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ABSTRACT: Convection-allowing models are used to predict the evolution of severe weather phenomena in the atmo-
sphere. These models are sensitive to errors in the numerical environment used to initialize their forecast integration. Data
assimilation methods can help overcome these errors but are often limited by sparse observational coverage. Numerous
novel observation platforms are currently available that promise to close these coverage gaps, but they have not yet been
widely assimilated into weather models. Observing system simulation experiments are often used to determine how best to
assimilate these novel observations in space and time by using synthetic observations from a high-resolution “nature run.”
However, a single deterministic nature run does not provide a measure of the flow’s intrinsic predictability within the cho-
sen modeling system. We present a framework to provide insight into this predictability by using an ensemble of nature
runs. The ensemble provides a range of likely outcomes for storm evolution and an upper limit against which forecasts are
verified. We applied this framework to two events from Oklahoma in 2023: a quasi-linear convective system in February
and a supercell case in April. The intrinsic predictability of the nature-run ensemble was used to calibrate each case and
to verify the forecast ensembles. Results showed that the intrinsic predictability suggested by the nature-run ensemble
was both field and case dependent. This framework may help guide future studies by giving researchers a better under-
standing of what is possible for a chosen flow problem and modeling system and how best to include and arrange novel
observations.

SIGNIFICANCE STATEMENT: We wanted to place the relative gains in severe weather forecast performance that
arise from including observational data in context to what may be reasonably expected from our chosen modeling sys-
tem. In other words, if our forecast moves an inch toward the “truth,” it matters whether that truth is a foot or a mile
away from our forecast estimate}and in turn, whether the effort to move that inch is worth the cost. Results demon-
strate a proof-of-concept framework to achieve this goal and show that our ability to understand what is possible is
both field and case dependent. Our framework may help improve efficiency by providing researchers with a better un-
derstanding of the trade-offs involved with their observational experiment design.

KEYWORDS: Ensembles; Forecasting techniques; Numerical weather prediction/forecasting; Data assimilation;
Model evaluation/performance

1. Introduction

Convection-allowing model (CAM) forecasts can skillfully
predict the evolution of thunderstorms, but their skill is sensi-
tive to errors in the initial environment. Atmospheric observa-
tions are frequently assimilated to improve the representation
of the environment. Gaps in observational coverage can reduce
the effectiveness of data assimilation (DA) systems and allow
error to persist in the environment. Many novel observation
platforms are now available in varying stages of development
and deployment that promise to improve the observational cov-
erage of the atmosphere but as yet have not been widely assimi-
lated into numerical weather prediction models. Observing
system simulation experiments (OSSEs) are frequently used to
determine how to optimally assimilate these novel observations

(e.g., spatial and temporal density) and understand their impact
on forecast performance. Simulated observations extracted
from a high-resolution simulation that closely resembles an ob-
served weather phenomenon}a nature run}are assimilated in
OSSEs. The impact from various platforms and networks with
different spatial and temporal characteristics can be readily
tested because simulated observations are created synthetically.

While OSSEs are an effective tool to test the impact of differ-
ent assimilated observation types, extensive testing is required
to optimally tune each DA parameter. To do this, many OSSEs
and real-data experiments conduct DA tests to determine which
configuration results in the most skilled forecasts. This approach
helps to establish an adequate DA configuration but may not re-
sult in optimal system performance. Even if forecasts are initial-
ized with accurate conditions, subtle errors in the environment
and model physics often cause forecast skill to degrade with
time. For instance, the evolution of convective storms is highly
sensitive to modest changes in the environment. Many of these
features occur at currently unobservable spatial and temporal
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scales and thus remain a large source of forecast uncertainty. Im-
portantly, the error growth is highly case and flow dependent
(Melhauser and Zhang 2012).

Melhauser and Zhang (2012) outline two forms of predictabil-
ity associated with forecast errors from a meso- and convective-
scale OSSE. Practical predictability is present when a reduction
of the initial-condition error via the inclusion of new observa-
tions leads to a reduction in forecast error. Practical predictabil-
ity is missing when small differences in initial conditions result in
multiple preferred solutions (Melhauser and Zhang 2012), the
details of which are weather and flow dependent (Zhang et al.
2019). Intrinsic predictability is present when a reduction of the
initial-condition error between two fields with small differences
in their initial state does not reduce the error growth rate be-
tween the two forecasts (e.g., Lorenz 1963, 1969). In practice,
OSSEs have a mixture of these two types of predictability.

