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Abstract. An analytical solution of the Boussinesq equa-

tions for the motion of a viscous stably stratified fluid driven

by a surface thermal forcing with large horizontal gradients

(step changes) is obtained. This analytical solution is one of

the few available for wall-bounded buoyancy-driven flows.

The solution can be used to verify that computer codes for

Boussinesq fluid system simulations are free of errors in for-

mulation of wall boundary conditions and to evaluate the rel-

ative performances of competing numerical algorithms. Be-

cause the solution pertains to flows driven by a surface ther-

mal forcing, one of its main applications may be for testing

the no-slip, impermeable wall boundary conditions for the

pressure Poisson equation. Examples of such tests are pre-

sented.

1 Introduction

Thermal disturbances associated with variations in underly-

ing surface properties can drive local circulations in the at-

mospheric boundary layer (Atkinson, 1981; Briggs, 1988;

Hadfield et al., 1991; Segal and Arritt, 1992; Simpson, 1994;

Mahrt et al., 1994; Pielke, 2001; McPherson, 2007; Kang

et al., 2012) and affect the development of the convective

boundary layer (Patton et al., 2005; van Heerwaarden et al.,

2014). Computational fluid dynamics (CFD) codes for mod-

elling such flows commonly solve the Boussinesq equations

of motion and thermal energy for a viscous/diffusive stably

stratified fluid. In this paper we present an analytical solu-

tion of the Boussinesq equations for flows driven by a sur-

face thermal forcing with large gradients (step changes) in

the horizontal. The solution can be used to verify that CFD

codes for Boussinesq fluid system simulations are free of er-

rors, and to evaluate the relative performances of competing

numerical algorithms. Such verification procedures are im-

portant in the development of CFD models designed for re-

search, operational, and classroom applications.

We solve the linearized Navier–Stokes and thermal energy

equations analytically for the case where the surface buoy-

ancy varies laterally as a square wave (Fig. 1). Attention is

restricted to the steady state. No boundary-layer approxima-

tions are made; the solution is non-hydrostatic, and both hor-

izontal and vertical derivatives are included in the viscous

stress and thermal diffusion terms. The solution is similar to

that of Axelsen et al. (2010) for katabatic flow above a cold

strip but is easier to evaluate (no slope present) and applies to

the more general scenario where the viscosity and diffusivity

coefficients can differ. The flow is also similar to a special

case (no slope) considered by Egger (1981), although a final

analytical solution was not provided in that study. Strictly

speaking, the linearized Navier–Stokes equations apply to a

class of very low Reynolds number motions known as creep-

ing flows. Such flows appear in studies of lubrication, loco-

motion of microorganisms, lava flow, and flow in porous me-

dia. Of course, for the task at hand, if our linear solution is

to serve as a benchmark for a nonlinear numerical model so-

lution, it is essential that the parameter space be restricted to

values for which the model’s nonlinear terms are negligible.

Because the solution pertains to flows driven by a sur-

face thermal forcing, one of its main applications may be

as a test for surface boundary conditions in the pressure

Poisson equation. In models of atmospheric boundary-layer

flows, the buoyancy is a major contributor to the forcing term

in the Poisson equation and also appears in the associated
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Figure 1. Schematic of two-dimensional (x, z) thermal convection

induced by a surface buoyancy that varies horizontally (x) as a

square wave. Red denotes positive surface buoyancy, blue denotes

negative surface buoyancy.

surface boundary condition. The pressure boundary condi-

tion on a solid boundary in incompressible (Boussinesq)

fluid flows is an important and complex issue that has long

been fraught with technical difficulties and controversies

(Strikwerda, 1984; Orszag et al., 1986; Gresho and Sani,

1987; Gresho, 1990; Temam, 1991; Henshaw, 1994; Peters-

son, 2001; Sani et al., 2006; Rempfer, 2006; Guermond et

al., 2006; Nordström et al., 2007; Shirokoff and Rosales,

2011; Hosseini and Feng, 2011; Vreman, 2014). Typical

fractional-step solution methodologies and associated pres-

sure (or pseudo-pressure) boundary-condition implementa-

tions are often verified using various prototypic flows such as

Poiseuille flows, lid-driven cavity flows, flows over cylinders

or bluff bodies, viscously decaying vortices, and dam-break

flows. We are unaware of verification tests in which flows

were driven by a heterogeneous surface buoyancy forcing.

