
Geosci. Model Dev., 16, 1779–1799, 2023
https://doi.org/10.5194/gmd-16-1779-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

D
evelopm

entand
technicalpaper

A method for generating a quasi-linear convective system suitable
for observing system simulation experiments
Jonathan D. Labriola1,2, Jeremy A. Gibbs1, and Louis J. Wicker1

1National Severe Storms Laboratory, Norman, OK 73072, USA
2National Research Council, Washington, DC 20001, USA

Correspondence: Jonathan D. Labriola (jdl930@gmail.com)

Received: 6 October 2022 – Discussion started: 12 October 2022
Revised: 14 February 2023 – Accepted: 5 March 2023 – Published: 29 March 2023

Abstract. To understand the impact of different assimilated
observations on convection-allowing model forecast skill,
a diverse range of observing system simulation experiment
(OSSE) case studies are required (different storm modes and
environments). Many previous convection-allowing OSSEs
predicted the evolution of an isolated supercell generated
via a warm air perturbation in a horizontally homogenous
environment. This study introduces a new methodology in
which a quasi-linear convective system is generated in a
highly sheared and modestly unstable environment. Wind,
temperature, and moisture perturbations superimposed on a
horizontally homogeneous environment simulate a cold front
that initiates an organized storm system that spawns multiple
mesovortices. Mature boundary layer turbulence is also su-
perimposed onto the initial environment to account for typi-
cal convective-scale uncertainties.

Creating an initial forecast ensemble remains a challenge
for convection-allowing OSSEs because mesoscale uncer-
tainties are difficult to quantify and represent. The genera-
tion of the forecast ensemble is described in detail. The fore-
cast ensemble is initialized by 24 h full-physics simulations
(e.g., radiative forcing, surface friction, and microphysics).
The simulations assume different surface conditions to alter
surface moisture and heat fluxes and modify the effects of
friction. The subsequent forecast ensemble contains robust
non-Gaussian errors that persist until corrected by the data
assimilation system. This purposely degraded initial forecast
ensemble provides an opportunity to assess whether assimi-
lated environmental observations can improve, e.g., the wind
profile. An example OSSE suggests that a combination of
radar and conventional (surface and soundings) observations
are required to produce a skilled quasi-linear convective sys-

tem forecast, which is consistent with real-world case stud-
ies. The OSSE framework introduced in this study will be
used to understand the impact of assimilated environmental
observations on forecast skill.

1 Introduction

Forecasts of convection can provide important guidance to
forecasters ahead of an impending severe weather event;
however, forecast skill is often limited because the predicted
storms are sensitive to modest initial condition errors. To mit-
igate these errors, a combination of in situ (surface stations
and radiosondes) and remotely sensed observations (e.g.,
radar reflectivity and satellite radiances) are blended with
a prior estimate using data assimilation (Kalnay, 2002). Al-
though skilled convection-allowing model (CAM) forecasts
can be generated after assimilating commonly available ob-
servations (e.g., Johnson et al., 2013; Sobash et al., 2016;
Skinner et al., 2018; Snook et al., 2019; Flora et al., 2019),
much of the atmosphere at the meso- and convective scales
remains unobserved. Most model state variables are also, at
best, indirectly observed and thus a challenge to update dur-
ing data assimilation. These limitations introduce uncertain-
ties into the posterior estimate of the environment and de-
grade the forecast skill. To address these concerns, data as-
similation experiments can be used to determine future ob-
servational networks that, when assimilated, positively im-
pact CAM forecast skill.

Rather than prematurely deploying observing systems to
conduct real-world experiments, which are costly and time-
consuming, many studies rely on observation system simu-
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lation experiments (OSSEs) to determine the impact of as-
similating new observation types (e.g., Snyder and Zhang,
2003; Xue et al., 2006; Jung et al., 2008; Yussouf and Sten-
srud, 2010; Potvin and Wicker, 2012; Sobash and Stensrud,
2013; Cintineo et al., 2016). These experiments assimilate
simulated observations that are extracted from a nature run
– a well-tuned simulation that is designed to resemble a
real-world weather phenomenon (e.g., an isolated supercell,
quasi-linear convective system or QLCS). OSSEs provide an
elegant strategy to test the effectiveness of different obser-
vation types, deployment strategies, and sampling intervals
because the simulated observations are easily reconfigured.
OSSEs can also improve the assimilation system indepen-
dently of the errors in the model physics (e.g., Zeng et al.,
2021). To understand the impact of different observing net-
work configurations, the data assimilation initialized fore-
casts are verified against the nature run. Despite the poten-
tial power of this framework, designing these experiments is
nontrivial because both the nature run and model prior state
must reflect complex atmospheric phenomena and uncertain-
ties that are observed in the environment.

It is imperative to run forecast and data assimilation exper-
iments for a diverse range of storm cases to ensure that OSSE
results are robust. Despite many different observed storm
modes (e.g., Gallus et al., 2008), most convective-focused
OSSEs simulate the evolution of a supercell thunderstorm
(e.g., Snyder and Zhang, 2003; Zhang et al., 2004; Dowell
et al., 2004; Xue et al., 2006; Caya et al., 2005; Gao and
Stensrud, 2014; Kerr et al., 2015; Zhao et al., 2021). This is
done, in part, because supercell thunderstorms produce a dis-
proportionately large number of severe weather and tornado
reports (e.g., Kain et al., 2008) and thus serve as a logical first
choice. These cases are also easier to create because a real-
istic storm can be generated by inserting a warm bubble into
an unstable, highly sheared, and horizontally homogeneous
environment.

Only a few OSSEs simulate the evolution of non-
supercellular convection, such as disorganized convection
(Potvin et al., 2013) or a line of storms that grows in scale
(Sobash and Stensrud, 2013). To our knowledge, no ideal-
ized OSSE (i.e., experiments initialized from a sounding and
a supplied mesoscale background) has simulated the evo-
lution of a convective line initiated via a frontal boundary.
QLCSs that initiate via frontal forcing in highly sheared but
marginally unstable environments often cause severe weather
in the southeastern United States during the cool season
(Guyer and Dean, 2010; Sherburn and Parker, 2014; Sher-
burn et al., 2016). Creating OSSEs that simulate other con-
vective initiation mechanisms (e.g., cold front and dry line
boundary) and environments (e.g., high shear and low insta-
bility) will help us to better understand how assimilated ob-
servations impact the environment and the subsequent evolu-
tion of convection.