Typical OSSEs create a nature run and assume it to be the
“true” solution (i.e., the perfect model assumption). However,
the use of a single deterministic nature run cannot adequately
measure the predictability of the flow. We introduce the use of
an ensemble of nature runs to provide insight into this predict-
ability by adding subtle changes in the environment to see how
small forecast errors grow in time. This framework as presented
is meant to augment OSSE analyses for individual cases and not
to draw conclusions about the efficacy of particular observa-
tional strategies across a broad range of events. Henceforth, our
use of “intrinsic predictability” describes the growth of differ-
ences between the nature run control and ensemble}though
we acknowledge that this error growth is some mixture of practi-
cal and intrinsic predictability. The nature-run ensemble then
provides a range of likely outcomes for the evolution of individ-
ual convective cells and an envelope of likely outcomes against
which to verify the OSSE forecasts. This insight serves to
“calibrate” the OSSE results (i.e., to place forecast error
changes that arise from the inclusion of new observations in
the context of the intrinsic predictability limit of a given case).
This knowledge can help guide the design of the OSSEs and
provide realistic expectations for the extent of potential improve-
ments gained from the inclusion of additional observations.

In this study, we used the initial and boundary conditions
from the National Severe Storms Laboratory (NSSL) Warn-on-
Forecast System (WoFS; Stensrud et al. 2009; Heinselman et al.
2024) for two real-data cases that occurred in central Oklahoma
in 2023: an extensive quasi-linear convective system (QLCS)
on 26 February and a spatially confined tornado outbreak on
19 April. We conducted forecast ensembles to test the impacts
of assimilating simulated observations from radars, surface
stations, and profilers. We then used the intrinsic predictability
from an ensemble of nature runs to both calibrate each case
and to verify the OSSE forecast ensembles. We describe each
case in section 2, the experimental design in section 3, and
verification methods and results in section 4. Finally, we offer
conclusions and future direction in section 5.

2. Case descriptions

We describe the chosen cases here to motivate their use in
this study. Our summaries are basic because it is beyond the

scope of the paper to provide an in-depth case review. For in-
stance, our actual experimental setup is not completely repre-
sentative of the corresponding nature run setup because we
explore OSSEs. We encourage readers to explore the detailed
summaries provided by the National Weather Service (NWS)
for more information about our chosen cases (NWS 2023a,b).

a. 26 February 2023 QLCS case

The 26 February 2023 case (C1; see Fig. 1) was an out-of-
season humdinger of a severe weather event that occurred in an
extreme shear parameter space that was atypical of winter. An
intense and compact closed upper-level low moved eastward
across the southwestern contiguous United States (CONUS),
which was centered over northern New Mexico by 0000 UTC
27 February. This upper-level low caused a surface low with
rapid deepening to develop near the western edge of the
Oklahoma Panhandle throughout the day, which resulted in
the transport of an unseasonably warm and moist, condition-
ally unstable air mass ahead of a dryline that was located in
the western Texas Panhandle. Soundings in central Oklahoma
showed that the environment was strongly capped, but forcing
from the upper-level low and approaching cold front caused
supercells to develop along the dryline, which quickly grew
upscale into a QLCS. As the system approached the Texas/
Oklahoma border, embedded mesocyclones in the QLCS be-
gan to produce tornadoes. The QLCS intermittently produced
these tornadoes from 0100 to 0400 UTC as it propagated from
the western Oklahoma border into the Oklahoma City metro-
politan area. The system produced 12 tornadoes, including
three that were rated EF2 by the NWS. Here, “EF” refers to
the enhanced Fujita scale, which rates the intensity of torna-
does on a numerical scale between 1 and 5 (WSEC 2006;
McDonald et al. 2009). A special sounding launched by the
NWS Norman Forecast Office at 0300 UTC 27 February
ahead of the QLCS showed that the prestorm environment
was still capped but had a 0–1-km storm relative helicity value
of 1017 m2 s22. An EF2 tornado passed just south of the fore-
cast office only 30 min after that sounding was released. The
strongly forced nature of the convection and the rapidly
changing environment in which it occurred make this event a
good case for OSSEs to compare to the more subtly forced
supercell case on 19 April 2023.