Our solution is designed to fill this gap.

The analytical solution is derived in Sect. 2. In Sect. 3,

this solution is compared to numerically simulated fields in a

steady state. Two versions of a numerical code are run: a ver-

sion in which the correct surface pressure boundary condi-

tion is applied, and a version in which the pressure condition

is mis-specified. A summary follows in Sect. 4.

2 Analytical solution

We derive the solution for steady flow over an underly-

ing surface along which the buoyancy varies laterally as a

single-harmonic function. This single-harmonic solution is

then used as a building block in a Fourier representation of

the square-wave solution.

2.1 Governing equations

Consider the flow of a viscous stably stratified fluid that

fills the semi-infinite domain above a solid horizontal sur-

face (placed at z= 0). This surface undergoes a steady ther-

mal forcing that varies periodically in the right-hand Carte-

sian x direction but is independent of the y direction. The

two-dimensional (x, z) flow is periodic in x and satisfies the

linearized (assuming the disturbance is of small amplitude)

governing equations under the Boussinesq approximation,

0=−
∂5

∂x
+ ν∇2u, (1)

0=−
∂5

∂z
+ b+ ν∇2w, (2)

0=−N2w+α∇2b, (3)

∂u

∂x
+
∂w

∂z
= 0. (4)

Apart from notational differences, Eqs. (1)–(4) are the

two-dimensional steady state versions of Eqs. (55)–(57) of

Sect. II of Chandrasekhar (1961). Equations (1) and (2) are

the horizontal (x) and vertical (z) equations of motion, re-

spectively, Eq. (3) is the thermal energy equation (differential

form of the first law of thermodynamics) expressed in terms

of the buoyancy variable (defined below), and Eq. (4) is the

incompressibility condition. Here u and w are the horizontal

and vertical velocity components,5≡ [p−pe(z)]/ρw is the

kinematic pressure perturbation [p is pressure, pe(z) is pres-

sure in a hydrostatic environmental state in which the den-

sity profile is ρe(z), ρw is a constant reference density, say,

ρe(0)], and b ≡−g[ρ− ρe(z)]/ρw is the buoyancy, where ρ

is the actual density, and g is the acceleration due to grav-

ity. The Brunt–Väisälä frequency N ≡
√
−(g/ρw)dρe/dz of

the ambient fluid (Kundu, 1990), kinematic viscosity ν, and

thermal diffusivity α are taken constant.

We obtain our solution using a standard vortic-

ity/streamfunction formulation. Cross-differentiating

Eqs. (1) and (2) yields the vorticity equation,

0=−
∂b

∂x
+ ν∇2η, (5)

where η ≡ ∂u/∂z− ∂w/∂x is the vorticity. Eliminating b

from Eqs. (3) and (5) yields

∇
4η =

N2

να

∂w

∂x
. (6)

Introducing a streamfunction ψ defined through

u= ∂ψ/∂z, w =−∂ψ/∂x, (7)

guarantees that Eq. (4) is satisfied and transforms Eq. (6) into

a single equation for ψ ,

∇
6ψ +

N2

να

∂2ψ

∂x2
= 0. (8)

The dependent variables are assumed to vanish far above the

surface (z→∞). On the surface we apply no-slip (u= 0)

and impermeability (w = 0) conditions, and specify a peri-

odic (in x) buoyancy distribution. As we will now see, re-

stricting the dependent variables to steady periodic forms that

vanish as z→∞ also restricts acceptable distributions of the

surface buoyancy. The restriction was first noted by Egger
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(1981, Sect. 3c), though without details. Averaging Eq. (3)

over one period (using w =−∂ψ/∂x) yields d2b̄/dz2
= 0,

which integrates to b̄ = A+B z (b̄ is the average of b; A

and B are constants). Taking b→ 0 as z→∞, implies that

b̄→ 0 as z→∞, in which case A= B = 0, and b̄(z)= 0.

In particular, at the surface, b̄(0)= 0. If a surface distribu-

tion b(x,0) violates this condition, the ground acts as a net

heat source/sink. In an unsteady model, such a source/sink

would force a continually upward-developing disturbance

and a steady state could never be attained.

