
— and snow, 76, 114
— in stratosphere, 134, 135, 139,
solar, 46, 57, 167, 191, 192
— and sea, 106
— and snow, 114
— transparency of stratosphere, 139
Rain, evaporation of, from vegetation, 111, 169
(see also Precipitation)
Reflectivity of surface, 222
of sea, 57
of snow, 114
Registering-balloons, precision of observations, 128
“ Reststrahlen,” 46
Rivers, Siberian, erosion by, 33

Salinity and turbulence in sea, 106
Saturation, test for, 23, 158
‘“Scatterivity "-per-density, of air for solar radiation,
Sea, 104, 153, 179
evaporation from, 167, 194
and radiation, 57, 106 .
thermal bouudary condition, 105, 106, 170
“ Secondary-cyclones,” and horizontal diffusion, 214,

40

146

61, 227

222

Smoke-trails from cities, and horizontal diffusion, 220

Smoothing, operations, 95, 96
of fundamental equations, 97
of vertical velocity equation, 124
of initial data, 214
Snow, 76, 114
Soil, 104, 107, 179, 184, 205, 206
evaporation from, 107, 169, 194
thermal boundary condition, 171
Solar constant, 58, 191, 192
Space-means, smoothing by, 214
Specific heat, at very low temperatures, 160
Stability, 65, 66, 71, 165, 190
and potential density, 40
‘““energy” theory of, 77
Statistical facts, employment of, in numerical scheme
171, 178, 179, 180, 182, 184, 190
«“ Step-over ” method of integration, 150
Stratosphere, 125, 179, 187, 201, 208, 209, 210

, 27, 59, 82, 92, 104, 105, 153, 167,
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Stratosphere, horizontal temperature gradients, 128, 140, 183, 187
Stream-function, 22, 220
smoothing by, 215
Surface-friction, 82, 179, 207
reflectivity of, 57, 114, 222
-temperature, defined, 172
— of land, 171
— of sea, 105, 170, 179
— determination of, 174, 175, 196, 197

Temperature, diversity of, 94, 101, 103
and pressure in troposphere, correlation, 24, 220
up-gradient in air near surface, 86, 87, 113, 172
Thermal capacity, of soil, 104, 110
: — of sea, 105
conductivity, of snow, 114
conductance, of surface strata, 173 et seq., 196, 197
diffusivity, of soil, 110, 224
resistance, of moss, etc., 176
Tidal theory, 4, 5, 30
Time-means, smoothing by, 214
Tropopause, height of, 16, 141
Turbulence, 65, 106, 162, 166, 190
in sea, 106
criterion of, 77, 100, 190
Turbulent fluid, “ definite ” portion of, 66, 98
p differentiation following mean motion of, 67
Turbulivity, defined, 68, 69
Turgescence of leaves, 113

Vegetation, conventional film, 113
evaporation from, 111, 112, 158, 159, 162, 167, 176, 194, 227
thermal boundary condition, 176, 195
Velocity versus momentum-per-volume, 24, 97
Vertical velocity, 1, 22, 41, 43, 115, 178, 180, 202, 203
smoothing equation for, 124, 165
in stratosphere, 124, 135, 177, 201

Water content of clonds, 44, 218
-substance, behaviour in regard to turbulence, 67, 68, 70
— eddy-flux of, 80, 176, 198 (see also Evaporation)
~— motion of, in soil, 107, 179, 205
— diversity of, in atmosphere, 100, 102
-vapour, absorption of long-wave radiation by, 47
-content of atmosphere, 43, 48
porosity of soil to, 109, 227
Wheat-field, roughness of, 85
Wind, extrapolations of observations in stratosphere, 127, 179, 182, 208
high velocities at great heights, 131
increase of west-component with height, 33
methods of observing, 218
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