b. 19 April 2023 supercell case

The 19 April 2023 severe weather event (C2; see Fig. 2) in
central Oklahoma was a typical central Plains severe weather
setup. That is, there was a broad upper-level trough over the
western CONUS and a slow, deepening surface low over cen-
tral Kansas. A dryline extended south from this surface low
through west-central Oklahoma. The upper-level forcing for as-
cent was located north of Oklahoma, so convection initiation
was considered highly conditional on daytime heating and the
strength and depth of the dryline circulation. Dewpoint temper-
atures east of the dryline were in the low to mid-60s (8F). A
sounding in Norman, Oklahoma, at 1900 UTC 19 April showed
that the capping inversion was weak. However, dry air was pre-
sent above the boundary layer, which created uncertainty for
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how long storms could maintain themselves as they propagated
away from the dryline. Convection initiation commenced in
west-central Oklahoma at 2100 UTC. These storms produced
severe hail but struggled to maintain organization until the low-
level hodograph enlarged with the evening transition around
0000 UTC 20 April. From 0000 to 0400 UTC, the supercells in
central Oklahoma produced 18 tornadoes, of which the
NWS rated two as EF3 and four as EF2. The conditional

environment with high-impact outcomes makes this an in-
triguing case for which to perform OSSEs.

3. Ensembles

We used the NSSL WoFS as the ensemble system for this
study. WoFS is a rapidly updating regional convection-allowing
ensemble data assimilation and prediction system, originally

FIG. 1. (a) CR from the NRC valid at 0300 UTC 27 Feb 2023 and (b) storm-total UH25 swaths for the 26 Feb 2023 case.

FIG. 2. (a) CR from the NRC valid at 0000 UTC 20 Apr 2023 and (b) storm-total UH25 swaths for the 19 Apr 2023 case.
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designed to provide probabilistic forecasts of convective-scale
atmospheric processes (Stensrud et al. 2009; Heinselman et al.
2024). The WoFS comprises 36 members based on version 3.9 of
the Weather Research and Forecasting (WRF) Model with the
Advanced Research version of WRF (ARW) dynamical core
(Skamarock et al. 2008). Members are stratified based on partic-
ular physical parameterization schemes (see Table 1 in Kerr et al.
2023). The 36-member High-Resolution Rapid Refresh Data
Assimilation System (HRRR-DAS; Dowell et al. 2022) provides
the initial conditions, while the operational HRRR forecast is
combined with large-scale perturbations from 18 members of the
Global Ensemble Forecast System (GEFS; Zhou et al. 2022) to
provide the lateral boundary conditions (Heinselman et al.
2024). The traditional WoFS (hereafter WoFS-3 km) numerical
mesh is 900 3 900 km2 with uniform horizontal spacing of 3 km
and 51 stretched vertical levels. Observations, including radar re-
flectivity, radial velocity, and GOES-16 cloud water path, are as-
similated into WoFS-3 km every 15 min. WoFS-3-km forecasts
comprise the first 18 members and are up to 6 h in length, issued
every 30 min, with an output frequency of 5 min (Heinselman
et al. 2024). In addition to the traditional WoFS-3-km setup,
an experimental 1-km version (WoFS-1 km) has been used
in recent years (e.g., Wang et al. 2022; Kerr et al. 2023). In
WoFS-1 km, a one-way nested domain is placed in the
WoFS-3-km domain. This domain is 402 3 402 km2 with a
uniform horizontal spacing of 1 km and identical 51 stretched
vertical levels. The WoFS-3-km domain provides lateral

boundary conditions to the WoFS-1-km domain, while the
HRRR-DAS provides the initial conditions. Our nature-run
ensemble is based on WoFS-1 km, while our degraded ensem-
ble is based on WoFS-3 km. The methodology is described be-
low and visualized in Fig. 3.

a. Nature-run ensemble

We first created a nature-run control (NRC) simulation by
subjectively choosing the “best” member of the WoFS-1-km
ensemble at the time of interest}0000 UTC 27 February for
C1, 2100 UTC 19 April for C2}and running a stand-alone 6-h
free forecast from that point forward using only that member.
The first 90 min of the NRC provided ideal observations to the
coarser forecast ensembles during DA cycling (see section 3b),
while the remaining four-and-a-half hours were used as the
baseline for the nature-run ensemble (NRE).