2.2 Single-harmonic forcing

For a surface buoyancy of the form b(x,0)∝ sinkx, Eq. (3)

indicates that ψ is of the form

ψ = A(z)coskx. (9)

Application of Eq. (9) in Eq. (8) yields(
d2

dz2
− k2

)3

A−
N2k2

να
A= 0, (10)

which has solutions of the form A∝ eMz for M satisfying

(M2
− k2)3 =

N2k2

να
. (11)

Taking the one-third power of Eq. (11) yields a useful inter-

mediate result:

M2
− k2
=
N2/3k2/3

ν1/3α1/3
e2nπi/3, (12)

where n is an integer. Rearranging Eq. (12) and taking the

square root yields

M =±

√
k2+

N2/3k2/3

ν1/3α1/3
e2nπi/3. (13)

Equation (13) furnishes six roots, two for each of n= 0, 1, 2.

To ensure that A(z)→ 0 as z→∞, we reject the roots with

a positive real part. With the radicand of Eq. (13) expressed

in polar form, the physically acceptable roots are

M0 =−

√
k2+

N2/3k2/3

ν1/3α1/3
, (n= 0), (14a)

M1 =−r
1/2eiφ/2, (n= 1), (14b)

M2 =−r
1/2e−iφ/2, (n= 2), (14c)

where the subscript on M denotes the associated value of n,

and r and φ are defined by

r ≡

√[
k2+

N2/3k2/3

ν1/3α1/3
cos

(
2π

3

)]2

+

[
N2/3k2/3

ν1/3α1/3
sin

(
2π

3

)]2

,

(15)

cosφ =
1

r

[
k2
+
N2/3k2/3

ν1/3α1/3
cos

(
2π

3

)]
,

sinφ =
1

r

(
N2/3k2/3

ν1/3α1/3

)
sin

(
2π

3

)
> 0. (16)

While solving Eq. (16) for φ, care must be taken when eval-

uating arcsin or arccos functions that φ appears in the correct

quadrant (φ should be in quadrant I or II so φ/2 should al-

ways be in quadrant I). Also note from Eq. (14b) and (14c)

that M2 is the complex conjugate of M1 (M2 =M
∗

1 ), a fact

that will often be used below.

With the general solution for ψ written as

ψ = (BeM0z+CeM1z+DeM2z)coskx, (17)

where B, C, and D are constants, the vorticity becomes,

η =
[
B(M2

0 − k
2) eM0z+C(M2

1 − k
2)eM1z

+D(M2
2 − k

2)eM2z
]

coskx, (18)

and the buoyancy follows from Eq. (3) as

b =
kN2

α

(
B

M2
0 − k

2
eM0z+

C

M2
1 − k

2
eM1z

+
D

M2
2 − k

2
eM2z

)
sinkx+ bh, (19)

where ∇2bh = 0. In view of Eq. (12), Eq. (19) becomes

b =
k1/3ν1/3N4/3

α2/3
(B eM0z+ e−2πi/3C eM1z

+ e−4πi/3DeM2z)sinkx+ bh. (20)

Applying Eqs. (18) and (20) in Eq. (5) yields an equation

for ∂bh/∂x which, upon use of Eq. (12) and M2 =M
∗

1 , re-

duces to ∂bh/∂x = 0. So bh is, at most, a function of z. Since

∇
2bh = 0, bh is, at most, a linear function of z, and since

b should vanish as z→∞, that linear function must be 0.

Thus, bh = 0.

The pressure follows from Eqs. (1) and (12) as

5=
ν2/3N2/3

k1/3α1/3
(BM0e

M0z+CM1e
2πi/3eM1z

+DM2e
4πi/3eM2z)sinkx+G(z), (21)

whereG(z) is a function of integration. Applying Eq. (21) in

Eq. (2), and using Eq. (11) yields dG/dz= 0, so G is con-

stant. For 5 to vanish as z→∞, this constant must be 0.

The surface conditions determine B, C, and D. The sur-

face buoyancy is

b(x,0)= b0 sinkx, (22)

where b0 is a constant forcing amplitude. Application of

Eq. (20) in Eq. (22) yields

B + e−2πi/3C+ e−4πi/3D =
b0α

2/3

k1/3ν1/3N4/3
. (23)
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In view of Eqs. (7) and (17), the impermeability condition

w(x,0)= 0 and no-slip condition u(x,0)= 0 yield

B +C+D = 0, (24)

BM0+CM1+DM2 = 0. (25)

Straightforward but lengthy manipulations yield the solution

of Eqs. (23)–(25):

B =−

(
b0 α

2/3

√
3k1/3ν1/3N4/3

)
2r1/2 sin(φ/2)

M0+ 2r1/2 cos(π/3+φ/2)
,

(26)

C =−i

(
b0 α

2/3

√
3k1/3ν1/3N4/3

)
M2−M0

M0 + 2r1/2 cos(π/3+φ/2)
,

(27)

D = i

(
b0 α

2/3

√
3k1/3ν1/3N4/3

)
M1−M0

M0 + 2r1/2 cos(π/3+φ/2)
.