Convective-scale OSSEs and real-world case studies often
use an ensemble Kalman filter (EnKF; Evensen, 1994, 2003)

to create the forecast initial conditions (e.g., Snyder and
Zhang, 2003; Dowell et al., 2004; Snook et al., 2011; Romine
et al., 2013; Wheatley et al., 2015; Jones et al., 2016; Johnson
and Wang, 2017). This strategy is preferred for CAM forecast
experiments because the data assimilation system can update
unobserved model state variables using flow-dependent error
covariances derived from the forecast ensemble. The EnKF
can also assimilate remotely sensed observations (e.g., radar
reflectivity) and use cross-covariances to update environmen-
tal and in-storm fields (e.g., Snyder and Zhang, 2003). Ex-
periments must craft a forecast ensemble that is representa-
tive of the event uncertainty to maximize the data assimila-
tion system performance. This is challenging when the ini-
tial state is generated from a single or composite sounding.
Therefore, a variety of strategies has been used to create the
initial forecast ensemble. For example, random perturbations
are commonly used to add variability to the initial environ-
ment. The perturbations are inserted into the environment as
grid point noise (e.g., Snyder and Zhang, 2003; Tong and
Xue, 2005; Dawson et al., 2012) or smooth, spatially corre-
lated structures (e.g., Caya et al., 2005; Dowell and Wicker,
2009; Jung et al., 2012). The perturbation amplitude is cal-
ibrated to represent sources of uncertainty, including envi-
ronmental variability (e.g., Dawson et al., 2012) and model
error (e.g., Cintineo and Stensrud, 2013). While these pertur-
bations are calibrated to account for sources of ensemble un-
certainty, they remain an ad hoc technique used to introduce
uncertainty into the forecast. The evolution of the ensemble
spread is sensitive to many user-defined parameters, includ-
ing perturbation length scale, amplitude, and location (e.g.,
Snyder and Zhang, 2003; Dowell et al., 2004; Caya et al.,
2005).

Despite being commonly used, random initial condition
perturbations are not necessarily representative of the fore-
cast errors observed in real-world case studies. Many stud-
ies assume that the perturbations are unbiased and have lit-
tle impact on the mean ensemble environment. This con-
tradicts many previous CAM studies that note that model
errors bias the forecast environment (e.g., Snook and Xue,
2008; Coniglio et al., 2013; Romine et al., 2013; Cohen
et al., 2015). Since the ensemble mean environment closely
matches the observed truth, OSSEs are unable to determine
what impact assimilated environmental observations (e.g.,
surface stations and aircraft soundings) could have on the
storm forecasts. To confront this challenge, some studies
strategically bias the forecast initial environment (e.g., Strat-
man et al., 2018) or purposely fail to initiate convection (e.g.,
Kerr et al., 2015) to ensure a greater disparity between the
nature run simulation and forecasts. Although these studies
better represent forecast biases observed in real-world case
studies, there remain few options to introduce appropriate
forecast biases in an OSSE.

A diverse set of OSSE cases that challenge the effective-
ness of our data assimilation systems is required to holisti-
cally understand the impact that observing systems can have
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on CAM forecasts. The goal of this study is to provide a
novel OSSE framework to understand how assimilated ob-
servations impact the forecast performance. This study pro-
vides instructions to create an OSSE for a QLCS that initiates
along a frontal boundary in a high-shear, low-instability en-
vironment. Techniques to create the initial ensemble of sim-
ulations, which rely on uncertainties introduced by model
physics, are also introduced. These techniques lead to a pur-
posely degraded initial ensemble that contains robust non-
Gaussian errors, such that the profiles from the nature run are
often out of the ensemble spread. This ensemble of simula-
tions allows for an evaluation of the data assimilation system
described herein. The steps taken to create the nature run and
forecast ensemble are listed in Sects. 2 and 3. Sections 4 and
5 describe the data assimilation procedure and forecast ver-
ification metrics. An example OSSE is described in Sect. 6,
and Sect. 7 discusses the use of this OSSE framework for
future studies.

2 Nature run configuration

The following steps are taken to create the nature run simu-
lation for this case:

– Step 1. Initialize the environment using a high-shear,
low-CAPE (convective available potential energy) com-
posite sounding (Fig. 1a) and insert a frontal boundary
on the western edge of the domain.

– Step 2. Conduct a separate initial turbulence simulation
to generate realistic perturbation fields of temperature,
wind, and moisture.

– Step 3. Superimpose the resultant turbulence fields on
the initial conditions created in step 1 to generate the
final environment used to start the nature run simulation.

The remainder of this section explains, in depth, the proce-
dure used to generate the nature run simulation.

2.1 Initial environment

The nature run is initialized with a horizontally homoge-
neous environment using a high-shear, low-CAPE composite
sounding. The initial sounding (Fig. 1a), introduced by Sher-
burn and Parker (2019), is modified in the lower troposphere
to support the development of robust boundary layer turbu-
lence. High-shear, low-CAPE environments, which support
approximately half of the significant (EF2+) tornadoes in the
contiguous United States (Schneider et al., 2006), are the pri-
mary target of the Verification of the Origins of Rotation in
Tornadoes Experiment Southeast (VORTEX-SE) field exper-
iments. OSSEs initialized with this environment should help
determine which observing systems benefit the forecast skill
the most and how to appropriately deploy them (e.g., spatial
and temporal density).