The goal in creating the NRE was to capture the inherent pre-
dictability of the considered flow problem within the limitations
of our “best available” modeling framework. In other words, we
wanted to put in context the appropriateness of, or gains from,
various OSSE configurations. Because we have already deter-
mined that the NRC represents the best model configuration to
represent the physics of our problem, we added ensemble spread
through uncertainty of our chosen physics schemes rather than
through a multiphysics approach. One method to introduce such
realistic model uncertainty is the stochastic kinetic energy back-
scatter (SKEB) scheme (Berner et al. 2009, 2011). In short, the

FIG. 3. Conceptual diagram of the multiensemble workflow. The orange line represents the
NRC, the upper black curves represent the 10 NRE members, and the lower black curves repre-
sent the 18 experimental forecast ensemble members (SR or SRP). Vertical gray lines represent
DA cycling times for the experimental ensemble, taken from the NRC.
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SKEB scheme accounts for subgrid uncertainty by introduc-
ing spatially and temporally correlated perturbations to the
tendency terms of potential temperature and rotational
components of the horizontal wind. In a radar data assimila-
tion study using WoFS-1 km, Stratman et al. (2024) found
that SKEB provided one of the best skill improvements and
largest ensemble spreads as compared with other perturba-
tion methods. We use the same SKEB parameter settings as
listed in Table 1 of Stratman et al. (2024).

The SKEB scheme generates random number streams at
model initialization (i.e., it cannot be arbitrarily turned on mid-
simulation). For that reason, we ran 10 short one-and-a-half-
hour realizations of the NRC with the SKEB scheme activated,
each with a different seed supplied to the random number gen-
erator. The resulting perturbation fields were saved as
SKEB restart files. We then applied the random fields to the
stand-alone NRC simulation by pausing the run after 90 min,
activating the SKEB scheme, supplying the restart files, and
continuing the run for the remaining four-and-a-half hours.
This process generated a 10-member NRE to accompany the
NRC.

b. Forecast ensemble

After the NRC and NRE were created, we generated the ex-
perimental forecast ensembles by subjectively choosing the
“worst” member of the WoFS-3-km ensemble at one hour prior
to the nature-run time of interest}2300 UTC 26 February for
C1 and 2000 UTC 19 April for C2. We made this choice to allow
for the maximum possible assimilation benefit. The selected
member was taken as the newmean of the experimental forecast
ensemble. The remaining members of the WoFS-3-km ensemble
were recentered on the new mean, resulting in a new 36-member
WoFS ensemble. We retained the same settings as those used in
the WoFS-3-km ensemble (see section 3a). We then imposed a
spinup period to increase spread by freely advancing the forecast
ensemble forward 1 h.

After the spinup period, we assimilated simulated observa-
tions from the NRC every 15 min for one-and-a-half hours
(seven cycles) using the ensemble adjustment Kalman filter
(EAKF; Anderson 2001) from the Data Assimilation Research
Testbed (DART; Anderson et al. 2009). During this period, we
assimilated both simulated radar reflectivity/radial velocity
and simulated surface meteorological station observations
for all experiments. For radar reflectivity/radial velocity,
we 1) superobbed the radar reflectivity/radial velocity to 5-km
spacing and 2) filtered observations with reflectivity of less than
20 dBZ and assimilated clear-air reflectivity values of 0 dBZ
with 15-km spacing. For simulated surface stations, we assimi-
lated surface pressure (at terrain height), temperature, dew-
point temperature, and horizontal winds. We further made use
of prior inflation (Anderson 2009) and additive noise (Dowell
and Wicker 2009; Sobash and Wicker 2015) with a 35-dBZ re-
flectivity threshold and a 10-dBZ innovation threshold to help
maintain spread in the ensemble. Additional DA parameters,
such as observation error variance, match those listed in
Labriola et al. (2023). These settings composed the baseline
experiments called surface radar (SR).

In additional experiments, we assimilated perfect (i.e., taken
as is from the NRC with zero observation error assumed) ver-
tical profile observations of temperature, dewpoint tempera-
ture, and horizontal winds interpolated, interpolated to each
of the Oklahoma Mesonet surface stations. The perfect profile
observations (see Fig. 4) were intended to identify the maxi-
mum improvement expected from assimilating vertical profile
information from a profiling network, while also showing the
utility of the NRE. We explored three profiling strategies with
varying levels of data retention (not presented): full profiles,
vertical spacing of 500 m, and vertical spacing of 1500 m. For
the presented work, we chose thinned profiles with 500-m
spacing for the perfect-profiler experiments, hereafter referred
to as surface radar profiler (SRP). We plan future studies to
explore the potential for objective thinning strategies and to
use realistic simulators for the profiling observations.