(28)

Applying Eqs. (26)–(28) in Eqs. (17), (20), and (18), with

Eq. (12) used in the latter equation, and noting that B is real,

while D = C∗ (since M2 =M
∗

1 ), we obtain

b =
2b0
√

3

e−Zc [µcos(Zs+π/6)+ cos(Zs+π/6+φ/2)] − e
M0z sin(φ/2)

µ+ 2cos(π/3+φ/2)
sinkx,

(29)

ψ =
2b0 α

2/3

√
3k1/3ν1/3N4/3

e−Zc [µsinZs+ sin(Zs+φ/2)] − e
M0z sin(φ/2)

µ+ 2cos(π/3+φ/2)
coskx,

(30)

where

Zs ≡ zr
1/2 sin(φ/2), Zc ≡ z r

1/2 cos(φ/2), µ≡M0/r
1/2.

(31)

Application of Eq. (30) in Eq. (7) yields the velocity compo-

nents as

u=
2b0 α

2/3r1/2

√
3k1/3ν1/3N4/3

e−Zc [µsin(φ/2−Zs)− sinZs] −µe
M0z sin(φ/2)

µ+ 2cos(π/3+φ/2)
coskx,

(32)

w =
2b0α

2/3k2/3

√
3ν1/3N4/3

e−Zc [µsinZs+ sin(Zs+φ/2)] − e
M0z sin(φ/2)

µ+ 2cos(π/3+φ/2)
sinkx.

(33)

2.3 Piecewise constant (square wave) forcing

Next, consider the case where the surface buoyancy varies

horizontally as a square wave, with a distribution over one

period L given by

b(x,0)=

{
bmax, 0< x < L/2,

−bmax, L/2< x < L.
(34)

Such a distribution can be expressed as the Fourier series:

b(x,0)=

∞∑
n=1

bn sin
(nπx
L

)
, (35)

bn =
2

L

L∫
0

b(x,0)sin
(nπx
L

)
. (36)

Application of Eq. (34) in Eq. (36) yields

bn =
2bmax

nπ

[
1− 2cos(nπ/2)+ cos(nπ)

]
. (37)

The solutions for b, ψ , u, and w can then be written as sum-

mations over the single-harmonic solutions (29), (30), (32),

and (33), with k related to n by

k =
nπ

L
, (38)

and with b0 replaced by bn:

b =
2
√

3

∞∑
n=1

bn

e−Zc [µcos(Zs+π/6)+ cos(Zs+π/6+φ/2)] − e
M0z sin(φ/2)

µ+ 2cos(π/3+φ/2)

sin
(nπx
L

)
, (39)

ψ =
2α2/3

√
3ν1/3N4/3

∞∑
n=1

bn

k1/3

e−Zc [µsinZs+ sin(Zs+φ/2)] − e
M0z sin(φ/2)

µ+ 2cos(π/3+φ/2)
cos

(nπx
L

)
,

(40)

u=
2α2/3

√
3ν1/3N4/3

∞∑
n=1

bn
r1/2

k1/3

e−Zc [µsin(φ/2−Zs)− sinZs] −µe
M0z sin(φ/2)

µ+ 2cos(π/3+φ/2)
cos

(nπx
L

)
,

(41)

w =
2α2/3

√
3ν1/3N4/3

∞∑
n=1

bnk
2/3

e−Zc [µsinZs+ sin(Zs+φ/2)] − e
M0z sin(φ/2)

µ+ 2cos(π/3+φ/2)
sin
(nπx
L

)
.

(42)
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Analytical b Analytical w
z (

m
)

x (m) x (m)

Figure 2. Vertical cross section of the analytical (A-1) buoyancy

b and vertical velocity w fields from the first test case. Colour bar

units are ms−2 for b, and ms−1 for w.

3 Verification tests

A solution of the linearized equations may be used to verify

a nonlinear code if the nonlinear terms are sufficiently small.