A cold front provides the mechanical forcing required to
initiate sustained convection for this case. Potential temper-
ature (θ ), dew point temperature (Td), and u wind perturba-
tions of −10 K, −20 K, and 10 m s−1, respectively, are in-
serted along the western domain edge to create the frontal
boundary. Perturbation magnitude fp(x) decreases with dis-
tance from the western and bottom domain boundaries, fol-
lowing a cosine function:

fp(x)= perturbation× cos
(
πβ

2

)2

, (1)

where
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√(
x

front width+ fw(y)

)2

+

(
z

front height

)2

, (2)

and x, y, and z are the distance of a grid point from the west-
ern, southern, and bottom boundaries, respectively. The as-
sumed frontal width is 100 km, and the height is 6 km. These
equations generate a north–south front that, left undisturbed,
will cause storms to initiate at the same time for an east–
west location. Waves are added to the frontal boundary in the
north–south direction to vary the convective initiation timing
and location via the following:

fw(y)= δ cos
(

2πy
λ
−φ

)
, (3)

where λ is the wavelength (100 km), φ is the phase shift
(0), and δ is the wave amplitude (10 km). The subtle frontal
waves (Fig. 2) simulate the natural variability observed in the
frontal location.

2.2 Boundary layer turbulence

Boundary layer turbulence plays an important role in the
evolution of convection. Storm interactions with turbulent
eddies can modify the mesocyclone circulation in addition
to the storm intensity and location (e.g., Nowotarski et al.,
2015; Markowski, 2020; Labriola and Wicker, 2022). Turbu-
lent eddies transport near-surface air further aloft and impact
boundary layer temperature, wind, and moisture profiles. The
turbulence also facilitates the downward transport of high-
momentum air aloft and is consequently necessary to prop-
erly simulate the effects of surface friction on thunderstorm
evolution (Markowski, 2016). To enhance the realism of the
experiment, the nature run simulation for this case is initial-
ized with fully mature boundary layer turbulence, using a
technique introduced by Markowski (2020) and subsequently
improved upon by Labriola and Wicker (2022).

A turbulence simulation is first conducted to create a re-
alization of the boundary layer turbulence. The turbulence
simulation is initialized with the nature run initial sound-
ing (Fig. 1a), and then small-scale, pseudo-random θ per-
turbations (±0.25 K) are superimposed on the initial envi-
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Figure 1. (a) The initial sounding for the nature run simulation. Vertical red lines and green lines correspond with T and Td. The vertical
black line marks the temperature of an air parcel launched from the surface. The hodograph, which is plotted in the upper-right corner, is
color coded by height above ground level (a.g.l.), and 0–1 km is red, 1–3 km is green, 3–5 km is blue, and 5–10 km is yellow. Both soundings
also initialize the (a) warm sector and (b) cold sector simulations that create the forecast ensemble.

Figure 2. Nature run initial conditions at the lowest model level for (a) T , (b) Td, and (c) u wind. The plotted subdomain is centered on the
initial frontal boundary.

ronment to initiate turbulence. The settings and grid config-
uration used for the turbulence simulation are nearly iden-
tical to those used for the nature run (see Sect. 2.3), with a
few notable exceptions. The lateral boundary conditions are
made periodic so that turbulent eddies persist across domain

boundaries. The turbulence simulation assumes no radiative
forcing, no surface friction, and applies Coriolis acceleration
to the perturbation wind field. These settings are necessary
to form robust turbulent motions (Fig. 3) without spawning
spurious convection or substantially modifying the initial en-
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Figure 3. Vertical cross sections of boundary layer turbulent perturbations that are inserted into the nature run simulation. Plotted fields
include the (a) u, (b) v, and (c) w components of wind, (d) qv, and (e) θ .

vironment (see Labriola and Wicker, 2022, for more details).
As the turbulence simulation is integrated 12 h forward in
time, the random perturbations evolve to form a turbulent
boundary layer (Fig. 3). At the conclusion of the turbulence
simulation, the perturbation, u, v,w, θ , and water vapor mix-
ing ratio (qv) fields (i.e., the difference between a model state
variable and the horizontal planar mean) are superimposed
on the initial conditions used for the nature run. These per-
turbations do not statistically impact the nature run’s mean
initial environment because they average to 0 across the do-
main.

2.3 Prediction model settings

The nature run simulation for this case is created using the
Cloud Model 1 (CM1; Bryan and Fritsch, 2002; Bryan and
Rotunno, 2009) release 20.1. The simulation is run between
00:00–08:00 UTC on 1 January 2021 on a domain centered
over Jackson, Mississippi (32.30◦ N, −90.18◦W). This time
and location correspond with previous cold-season tornadic
events that occurred in the southeastern United States (Sher-
burn and Parker, 2014). The numerical mesh is 1200× 600
computational points in the x and y directions, respectively,
with a uniform horizontal grid spacing of 500 m. This grid
spacing, which is too coarse to fully resolve large turbulent
eddies (Bryan et al., 2003), was selected as a balance be-
tween the computational feasibility and physical realism of

the boundary layer turbulence. Lateral boundary conditions
are open in the x direction, to preserve the east–west temper-
ature gradient, and periodic in the y direction. No Coriolis
acceleration is assumed due to the complex nature of the at-
mospheric flow associated with the frontal boundary.

The 120-level vertical grid is stretched from 10 m at the
lowest model level to 250 m at heights between 9.875–15 km
(i.e., the model top). The simulation is run with a semi-
slip bottom boundary condition and uses the Jiménez et al.
(2012) surface layer scheme to calculate surface fluxes and
surface stress. The upper boundary condition is free slip, and
Rayleigh damping is applied with a coefficient of 0.003 s−1,
starting at 12 km above ground level (a.g.l.).

Model physics options for this case were selected to en-
sure that the simulation accurately portrays the evolution of
a storm system. Precipitation processes are parameterized us-
ing the double-moment Morrison microphysical parameteri-
zation (Morrison et al., 2005, 2009). The microphysical pa-
rameterization predicts the evolution of a single rimed ice
species similar to hail (e.g., dense and faster fall speeds),
which produces realistic squall line simulations (Bryan and
Morrison, 2012). No separate cloud parameterization is used.
The NASA Goddard radiative scheme simulates the effects
of longwave and shortwave radiative forcing during the sim-
ulation period. Subgrid-scale (SGS) turbulence is parame-
terized using the Deardorff (1980) three-dimensional turbu-
lence kinetic energy scheme.
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2.4 Simulation results

The nature run setup produces a QLCS that persists for sev-
eral hours before exiting the experiment domain (Fig. 4).
Although the cold-air perturbation alone can initiate robust
convection (e.g., Sherburn and Parker, 2019; Labriola and
Wicker, 2022), the positive u wind perturbation along the
western domain boundary is necessary to sustain convection.
The post-frontal winds advect cold air eastward with time
(Fig. 4a, c, e) and maintain strong temperature and moisture
gradients along the boundary. The wind perturbation also en-
hances convergence, which initiates and sustains the robust
storm system.