Following data assimilation, we ran a four-and-a-half-hour
free-forecast ensemble with the first 18 members of the analysis
ensemble for comparison with the NRE. An important caveat
to our experimental setup is that the nature run and forecast en-
sembles both used the ARW-WRF dynamical core and shared
the same microphysics parameterization. This “identical twin”
problem (present in other profiler network OSSEs; see, e.g.,
Kay et al. 2022) can lead to underrepresented model error and,
consequently, an exaggerated observational impact. However,
our use of the SKEB scheme in the NRE and the physics di-
versity in the SR/SRP ensembles somewhat mitigated this
issue. While the identical twin problem remains a limitation of
this study, we do not believe it undercuts the principles or util-
ity of the presented NRE framework. We plan to reduce this is-
sue in future studies by using a different forecast ensemble
modeling framework. For instance, a WoFS ensemble based on
the Model for Prediction Across Scales (MPAS; Skamarock
et al. 2012) is currently under development at NSSL.

4. Verification

a. Method

We validated fields of composite reflectivity (CR), 0–2-km
updraft helicity (UH02), and 2–5-km updraft helicity (UH25)
using the ensemble fractions skill score (eFSS; Duc et al. 2013).
For CR, we used the instantaneous 5-min output as is, while for
UH02 and UH25 we took maximum values over a moving
window to generate 30-min swaths with 5-min frequency.

eFSS 5 1 2

1
N 3 M

∑
N

n51
∑
M

m51
(On,m 2 Fn,m)2

1
N 3 M

∑
N

n51
∑
M

m51
(On,m)2 1 ∑

N

n51
∑
M

m51
(Fn,m)2

[ ] , (1)

whereM is the number of ensemble members, N is the number
of neighborhood windows, andO (F) is the observed (forecast)
fraction of grid points that exceed a specified threshold within a
given neighborhood window. In all cases, O is the NRC, while
F is either from the NRE, SR, or SRP. For the latter two ex-
periments, we used a simple bilinear interpolation to move the
WoFS-3-km grid to a spacing of 1 km and then only considered
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points where the interpolated grid overlapped the WoFS-1-km
grid (i.e., within the inner domain box shown in Fig. 4). We cau-
tion that the bilinear interpolation worked here because the
3-km grid points exactly align with points on the 1-km grid.
In cases where that is not true, this interpolator can reduce
maximum values through smoothing and make threshold-
based validations suspect.

For this study, we present eFSS results only for a neighbor-
hood window size of 12 km, which is consistent with size thresh-
olds used for reflectivity and helicity objects in object-based
studies (e.g., Skinner et al. 2018). We computed intensity thresh-
olds (see Table 1) across all forecast times and ensemble mem-
bers for each experiment to remove climatological biases.
Following, e.g., Kerr et al. (2023), we took CR thresholds as the
99th percentile and UH02/UH25 as the 99.9th percentile,
all with zeroes included. The large differences for UH02 and
UH25 threshold values between the NRC/NRE and SR/SRP

experiments are due, in part, to the grid spacing of their native
numerical meshes (i.e., UH is inversely proportional to horizon-
tal grid spacing through the vertical component of vorticity). A
limiting case of the eFSS formulation given by Eq. (1) occurs
when both O and F are zero (i.e., there are no neighborhoods
that exceed the threshold). Mittermaier (2021) discussed ways
to overcome this undefined (perfect null) score, including
adding a small noise term to the denominator or making
a piecewise version of the formulation. However, as the
authors in op. cit. note, these are purely mathematical solu-
tions to get around mathematical inconveniences. These
situations do not add physical meaning or aid in our interpre-
tation of the solutions, so we instead opted to mask and omit
eFSS for the perfect null case.

Because the purpose of the NRE is to establish the intrinsic
predictability limits of a particular case, it is important that we
understand whether the eFSS differences between experiments
are meaningful. In other words, we want to know whether im-
provements or regressions that result from changes in the simu-
lated observing network in the degraded ensembles are valid.
At each forecast time, we followed a procedure similar to that
described in Hamill (1999) to determine the statistical signifi-
cance of these differences:

1) Compute the eFSS for SR and SRP (eFSSSR and
eFSSSRP).