Unfortunately, a priori estimates of such terms expressed,

for example, through a Reynolds number, are not straight-

forward since the relevant velocity and length scales in our

problem are only evident after a solution has been obtained.

We thus seek an appropriate set of test parameters through

trial and error, guided by a posteriori linear solution estimates

of the terms u · ∇b and u · ∇η[u= (u,w)] present in nonlin-

ear versions of Eqs. (3) and (5), respectively. Specifically, for

any computed candidate solution, we formed the ratios of the

largest values of those nonlinear terms to the largest values

of the corresponding linear terms, that is, the terms actually

present in Eqs. (3) and (5). We need only consider one such

linear term per ratio since Eqs. (3) and (5) are comprised of

two terms of equal magnitude. A solution was deemed to be

sufficiently linear if

Rη ≡
max |u · ∇η|

max |∂b/∂x|
< ε, and Rb ≡

max |u · ∇b|

max
∣∣α∇2b

∣∣ < ε, (43)

where ε (� 1) is a prescribed threshold. The suitability of

this approach was confirmed by the very close agreement be-

tween the analytical solutions and the numerical solutions

obtained with the correct surface pressure condition.

The numerical model employed in our tests is a vari-

ant of a direct numerical simulation (DNS) code used in

the boundary-layer and slope-flow studies of Fedorovich et

al. (2001), Fedorovich and Shapiro (2009a, b), and Shapiro

and Fedorovich (2013, 2014). The model solves the Boussi-

nesq governing equations on a staggered (Arakawa C) grid.

Although designed for three-dimensional simulations, the

model was run in a two-dimensional (x, z)mode. The overall

solution procedure is patterned on a fractional step method

proposed by Chorin (1968). In our version, the prognostic

equations are integrated using a filtered leapfrog scheme with

explicit treatment of the viscous term. The pressure is diag-

nosed from a Poisson equation (Eq. A3b, discussed in the

Appendix), which is solved using a fast Fourier transform

technique in horizontal planes, and a tridiagonal matrix in-

version in the vertical. The surface condition on pressure

is the inhomogeneous Neumann condition (INC) that arises

from projecting the vertical equation of motion into the ver-

tical and imposing the impermeability condition (Vreman,

2014; also see the Appendix). We also run a version of the

code in which the surface pressure condition is mis-specified

as a homogeneous Neumann condition (HNC). We hasten to

add, however, that our implementation of the HNC may be

quite different from implementations described in the litera-

ture. We elaborate on these technical differences and review

general aspects of the problem of surface pressure specifica-

tion in the Appendix.

The analytical solution was evaluated on an un-staggered

(x, z) grid extending over one period of the square wave

(x = 0 to x = L). The series were truncated at 50 000 terms.

The governing parameters were adjusted so that the linearity

criteria were satisfied in comparisons with ε = 5× 10−3.

In the first test, we set ν = α = 0.001 m2 s−1, N =

0.02 s−1,L= 5.12 m, and bmax = 1×10−5 ms−2. For the an-

alytical solution A-1, the (x, z) grid consisted of 513 points in

the x direction and 1025 points in the z direction, with grid

spacings 1x =1z= 0.01 m. The linearity criteria (Eq. 43)

were satisfied with Rη ∼= 8.2× 10−5 and Rb ∼= 2.8× 10−3.

The analytical b and w fields shown in Fig. 2 depict a

broad zone of ascent above the warm surface and a com-

pensating zone of descent over the cold surface, roughly

for z < 1.8 m. In the upper part of these zones (at roughly

0.9m< z < 1.8m), adiabatic expansion/compression has re-

versed the senses of the buoyancy fields. Surprisingly, the

numerical fields in the inhomogeneous INC-1 and homoge-

neous HNC-1 cases are very similar to each other and to the

A-1 fields. The u fields from A-1, INC-1, and HNC-1 shown

in Fig. 3 are visually indistinguishable from one another.

To understand why the INC-1 and HNC-1 simulations

are so similar, and to identify simulation parameters that

might evince more substantial differences, we consider

the idealized problem in which a specified buoyancy b =

b0e
−γ z sinkx (γ = h−1, where h is the e-folding depth scale)

is the only forcing term in the Poisson equation ∇25=

∂b/∂z, with Neumann surface condition ∂5/∂z|0 = b(x,0).