The QLCS storm structure changes over the simulation pe-
riod. During the first 2 h of the simulation (e.g., Fig. 4b),
the convective line is robust, and storms are spaced closely
together so that it is difficult to discern the individual con-
vective cores. As the simulation progresses, the QLCS-
embedded storms become more isolated, and the trailing re-
gion of the stratiform precipitation expands in areal coverage
(Fig. 4d and f). Boundary layer turbulence and QLCS modi-
fications to the environment also cause isolated storms to ini-
tiate in the warm sector (Fig. 4f). Strong vertical wind shear
and modest instability cause many of the isolated storms to
persist until they exit the domain or are absorbed by the ap-
proaching QLCS.

Severe weather hazards (e.g., tornadoes, wind, and hail)
are small in scale and not fully resolved by the nature run
simulation. Since these phenomena cannot be explicitly pre-
dicted, diagnostic tools are used to identify areas of intense
convection in model output. Updraft helicity, which is the
vertical integration of updraft intensity multiplied by vertical
vorticity between 2 and 5 km (Kain et al., 2008), is a com-
monly used proxy for severe weather in CAM forecast ex-
periments (e.g., Kain et al., 2010; Sobash et al., 2011, 2016;
Clark et al., 2012; Gallo et al., 2016; Loken et al., 2017; Car-
lin et al., 2017; Skinner et al., 2018; Potvin et al., 2019;
Miller et al., 2022). Updraft helicity can skillfully predict
severe weather events because the algorithm identifies mid-
level mesocyclones that produce a disproportionately large
number of severe weather reports. To identify areas of intense
convection and understand how these storms evolve, the na-
ture run maximum updraft helicity is evaluated (Fig. 5).

The nature run produces several long-track swaths of en-
hanced updraft helicity (> 500 m2 s−2), which suggests that
some QLCS embedded storms are capable of producing se-
vere weather. QLCS updraft helicity swaths (Fig. 5a) are
short-lived and numerous in the western half of the experi-
ment domain, where the storm system initiates and individ-
ual storm cells frequently interact (Fig. 4b). Later in the sim-
ulation, as the QLCS convective cores become more diffuse
(Fig. 4d), the number of updraft helicity swaths decreases
(Fig. 5a; 300 km< x < 450 km). In the eastern quarter of
the experiment domain (x > 400 km), isolated storms initiate
ahead of the QLCS and produce long, uninterrupted updraft

helicity swaths (Fig. 5c). The rotating storms initially move
northeasterly until interacting with the QLCS, after which
the updraft helicity intensity decreases and then the swaths
rotate eastward. The complex storm interactions for this case
highlight the challenges to predict severe weather hazards as-
sociated with an evolving QLCS.

3 Forecast ensemble configuration

Rather than using random perturbations to generate the initial
ensemble, this study relies on the uncertainties introduced by
model physics. The following steps are taken to create each
of the 40 ensemble members for this case:

– Step 1. Initialize two separate, horizontally homogenous
simulations with a warm-sector environment (Fig. 1a)
and a cold-sector environment (Fig. 1b).

– Step 2. Select a model surface type (Table 1) and insert
random (±0.25 K) θ perturbations.

– Step 3. Run both simulations for 24 h, using the ensem-
ble prediction model settings.

– Step 4. Blend the simulations together to recreate the
initial frontal boundary.

The remainder of this section explains, in depth, the proce-
dure used to generate forecast initial conditions.

3.1 Ensemble initialization

Simulations are run with different land surfaces to allow the
atmosphere to evolve freely and generate the 40-member
forecast ensemble. To avoid spawning the QLCS early, two
separate simulations are created for each ensemble member
to predict the evolution of the air mass ahead (i.e., warm sec-
tor) and behind (i.e., cold sector) the front. The warm-sector
simulation is initialized with the nature run initial sound-
ing (Fig. 1a). Perturbations of θ , Td, and u wind consistent
with the nature run (−10 K, −20 K, 10 m s−1, respectively)
are added to the initial sounding to create the cold-sector
environment (Fig. 1b). Perturbation amplitude decreases as
a cosine function of height above the surface and extends
6 km a.g.l. Once both simulations are initialized, pseudo-
random potential temperature perturbations (±0.25 K) are
inserted into the environments to further encourage ensem-
ble diversity.

Parameterized air–surface interactions are a substantial
source of forecast uncertainty. Land surface conditions im-
pact the boundary layer and can subsequently alter the evo-
lution of the storm (e.g., Reames and Stensrud, 2017, 2018;
Yang et al., 2021). Consequently, the heterogeneous surface
makeup of the southeastern United States can modify the en-
vironment in countless ways. To incorporate these uncertain-
ties into the ensemble design, cold- and warm-sector simula-
tions for each ensemble member are assigned a land surface
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Figure 4. Nature run (a, c, e) T and (b, d, f) Z at the lowest model level (5 m a.g.l.). The 500 m a.g.l. winds are superimposed (a, c, e) using
arrows.

type that is commonly observed in the southeast (Table 1).
Simulated land surfaces include various degrees of suburban
and urban sprawl, croplands, grasslands, forests, bogs, and
open bodies of water (assumed in warm-sector simulations
only). Both simulations are then integrated for 24 h, using
the ensemble prediction model settings (Sect. 3.2), so that
surface-dependent momentum, heat, and moisture fluxes can
modify the lower troposphere.

Once the cold- and warm-sector simulations are complete,
they are blended together using a cosine weighting func-
tion consistent with Eq. (1) to form the initial cold-front
boundary that initiates the QLCS. The cold-sector simula-
tion solution is given full weight along the western domain
boundary. The warm-sector solution is increasingly favored
eastward and given full weighting at all locations east of

100 km. To initiate convection at different times and loca-
tions, small changes are made to the frontal boundary width
(100±5 km), the number of frontal waves (3±0.5), wave am-
plitude (10± 5 km), and phase (±π4 ). The initial conditions
for each ensemble member (Fig. 6) resemble the nature run;
however, given the 24 h spin-up, there is greater uncertainty
in environmental conditions.