2) Loop 10 000 times:
(i) Construct two 18-member forecast ensembles (T1, T2)

randomly composed of SR and SRP members. The T1

and T2 members retain their original ensemble mem-
bership order, but not their experiment membership it-
self. That is, both member 1 from SR and member 1
from SRP remain member 1 but are randomly placed

TABLE 1. Thresholds to compute eFSS for CR, UH02, and
UH25. Values are computed across all forecast times and ensemble
members at the 99th percentile for CR and 99.9th percentile for
UH02 and UH25.

Case date Experiment
CR

(dBZ)
UH02

(m2 s22)
UH25

(m2 s22)

26 Feb 2023 NRC 53 221 546
NRE 53 221 546
SR 50 41 84
SRP 50 46 106

19 Apr 2023 NRC 47 77 483
NRE 49 71 492
SR 26 6 66
SRP 33 11 101

FIG. 4. Model domains and observation locations for the (a) 26 Feb 2024 and (b) 19 Apr 2024 cases. The inner box
is the 1-km nature-run domain, and the outer box is the 3-km forecast domain. The red stars show the locations of
simulated radars, and the light gray circles show the range of the radar observations. Observations are only generated
for portions of the radar range that overlap the 1-km domain. The blue dots show the locations of simulated surface
stations and profiler observations.
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in either T1 or T2. In this way, the physics diversity is
maintained while experimental changes are randomly
distributed.

(ii) Compute the eFSS for T1 and T2 and save each to a
list (eFSST1

and eFSST2
).

3) Compute DE 5 |eFSSSR 2 eFSSSRP| if both SR and SRP
have a valid eFSS. Otherwise, skip this time.

4) Compute DT 5 |eFSST1
2 eFSST2

| for all jointly valid
eFSS values in the distributions. The size of DT is NT.

5) Compute NC 5 ∑
NT

n51

1, if DT(n).DE,

0, if DT(n)#DE:

{

6) If NC/NT # 0.05, then DE is statistically significant at the
95th percentile.

b. Results and discussion

We present eFSS results for C1 and C2 in Figs. 5 and 6, re-
spectively. In C1, the NRE eFSS curve for CR remains high for
the first 3 h of free forecast, after which it drops to zero over the
next 30 min. For UH02/UH25, the drop-off in eFSS occurs just
shy of 2 h into the free forecast and reaches zero approximately

30–45 min later. In C2, the NRE eFSS curve for CR begins to
drop off earlier, after approximately 2 h, but with a much slower
decline. It remains high until approximately 3 h and does not
reach zero until the end of the free-forecast period. The UH02/
UH05 curves exhibit the same behavior as for CR, but with ap-
proximately 30 fewer minutes in their intrinsic predictability
timeline. The behavior exhibited by the NRE suggests that CR
and UH have different error-growth characteristics, resulting in
an intrinsic predictability time scale of approximately 3 and 2 h,
respectively. Accordingly, forecasters can expect the potential
for observational improvements for the first few hours of a free
forecast in the presented cases. Forecasts beyond that time frame
may be instructive in gauging the broad continued evolution of
storms, but the utility of the underlying DA adjustments will
have already been exhausted. While the relative differences
between the intrinsic predictability of the CR and UH fields
are consistent between the two cases, their absolute values
are case dependent (e.g., whether the storm mode is contin-
uous or discrete).

Differences in the forecast ensemble eFSS between the SR
and SRP experiments in C1 were not consistent for CR and UH

FIG. 5. The eFSS for (a) CR, (b) UH02, and (c) UH25 for the 26 Feb 2023 case. Black, blue,
and orange colors correspond to the NRE, SR, and SRP experiments, respectively. The solid
(dotted) lines for the SR and SRP cases correspond to times when their differences are (are not)
statistically significant at the 95th percentile. Times are relative to the free-forecast period and
span from 0130 to 0600 UTC 27 Feb 2023.
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fields. For instance, the differences between the experiments for
CR were small for most of the free-forecast period. The curves
steadily declined over the first 90 min and then flattened over
the subsequent 90 min, of which only the differences over the
first 30 min were statistically significant. During this time, per-
haps counterintuitively, the inclusion of profilers resulted in a re-
duced eFSS. For the UH swaths, differences in eFSS were larger
and were improved by the inclusion of profilers. The statistically
significant differences were limited to the first 30–45 min of the
free forecast. We show the mean values of eFSS over the first
2 h of the free forecast in Table 2 since that time frame repre-
sents the approximate lower limit of the intrinsic predictability
of the NRE. We also show the mean values over that time in
which the differences between SR and SRP were statistically
significant to confirm that the relative behavior is consistent. We
see that the NRE eFSS for CR is higher than it is for the UH
swaths. Considering the speed and scale of the event, we suggest
that the NRE better captured the general shape and characteris-
tics of the convection but struggled in representing the location
and intensity of rotation. In treating the NRE as the upper limit
of “perfect,” we see that eFSS degrades slightly for CR and

improves by a larger amount for UH with the inclusion of pro-
filers. The experiments with profilers had slightly smaller analy-
sis increments with time, but better spread and consistency
ratios late in the DA period (not shown). Given that most mem-
bers captured the size and continuous nature of the QLCS