This idealized problem is solved as

5∗INC =
b0

γ 2− k2

(
ke−kz− γ e−γ z

)
sinkx. (44)

The corresponding solution obtained with the homogeneous

Neumann condition, ∂5/∂z|0 = 0, is

www.geosci-model-dev.net/8/1809/2015/ Geosci. Model Dev., 8, 1809–1819, 2015
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x (m)

INC-1 HNC-1 A-1

x (m) x (m)

z (
m

)

Figure 3. Vertical cross section of u from the first test case. A-1 is the analytical solution. INC-1 is the numerical simulation with inhomoge-

neous Neumann condition for pressure. HNC-1 is the numerical simulation with the homogeneous Neumann condition for pressure. Colour

bar units are ms−1.

Analytical b Analytical w

x (m) x (m)

z (
m

)

Figure 4. Vertical cross section of the analytical (A-2) buoyancy b

and vertical velocity w fields from the second test case. Colour bar

units are ms−2 for b, and ms−1 for w.

5∗HNC =
b0

γ 2− k2

(
γ 2

k
e−kz− γ e−γ z

)
sinkx. (45)

The relative error (RE) in the vertical pressure gradient force

associated with Eqs. (44) and (45), defined as the local ab-

solute error in that force divided by the local buoyancy, is

calculated as

RE≡

∣∣∣∣∂5∗INC/∂z− ∂5
∗

HNC/∂z

b

∣∣∣∣= e(a−1)kz, (46)

where a ≡ γ /k. Written in terms of the depth scale h and

wavelength λ= 2π/k, a can be interpreted as an aspect ratio

characterizing the width to depth scales of the disturbance,

a = λ/(2πh)∝ λγ . From Eq. (46) we see that RE decreases

exponentially with z for disturbances characterized by small

aspect ratios, a < 1 (which we refer to as deep disturbances),

INC-2 A-2

x (m) x (m)

z (
m

)

Figure 5. Vertical cross section of u from the second test case. A-2

is the analytical solution. INC-2 is the numerical simulation with

inhomogeneous Neumann condition for pressure. Colour bar units

are ms−1.

and increases exponentially with z for disturbances charac-

terized by large aspect ratios, a > 1 (which we refer to as

shallow disturbances). The buoyancy in Fig. 2 is suggestive

of a < 1, which indicates that the first test could be classified

as a deep (error-forgiving) simulation.

The preceding analysis suggests that simulations with

shallow thermal disturbances (a > 1) might yield large dif-

ferences between cases with inhomogeneous and homoge-

neous Neumann conditions. There did not appear to be a

straightforward way to increase the effective a by system-

atically varying the parameters (e.g. increasing L tended to

increase the effective h), but a set of suitable parameters were

identified through trial and error and were used as the basis

for the second test case.
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HNC-2

x (m)

z (
m

)

Figure 6. Vertical cross section of u from HNC-2, the numerical

simulation with homogeneous Neumann condition for pressure in

the second test case. Colour bar units are ms−1.

In the second test, we set ν = α = 0.0001m2 s−1, N =

0.2s−1, L= 10.24 m, and bmax = 5× 10−6 ms−2. The ana-

lytical solution A-2 was generated with 2049 points in the

x direction and 513 points in the z direction, with grid spac-

ings of 1x =1z= 0.005m. The linearity criteria were sat-

isfied with Rη ∼= 4.8×10−5 and Rb ∼= 3.8×10−3. In contrast

to the counter-rotating convection rolls seen in the first test,

the analytical b and w fields shown in Fig. 4 depict narrow

updraft/downdraft pairs straddling the buoyancy discontinu-

ities. Between the narrow updrafts is a broad region of rel-

atively weak ascent. The w and b fields above the cold sur-

face are mirror images of the fields above the warm surface.

Note the change in the scales of the x and (especially) the z

axes between Figs. 4 and 2: the low-level thermal disturbance

in the second test is much shallower than the disturbance in

the first test (and is suggestive of a > 1). In this second test

case we find dramatic differences between the inhomoge-

neous INC-2 and homogeneous HNC-2 cases. Specifically,

while the INC-2 and A-2 fields are in excellent agreement,

the HNC-2 fields showed no signs of even approaching a

steady state. Long after the INC-2 simulation had reached

a steady state, the HNC-2 fields continued to amplify and

develop asymmetric structures associated with flow nonlin-

earities. The very close agreement between the A-2 solution

and the steady state in the INC-2 simulation is shown for the

u field in Fig. 5. The u field in the disastrous HNC-2 simula-

tion, at a time when a steady state had already been attained

in the INC-2 simulation, is shown in Fig. 6.