3.2 Prediction model settings

The forecast ensemble is designed to resemble the Na-
tional Severe Storms Laboratory’s Warn-on-Forecast System
(WoFS; Wheatley et al., 2015; Jones et al., 2016) – a fre-
quently updated CAM forecast ensemble that predicts the
evolution of severe weather events in real time. This strate-
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Figure 5. Nature run maximum updraft helicity over the (a) full experiment domain. Subdomains plotted in panels (b) and (c) highlight
QLCS-embedded mesovortices (left black box) and isolated convection (right black box), respectively.

Table 1. The surface types used to generate the initial ensemble of
forecasts. Lu0 is the initial land use index in the CM1 namelist.

Members Lu0 Members Lu0

1, 21 1 11, 31 12
2, 22 2 12, 32 13
3, 23 3 13, 33 14
4, 24 4 14, 34 15
5, 25 5 15, 35 16

(Cold sector= 33)
6, 26 6 16, 36 17
7, 27 7 17, 37 18
8, 28 8 18, 38 19
9, 29 9 19, 39 31
10, 30 10 20, 40 32

gic choice allows OSSEs to assess how assimilated obser-
vations impact a real-time ensemble prediction system that
provides guidance to the operational community (e.g., Wil-
son et al., 2021; Gallo et al., 2022). Forecasts are run on a
numerical mesh with 200× 100 points in the x and y direc-
tions, respectively, a uniform horizontal spacing of 3 km, and

50 vertical levels. Vertical grid spacing is stretched, with the
smallest grid spacing (1z= 50 m) located at the surface, and
the coarsest grid spacing (1z= 550 m) located at the 15 km
model top. Forecast prediction model settings are identical to
those used for the nature run, save for a few notable excep-
tions. First, the SGS turbulence is disabled in the ensemble
forecasts, and the one-dimensional Yonsei University (YSU)
planetary boundary layer (PBL) scheme (Hong et al., 2006)
is used to parameterize the effects of boundary layer turbu-
lence in the vertical direction. Second, the forecast ensemble
and nature run are generated using different versions of the
CM1 (release 20.1 for the nature run and release 18 for the
ensemble). Differences between prediction model releases
and other factors (i.e., model physics configuration and grid
spacing) are expected to mitigate the identical-twin problem
that can cause overly optimistic OSSE results (e.g., Hoffman
and Atlas, 2016).

3.3 Forecast results

The initial forecast ensemble represents some of the com-
plexities observed in real-data cases. Although most data
assimilation systems make use of Gaussian prior error
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Figure 6. Forecast air temperature at the lowest model level (25 m a.g.l.) at the time of ensemble initialization (00:00 UTC). Forecast wind
speeds sampled at 500 m a.g.l. are plotted with arrows. The differences between the forecast and nature run temperature are contoured in 1 ◦C
increments. Contours that are dashed (solid) indicate where the forecast is cooler (warmer) than the nature run. Contours become thicker as
the error increases.

approximations, the nonlinear error growth attributed to
mesoscale processes often causes forecast errors to become
non-Gaussian. Data assimilation systems can produce pos-
terior state estimates under these conditions, but subsequent
analyses and forecasts are often suboptimal (e.g., Poterjoy
et al., 2017; Robert et al., 2018; Buehner and Jacques, 2020;
Poterjoy, 2022). Due to the evolution of mesoscale processes
in the warm- and cold-sector environments, forecast errors
for this OSSE are non-Gaussian (e.g., Fig. 7) and more re-
alistically challenge the performance of the data assimilation
system.

Errors introduced by model physics uncertainties cause
the ensemble to drift away from the nature run environment.
During the 24 h simulations, storm cold pools and increased
cloud cover cause the warm-sector surface layer to moisten
and cool on average (Fig. 7a). Relatively warm ground tem-
peratures moisten and heat the lower troposphere in the cold
sector (Fig. 7b). Friction also modifies the environment and
slows near-surface winds (Fig. 7). Due to the idealized na-
ture of these simulations, there is no pressure gradient force
to counteract the impacts of friction, so surface winds are
nudged to 0. The ensemble wind spread is larger in the warm-
sector simulation (Fig. 7a), in part because convective storms
disrupt the environment. Moderating cold- and warm-sector
environments causes the atmosphere to become more stable
and weakens the frontal intensity (i.e., weaker gradients and

less convergence), which impacts the strength of the subse-
quent forecast QLCS.

Modifications to the environment cause forecast storms to
be weaker and less numerous than in the nature run sim-
ulation (Fig. 8). Some members predict that discrete con-
vective storms will form near the observed QLCS (Fig. 8b
and d) but fail to form an organized line of storms. This
occurs because moderating warm- and cold-sector environ-
ments weakens the frontal boundary temperature gradient.
Furthermore, weaker winds diminish the convergence that
initiates the line of storms. Some ensemble members predict
a QLCS (Fig. 8c), but the storm system is smaller and weaker
than in the nature run (Fig. 8a). Differences are attributed to
changes in the horizontal grid spacing, which impacts storm
updraft intensity and areal coverage (e.g., Bryan et al., 2003;
Bryan and Morrison, 2012; Verrelle et al., 2015). Addition-
ally, the environment is more stable and has weaker low-level
convergence, so the forecast QLCS is less intense than in the
nature run.

4 Data assimilation procedure

The data assimilation configuration for this study is designed
to resemble the WoFS (Fig. 9). After initialization, the 40-
member ensemble of forecasts undergoes a 30 min spin-up
period until 00:30 UTC, when observations are assimilated
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Figure 7. Profiles of the domain average (a) warm-sector and
(b) cold-sector environments used to generate the initial ensemble.
Red, green, and black lines correspond with T (◦C), Td (◦C), and
wind (knots). The 40 ensemble member profiles are marked with a
thin translucent line. The profiles used to initialize warm-sector and
cold-sector simulations (i.e., the unperturbed soundings) are marked
by a bold line.

using the Data Assimilation Research Testbed (DART; An-
derson and Collins, 2007; Anderson et al., 2009) ensemble
adjustment Kalman filter (EAKF; Anderson, 2001). Observa-
tions are assimilated every 15 min over a 2 h window between
00:30–02:30 UTC. Following the data assimilation, the fore-
cast ensemble is run until 07:00 UTC (4.5 h forecast) before
the QLCS exits the domain.