FIG. 6. The eFSS for (a) CR, (b) UH02, and (c) UH25 for the 19 Apr 2023 case. Black, blue,
and orange colors correspond to the NRE, SR, and SRP experiments, respectively. The solid
(dotted) lines for the SR and SRP cases correspond to times when their differences are (are not)
statistically significant at the 95th percentile. Times are relative to the free-forecast period and
span from 2230 UTC 19 Apr to 0300 UTC 20 Apr 2023.

TABLE 2. Average eFSS values for CR, UH02, and UH25.
Values were computed across the first 2 h of free forecast from
each experiment. Bolded values in parentheses represent the
same averages, but only when taken during times in which the
differences between SR and SRP were statistically significant to
the 95th percentile.

Case date Experiment CR (dBZ)
UH02

(m2 s22)
UH25

(m2 s22)

26 Feb 2023 NRE 0.98 (0.97) 0.88 (0.89) 0.92 (0.85)
SR 0.71 (0.69) 0.34 (0.34) 0.45 (0.32)
SRP 0.62 (0.62) 0.42 (0.46) 0.51 (0.43)

19 Apr 2023 NRE 0.96 (0.95) 0.96 (0.95) 0.96 (0.95)
SR 0.26 (0.25) 0.10 (0.12) 0.18 (0.19)
SRP 0.38 (0.40) 0.31 (0.37) 0.40 (0.44)
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event, it is likely that there was not much room for improvement
in CR and that the DA process simply added noise. Conversely,
improving the environment through the inclusion of profilers
may have made the assimilation of radar radial velocity more ef-
fective, which in turn improved the representation of the UH
fields.

The behavior of eFSS computed from the CR and UH
fields is consistent in C2. Unlike in C1, there is no steady de-
cline at the start of the free forecast, and in the case of SRP,
we see an increase in eFSS over time within the intrinsic pre-
dictability window suggested by the NRE. The regions of sta-
tistical significance in differences between experiments are
upward of 90 min for CR and 60 min for the UH fields}both
longer than in C1. During these times, we observe significant
improvement when profilers are included, which is supported
in Table 2. We see that the NRE eFSS for CR and UH fields
is equal during the first couple of hours of the free forecast,
likely indicating that the model was able to represent both the
convection and rotation features associated with this discrete
event. Again, treating the NRE as the ceiling on what we can
hope to reproduce with our system, we see that improving the
structure of the environment through profilers led to en-
hanced forecasts. We also see that, as in C1, there is available
overhead to further improve forecasts through, e.g., the addi-
tion of novel observations and/or a strategic network design
of the existing observations. We also see that the intrinsic pre-
dictability is longer in this case and may expect improvements
to persist further into the free forecast period than in C1.

5. Summary and conclusions

CAM ensembles are useful tools to provide probabilistic fore-
casts of severe weather events. Like all models, they suffer from
errors associated with numerical approximations, simplifications
within the physical parameterizations of subgrid-scale processes,
and inaccurate initial environmental conditions. Data assimila-
tion can help improve these errors by including information
about the environment from observations. These observations,
however, are often limited in scope, both in time and in space.
Many new novel, portable observing platforms are designed
with the hope of improving these coverage gaps, although many
have not been widely assimilated in CAM ensembles to date.
The use of OSSEs can help researchers understand the potential
impacts of assimilating particular observations using different
strategies (i.e., time and space configuration) without having to
actually deploy real systems during expensive field campaigns.