4 Summary

The linearized Boussinesq equations for the motion of a vis-

cous stably stratified fluid are solved analytically for a sur-

face buoyancy that varies laterally as a square wave. The so-

lution describes two-dimensional laminar convective struc-

tures such as thermal convective rolls and updraft/downdraft

pairs. The main applications of the solution may be in code

verification and the evaluation of different implementations

of the surface pressure condition for the pressure Poisson

equation. Tests have been conducted for cases where the as-

pect ratios of the thermal disturbance have been large and

small. With attention restricted to disturbances of sufficiently

small amplitude, the linear solution and numerically simu-

lated fields with the inhomogeneous Neumann condition for

pressure (which is appropriate in the context of the particu-

lar fractional step procedure adopted in our DNS code) have

been found to be in excellent agreement for both tests. How-

ever, in tests with a mis-specified Neumann condition, an ex-

cellent agreement with the analytical solution has been found

only for the deep (small aspect ratio) disturbance case; errors

in the shallow (large aspect ratio) disturbance case have been

catastrophic.

www.geosci-model-dev.net/8/1809/2015/ Geosci. Model Dev., 8, 1809–1819, 2015



1816 A. Shapiro et al.: Verification test for convective flow above a thermally heterogeneous surface

Appendix A: Comment on the pressure condition at a

lower solid surface

Consider a three-dimensional Boussinesq system with the

equation of motion

∂u

∂t
=−∇5+ ν∇2u+F. (A1)

Here u= (u, v, w) is the three-dimensional velocity vector,

5 is a kinematic pressure perturbation, ν is the kinematic vis-

cosity coefficient, and F is the sum of nonlinear acceleration

and buoyancy terms. Applying the incompressibility condi-

tion,

∇ ·u= 0, (A2)

in the equation that results from taking the divergence of

Eq. (A1) (e.g. Orszag et al., 1986) yields the Poisson equa-

tion,

∇
25=∇ ·F. (A3a)

Although Eqs. (A1) and (A2) imply Eq. (A3a), the reverse

statement is not generally true. Indeed, eliminating 5 from

between Eq. (A3a) and the equation arising from taking the

divergence of Eq. (A1) yields the diffusion equation ∂δ/∂t =

ν∇2δ for the velocity divergence δ ≡∇ ·u, whose solution is

Eq. (A2) only if δ is 0 initially and on all boundaries (Orszag

et al., 1986; Gresho and Sani, 1987; Vreman, 2014).

The same steps leading to Eq. (A3a) also lead to an alter-

native Poisson equation,

∇
25=∇ ·

(
ν∇2u+F

)
. (A3b)

Although ∇ · ν∇2u was omitted in Eq. (A3a) (this term is

0 if Eq. A2 is satisfied), without further constraints on δ

(described above), Eq. (A2) may not be satisfied. Gresho

and Sani (1987) showed that the retention of ∇ · ν∇2u in

Eq. (A3b) assures that Eq. (A2) is satisfied and thus leads

to the paradox “If you include it, you don’t need it; if you

don’t include it, you need it.” Vreman (2014) revisited this

paradox, and showed that for a standard staggered method,

the discretized form of Eq. (A3b) is equivalent to that of

Eq. (A3a) supplemented with the constraint that ∇ ·∇2u= 0

(∇2δ = 0) on points adjacent to the solid boundary (with the

same inhomogeneous Neumann boundary condition for 5

implied for Eqs. A3a and A3b). When supplemented with

this ∇2δ = 0 near-wall condition, the diffusion equation for

δ led to δ = 0 for all time. We note that Eq. (A3b) is the form

adopted in our numerical code.

Evaluating the vertical component of Eq. (A1) on the sur-

face, where the impermeability condition applies, yields the

inhomogeneous Neumann condition,

∂5

∂z

∣∣∣∣
0

= ν
∂2w

∂z2

∣∣∣∣
0

+ Fz|0, (A4)

where w ≡ k ·u, Fz ≡ k ·F, k is the upward unit vector, and

( )|0 is a surface value. It has been argued that Eq. (A4), by

itself, is not a proper boundary condition because it does not

provide new information (it is not independent of the gov-

erning equations) and does not enforce the incompressibility

condition (A2) at the boundary (Strikwerda, 1984; Henshaw,

1994; Sani et al., 2006). However, as pointed out by Henshaw

(1994), many studies that impose Eq. (A4) (or a variant of it)

also apply Eq. (A2) on the boundary.