Simulated radar, surface, and sounding observations ex-
tracted from the nature run simulation are assimilated dur-
ing this study. Four radar sites that are spaced approximately
240 km apart in the experiment domain (Fig. 10) provide
simulated reflectivity (Z) and radial velocity (Vr) observa-
tions. The radar observations are interpolated in the vertical
direction to generate 14 tilts that are consistent with the next-
generation weather radar (NEXRAD; Crum et al., 1993) sys-
tem scanning pattern. A Cressman (1959) weighting func-
tion with a 3 km radius of influence analyzes observations
to form a 5 km grid in the horizontal direction. Observations
within 150 km of the parent radar site are assimilated. Radar
observations update all model state variables, except surface
moisture and skin temperature fields.

Radar data assimilation alone does not necessarily result in
optimal forecast performance due to more realistic and non-
Gaussian initial condition errors. This is different from many
previous CAM OSSEs that produce skilled forecasts after as-
similating only radar observations (e.g., Snyder and Zhang,
2003; Dowell et al., 2004; Caya et al., 2005; Jung et al., 2008;
Potvin et al., 2013; Stratman et al., 2018). Conventional ob-
servations must also be assimilated in this study to improve
the forecast skill. This is consistent with operational forecast
systems in which multiple observation sources are always as-
similated.

Simulated soundings (i.e., an instantaneous profile of the
atmosphere) are assimilated at the top of each hour from each
radar site (average site spacing= 243.5 km). Soundings sam-
ple the atmosphere every 100 m and provide observations of
air temperature (T ), dew point temperature (Td), and u and
v winds. Simulated surface observations mimic what is re-
ported by the automated surface observing system (ASOS)
network in real time. Surface observations are assimilated
at the top of the hour (Fig. 9) and include 2 m tempera-
ture, 2 m dew point temperature, and 10 m u and v winds.
The 54 surface stations are randomly distributed through-
out the experiment domain to match the approximate spatial
density of ASOS stations in the southeastern United States
(Fig. 10). Errors are added to each assimilated observation
(radar, soundings, and surface) by randomly drawing pertur-
bations from a zero-mean Gaussian distribution that is equiv-
alent to the observation error variance (Table 2).

Data assimilation systems are subject to sampling errors
that can cause observations to become spuriously correlated
with distant model state variables. Left unchecked, the as-
similated observations will degrade the analyzed model state
and limit the forecast skill. Covariance localization mitigates
this problem by limiting the radius over which an assimi-
lated observation can impact the model state. This study uses
a distance-based Gaussian weighting function (Gaspari and
Cohn, 1999) to limit the range of influence. Localization radii
for the assimilated observations closely resemble what is em-
ployed by the WoFS (Table 2). Spatially and temporally vary-
ing adaptive inflation (Anderson and Collins, 2007) is ap-
plied to the prior ensemble to maintain the ensemble spread
during data assimilation. Inflation parameters are defined in
Table 3.

5 Forecast verification

Observation space statistics provide insight into the data as-
similation system performance. The root mean square error
(RMSE) quantifies the fit of forecasts and analyses to the ob-
served environment. Rather than calculating statistics at the
location of an observing station, errors are calculated for the
environmental fields (T , Td, u, and v) over the lowest 3 km
of the forecast domain, where the forecast errors are largest.
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Figure 8. (a) Nature run and (b–d) forecast Z at the lowest model level at 03:00 UTC. The forecasts are integrated forward in time without
data assimilation.

Figure 9. The OSSE data assimilation timeline. Downward-pointing arrows indicate times when only radar observations are assimilated.
Upward arrows indicate when surface and radar observations are assimilated.

This provides insight into how assimilated observations im-
pact the environment.

Forecast- and nature-run-simulated radar Z sampled at the
lowest model level are compared to evaluate the QLCS in-
tensity, position, and structure. The neighborhood maximum
ensemble probability (NMEP; Schwartz and Sobash, 2017)
of forecast Z exceeding 45 dBZ (P [Z > 45dBZ]) evaluates
the storm cores embedded within the QLCS. To mitigate
small displacement errors, a 9 km neighborhood is used to
generate the probabilistic fields. A Gaussian filter with the

same radius smooths the subsequent forecast probabilities.
The probabilistic forecast guidance is subjectively compared
and objectively verified against the nature run to measure the
forecast skill.

The Brier skill score (BSS; Brier, 1950) objectively quan-
tifies the probabilistic forecast skill for this study. This mea-
surement of skill, which ranges between values less than 0
(no skill) and 1 (perfect skill), can be decomposed into re-
liability, resolution, and uncertainty (Murphy, 1973), as fol-
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Table 2. The data assimilation parameters used for each observation type.

Radar Surface Sounding

Number of sites 4 54 4

Assimilation frequency 15 min Top of hour Top of hour

Observation 6 dBZ (Z) 1.75 m s−1 (u,v) 1.75 m s−1 (u,v)
Errors 3 m s−1 (Vr) 1.5 K (T ) 1.5 K (T )

2.0 K (Td) 2.0 K (Td)

Localization 12 km (horizontal) 150 km (horizontal) 500 km (horizontal)
Radius 6 km (vertical) 4 km (vertical) 4 km (vertical)

Figure 10. The experiment domain with assimilated observations plotted. Large translucent gray circles mark the scanning radius of four
radars (marked by the dark circles). White stars mark the sites where soundings are launched. The 54 assimilated surface stations are marked
by blue diamonds. Nature run Z at the time of the final data assimilation cycle (02:30 UTC) is plotted for reference.

Table 3. The surface types used to generate the initial ensemble of
forecasts. Lu0 is the initial land use index in the CM1 namelist.