Traditionally, a high-resolution simulation, or nature run, of
a particular event is used to provide synthetic observations to
the DA system and to serve as a validation dataset for the fore-
cast ensemble. In this sense, the nature run is our best attempt
to replicate the environment and evolution of a considered
flow. However, a single deterministic nature run cannot provide
adequate context to the forecast ensemble because its use in
this manner attempts to absolve a false prophet of its many
sins. That is, using a single nature run gives unrealistic expecta-
tions for how well the forecast ensemble can hope to perform
given the specifics of a particular event. The use of an ensem-
ble of nature runs can alleviate this issue. By introducing small

changes in the initial environment and examining how errors
grow in time, we can better understand the case-specific pre-
dictability associated with the control run. We showed that the
errors from the ensemble saturate after a period of time,
marking the bounds of the intrinsic predictability. This intrin-
sic predictability, in turn, helps calibrate results from a forecast
ensemble, guide the design of OSSE experiments, and provide
realistic expectations for potential gains expected from the in-
clusion of additional observations.

In this work, we introduced a framework to accomplish these
goals and applied it to two different severe weather events as a
proof of concept. We used the NSSL WoFS ensemble forecast
system as our basis. We first constructed the NRC by subjectively
choosing the best member from the WoFS-1-km ensemble at
the time of interest and then running a 6-h free forecast from
that point forward. The first 90 min of the NRC was used to
provide observations to the DA system in the forecast ensemble.
At the end of that period, we introduced small perturbations
in the fields by turning on the SKEB scheme and then ran a
four-and-a-half-hour free forecast}a process that was repeated
10 times. Next, we subjectively chose the worst WoFS-3-km
member from 1 h prior to the time of interest. This member
served as the mean of a new forecast ensemble, around which
the remaining WoFS-3-km members were centered. After a 1-h
free-forecast spinup, we assimilated synthetic observations from
the NRC every 15 min for one-and-a-half hours using two ex-
perimental setups}both with radar reflectivity/radial velocity
and surface meteorological stations, and one with the added
inclusion of perfect vertical profiles. Following the DA period,
we ran the ensemble to generate four-and-a-half-hour free fore-
casts. These forecasts were used as comparisons with the NRE.

We used the eFSS to compare the NRE with the NRC and
to validate the forecast ensemble for fields of CR, UH02, and
UH25. For eFSS, we only considered points within the inner-
most -nature-run domain and used a window size of 12 km. We
took CR intensity thresholds as the 99th percentile and UH02/
UH25 as the 99.9th percentile, all with zeroes included. We
then used a bootstrap-without-replacement method to identify
times in which the differences between the two OSSEs were
statistically significant at the 95th percentile. We found that the
intrinsic predictability suggested by the NRE was different for
CR and UH fields}approximately 3 h for the former and 2 h
for the latter. Further, this predictability was flow dependent,
with the fast-moving continuous QLCS case C1 shorter than
the more discrete supercell case C2. The inclusion of profilers
in the SRPOSSE resulted in improved eFSS values for all fields
and cases, except for CR in the C1 case. The gains were more
modest in C1 and rather substantial in C2, with the eFSS more
than doubling when profilers were included.

The framework has flaws. First, it suffered from the iden-
tical twin problem because both our nature-run and forecast
ensembles used the WRF-ARW dynamical core. This can
underrepresent model error and exaggerate observational
impact. We attempted to limit this effect through the use of
the SKEB scheme in the NRE and the multiphysics approach in
the SR/SRP ensembles. Future implementations should use dif-
ferent models to eliminate this issue (e.g., using WRF-ARW for
the nature-run ensemble and MPAS for the forecast ensemble).
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Further, our framework had a potential “inverse domain” prob-
lem because the nature-run domain is smaller and sits inside
the forecast ensemble domain. This could shorten the resi-
dence time of DA improvements (e.g., as seen in C1). Future
implementations should flip the domains to boost the frame-
work’s effectiveness (e.g., using a standalone 2/3-CONUS sim-
ulation as the base for the NRE). While limiting, we do not
believe these issues undercut the purpose of the presented
NRE framework because every member was subjected to the
same limitations. We suggest that the relative outcomes would
remain and that perfect should not be the enemy of good for
purposes of a proof of concept.

The use of an ensemble of nature runs was shown to serve as
calibration for the forecast ensemble results by placing realistic
expectations for a given flow’s predictability within our chosen
modeling system, while also demonstrating that there was
potential room for improvement through the inclusion of
different observations or by examining the network design
of existing observations. This framework can serve to guide
future studies by understanding what is possible for a chosen
flow problem and modeling system and how to optimally
assimilate novel observing platforms in time and space. This
information can then help maximize efficiency and expenses
in field studies by providing researchers with a better under-
standing of the involved trade-offs and expectations for the
considered phenomena.
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