Inflation parameter Defined value

inf_initial 1.0
inf_sd_initial 0.6
inf_damping 0.9
inf_lower_bound 1.0
inf_upper_bound 100
inf_sd_lower_bound 0.6

lows:

BSS=
Resolution−Reliability

Uncertainty
. (4)

Reliability is the difference between forecast probability and
the relative frequency of the event occurring for that given
probability threshold. The forecast skill is optimized when
this difference is minimized. The resolution is the difference

between the observed climatology of an event occurrence and
the frequency at which a forecast event occurs for a given
probability threshold. The forecast skill increases with res-
olution. While the first two parameters are defined by fore-
cast performance, uncertainty is a measure of event climatol-
ogy. Attribute diagrams, which plot the forecast probability
against the observed frequency, provide insight into the fore-
cast reliability and resolution.

6 Forecast and data assimilation experiment

Three forecast and data assimilation experiments are run to
demonstrate the impact of assimilated environmental and
radar observations. The first experiment does not use data
assimilation (NoDA), the control experiment (CTRL) assim-
ilates only radar observations, while the final experiment
(ENVI) assimilates radar, surface, and sounding observa-
tions.
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Figure 11. The domain-averaged (a) u wind, (b) v wind, (c) T , and (d) Td RMSE during the data assimilation window. Statistics consider the
lowest 3 km of the troposphere where forecast errors are largest. Dashed black, solid blue, and solid red lines correspond with NoDA, CTRL,
and ENVI, respectively. Vertical dotted lines mark the points when conventional observations (soundings and surface) are assimilated.

The RMSE values (Fig. 11) from the NoDA experi-
ment generally increase over the forecast period. The CTRL
RMSE values are relatively improved but remain constant
or increase after successive data assimilation cycles. Al-
though cross-covariances allow assimilated radar observa-
tions to update the model state, the impact of radar observa-
tions is confined to regions near or within convection. Much
of the domain is clear air during the data assimilation win-
dow (Fig. 10), so radar observations have a limited impact
on the broad environment. Assimilated environmental obser-
vations substantially reduce the wind field errors (Fig. 11a
and b) but have little impact on or increase the T (Fig. 11c)
and Td (Fig. 11d) errors. Assimilated sounding observations
assume a large localization radius (Table 2) that is consis-
tent with the WoFS configuration. Large localization radii al-
low atmospheric observations to update large regions of the
experiment domain; however, spurious correlations between
distant model state variables can potentially increase error.
Despite modest increases in error, RMSE values for temper-
ature and moisture fields are comparable between both ex-
periments and remain relatively small (i.e., less than or equal
to the observation error variance) throughout the data assim-
ilation window.

Assimilated environmental observations enhance frontal
boundary wind convergence and cause a more robust QLCS
to form. The CTRL posterior u wind field at the final assim-
ilation cycle (Fig. 12c) is positively biased in the lowest 1–
2 km of the warm sector (x > 250 km). This decreases CTRL
frontal convergence because warm-sector winds are directed
eastward and away from the QLCS. Assimilated environ-

mental observations decrease ENVI warm-sector wind errors
near the surface (Fig. 12d). In the cold sector (x < 225 km),
ENVI winds are slightly stronger than CTRL, which de-
creases the error (Fig. 12c and d). This further enhances
convergence in ENVI forecasts and provides the mechani-
cal forcing necessary to establish a QLCS that has larger up-
drafts (Fig. 13). Errors in uwind are largest in the NoDA case
for both sectors (Fig. 13b), resulting in greatly reduced con-
vergence and a QLCS with much weaker updrafts (Fig. 13).

While the NoDA experiment again clearly performs the
worst, the CTRL and ENVI differences are more subtle for
temperature (Fig. 12f–h) and moisture (Fig. 12j–l) fields.
All experiments underpredict the cold-sector intensity; the
near surface (< 0.5 km a.g.l.) is too warm (Fig. 12f–h) and
moist (Fig. 12j–l). ENVI cold-sector biases are smaller than
CTRL, which suggests that the assimilated environmental
observations have a small but positive impact on the poste-
rior state. Analyzed T and Td are similar in the warm sector
(x > 250 km) for the experiments; ensembles are cool near
the surface (Fig. 12f–h) and dry further aloft (> 1 km a.g.l.;
Fig. 12j–l). Despite localized errors, domain-averaged tem-
perature and moisture errors are relatively small in magni-
tude (Fig. 11c and d).

Assimilated radar observations play an important role in
the initial storm placement and intensity (e.g., Snyder and
Zhang, 2003). Both the CTRL and ENVI experiments, which
assimilate Z and Vr observations, predict high forecast prob-
abilities (P [Z > 45dBZ]> 0.7) to be co-located with ob-
servations early in the forecast (Fig. 14c and e), while the
same is not true for the NoDA case (Fig. 14a). Consequently,
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Figure 12. Ensemble mean posterior error at the time of the final data assimilation cycle (02:30 UTC) for (b–d) u wind, (f–h) T , and (j–l) Td.
Errors are averaged in the north–south direction. Regions where the north–south average updraft velocity exceeds 2.0 m s−1 are contoured.

Figure 13. Ensemble mean updraft volume during the forecast pe-
riod. Statistics only consider regions where the updraft velocity ex-
ceeds 5 m s−1. Dashed black, solid blue, and solid red lines corre-
spond with NoDA, CTRL, and ENVI, respectively.

both the CTRL and ENVI experiments have similar attribute
curves (Fig. 14g).

Forecast probabilities become displaced from observations
over time (Fig. 14b, d, f). Although individual ensemble
members initially resemble the nature run (Fig. 15a, c, e,
g), the predicted storms move too slowly during the fore-
cast period (Fig. 15b, d, f, h). Forecast storm motion bi-
ases are commonly observed (e.g., VandenBerg et al., 2014)
and are sensitive to many factors, including the wind pro-
file errors and cold pool intensity. Due to storm displace-

ment errors, CTRL forecast probabilities far exceed the ob-
served frequency (Fig. 14h) for high-probability thresholds
(P [Z > 45dBZ]> 0.6). The ENVI QLCS moves faster and
is more closely located with the observed QLCS, causing the
forecast ensemble to become more reliable (Fig. 14h). The
areal coverage of high forecast probabilities (0.6< P [Z >
45dBZ]< 0.8; Fig. 14h) is also higher for ENVI than CTRL.
Forecast probabilities increase partly because ENVI fore-
casts predict storm updrafts to be larger than CTRL through-
out much of the forecast period (Fig. 13).

The NoDA ensemble forecast skill scores are the lowest
and reach unity after 1 h (Fig. 16). This is because the fore-
casts predict the weakest and slowest storm system (e.g.,
Fig. 15d). Forecast skill scores for both the CTRL and ENVI
ensembles are similar early in the forecast period (Fig. 14)
but diverge during the first 2 h. The benefits of radar data as-
similation wane during this time because small-scale errors
quickly grow in scale and impact storm evolution (e.g., Ak-
soy et al., 2010). For example, CTRL skill decreases faster
(Fig. 16) because the predicted QLCS moves too slowly and
becomes displaced from observations (Figs. 14d, 15f). The
ENVI BSS is higher because the predicted QLCS evolves
in an environment that is more representative of the nature
run (Fig. 11). Despite these differences, both the CTRL and
ENVI ensembles exhibit some skill (BSS > 0.0) during the
first 4 h of the forecast (Fig. 16). BSSs for both ensembles
gradually decrease after this time because the QLCS be-
comes displaced from observations, the line of storms weak-
ens, and storms ahead of the QLCS fail to initiate with suffi-
cient coverage and intensity.
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Figure 14. The P(Z > 45dBZ) at (a, c, e) 30 and (b, d, f) 150 min for (a, b) NoDA, (c, d) CTRL, and (e, f) ENVI. Regions where the nature
run Z exceeds 45 dBZ are contoured black. Attributes diagrams evaluate forecast performance over the full experiment domain at (g) 30 and
(h) 150 min.
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Figure 15. (a, b) Nature run and (c–h) forecast (member 25) Z at the lowest model level at (a, c, e, g) 30 and (b, d, f, h) 150 min.

7 Summary

To gain a more robust understanding of how assimilated ob-
servations impact CAM forecast skill, it is imperative that
OSSEs include a diverse range of case studies that simulate
different storm modes and environments. Unfortunately, the
number of idealized case studies for CAM OSSEs is lim-
ited. This paper introduces the techniques used to generate
a nature run that is representative of a tornadic outbreak in
the southeastern United States. The nature run simulates a
cold-front boundary that initiates and maintains a QLCS in
a highly sheared and modestly unstable turbulent environ-
ment. During the 7 h simulation, the QLCS produces mul-
tiple mesovortices with isolated rotating thunderstorms that
initiate ahead in the warm sector.

This study also introduces a new technique to create an
ensemble of forecasts initialized from a single sounding. Un-
certainties in the representation of surface conditions are
leveraged to create the forecast ensemble. Each forecast

member is initialized from the same sounding but runs for
24 h, assuming a different land surface type and small-scale
random perturbations. Different surface conditions alter the
surface heat, moisture, and momentum fluxes that modify the
lower troposphere. The subsequent ensemble is representa-
tive of many real-data CAM case studies because the ensem-
ble mean environment is degraded and the initial condition
errors are non-Gaussian. This provides the opportunity to
understand how assimilated environmental observations will
impact forecast skill during a real case study.

The OSSE framework introduced in this study requires
a combination of in-storm and environmental observations
to create a more skilled QLCS forecast. Forecasts that only
assimilate radar observations (reflectivity and radial veloc-
ity) predict a relatively weak QLCS that moves too slowly.
This is largely because surface friction weakens the initial
ensemble wind profile in the lower troposphere which dimin-
ishes convergence along the front that initiates and sustains
the QLCS. Environmental observations must also be assimi-
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Figure 16. The BSS evaluating the P(Z > 45dBZ). Dashed black,
solid blue, and solid red lines correspond with NoDA, CTRL, and
ENVI, respectively. The horizontal black line marks no skill. Verti-
cal dotted lines mark the times when forecast probabilities are eval-
uated in Fig. 15.

lated to correct wind profile errors and increase convergence.
Forecasts that assimilate radar and environmental observa-
tions (surface and sounding) are consequently more skilled;
the QLCS moves faster and has larger updrafts.

The data assimilation experiments conducted in this study
are relatively simplistic in their treatment of observations.
Environmental observations are interpolated from model out-
put with Gaussian noise to simulate the observation error.
This strategy is likely adequate for in situ observations that
directly observe the atmosphere (e.g., soundings) but under-
represents retrieved profile errors for remote sensing systems
(e.g., Doppler wind lidars and atmospheric emitted radiance
inferometers). To better understand the impact of boundary
layer profiling systems in future data assimilation experi-
ments, it is imperative to more accurately represent instru-
ment errors. Furthermore, high-resolution modeling studies
of the simulated environment are needed to quantify repre-
sentativeness errors that also introduce uncertainties during
data assimilation (e.g., Janjić and Cohn, 2006; Hodyss and
Nichols, 2015).

Future work using this OSSE configuration will assimilate
different simulated boundary layer profiling instruments to
understand their impact on convective initiation and QLCS
evolution. Assimilating thermodynamic and kinematic pro-
files of the boundary layer can improve the representation of
the lower troposphere and consequently increase convective
initiation forecast skill (e.g., Coniglio et al., 2019; Degelia
et al., 2019, 2020; Chipilski et al., 2020). These OSSEs will
also help determine an optimal assimilation strategy, includ-
ing sampling frequency and spatial density. New insights will
help determine how these instruments should be deployed
during future field campaigns to study and understand high-
impact weather in the southeastern United States.

Finally, future studies should develop techniques to quan-
tify the expected level of maximum forecast skill based on
event predictability. Understanding the limits of practical
predictability (e.g., Melhauser and Zhang, 2012; Zhang et al.,
2015; Flora et al., 2018) should help focus the efforts of users
looking to optimize the design of, and the assimilation of,
observations from new observing networks in the coming
decade.

Code and data availability. The software and scripts used to gener-
ate the initial ensemble forecast, conduct data assimilation, run the
free forecast ensemble, and post-process the model output can be
found at https://doi.org/10.5281/zenodo.7109050 (Labriola et al.,
2022a). In lieu of recreating the data, initial conditions for the
nature run, assimilated observations, and the initial prior ensem-
ble at the time of the first assimilation cycle can be accessed at
https://doi.org/10.5281/zenodo.7126769 (Labriola et al., 2022b).
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