In our numerical model, Eq. (A1) is integrated using a

fractional step procedure with explicit treatment of the vis-

cous term. First, a provisional velocity field ũ that does not

satisfy Eq. (A2) is obtained by integrating a discretized form

of Eq. (A1) in which the pressure gradient is omitted. The

provisional velocity is equal to the velocity at the end of the

previous time step plus the sum of the forcing terms (nonlin-

ear acceleration, buoyancy, and viscous stress) multiplied by

the time step1t . With the forcing terms explicitly evaluated,

ũ is readily computed throughout the flow domain, including

on the surface, where, in surface-forced flows, the buoyancy

will make a substantial contribution. In terms of ũ and its

vertical component w̃, Eqs. (A3b) and (A4) become

∇
25=

∇ · ũ

1t
, (A5)

∂5

∂z

∣∣∣∣
0

−
1

1t
w̃|0 = 0. (A6)

In the second step, a velocity field that does satisfy Eq. (A2)

is obtained by solving Eq. (A5) for 5 and then adding the

pressure gradient force associated with5 (multiplied by1t)

to ũ.

In some explicit fractional step procedures (including

the DNS code used in our study), the problem of solving

Eq. (A5) subject to Eq. (A6) with ũ|0 evaluated from model

data is replaced by what appears to be an entirely different

(but is actually equivalent) problem: solving Eq. (A5) sub-

ject to the homogeneous Neumann condition,

∂5

∂z

∣∣∣∣
0

= 0, (A7)

in concert with ũ|0 being set to 0, obviating the need to cal-

culate ũ|0 from model data. It can be shown that w̃|0 and

the discretized form of ∂5/∂z|0 appear in the discretized

form of Eq. (A5), valid half a grid point above the physi-

cal surface as ∂5/∂z|0− w̃|0/1t , that is, in the same com-

bination as they appear in Eq. (A6). Thus, setting w̃|0 and

∂5/∂z|0 to 0 is equivalent to implementing Eq. (A6) with

the model-computed values of w̃|0: the discretized form of

Eq. (A5) near the surface is the same in either case. More-

over, on the C grid, setting the tangential components ũ|0
and ṽ|0 to 0 only affects the values of ũ and ṽ half a grid

point beneath the physical boundary. These values do not ap-

pear in the discretized form of Eq. (A5) at any z level and

thus have no bearing on the solution. In essence, the errors
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associated with the conflation of the two physically unjusti-

fiable specifications (homogeneous Neumann condition for

pressure, and ũ|0 = 0) cancel out. The homogeneous Neu-

mann condition for pressure can be the source of confusion

if the context in which the condition is applied is not made

clear: it would be a correct condition if ũ|0 is set to 0 (per

the equivalence described above), but it would be an incor-

rect condition if the explicit model-computed values of ũ|0
are used. In the experiments with the mis-specified condition

described in Sect. 3, the homogeneous condition is imposed

in the latter context. Unfortunately, in many numerical model

descriptions, the nature of the surface pressure condition is

left vague, for example, by not indicating whether a Neu-

mann condition is homogeneous or inhomogeneous or, if a

homogeneous Neumann condition is indicated, not mention-

ing how ũ|0 is treated.

Finally, we note that in fractional step procedures that

treat the viscous term implicitly (e.g. Kim and Moin, 1985;

Gresho, 1990; Armfield and Street, 2002; Guermond et al.,

2006, and many others), the homogeneous Neumann con-

dition is often applied as a surface condition for a Poisson

equation, but it is again different from our implementation

described in Sect. 3. In the implicit treatments, the provi-

sional velocity is obtained as the solution of a boundary value

problem ( ũ|0 should be specified; often it is set to 0) in which

the relevant Poisson equation resembles Eq. (A5) but applies

to a scalar function (sometimes called a pseudo-pressure) that

is not the real pressure. Temam (1991) refers to this scalar as,

“. . . a technical quantity, a mathematical auxiliary . . . ” and

advocates that it should not even be considered as an approx-

imation of the pressure. Interestingly, in the context of im-

plicit treatments, the homogeneous Neumann condition on

the pseudo-pressure has sometimes been implicated as cor-

rupting solution accuracy through the development of spuri-

ous numerical boundary layers adjacent to solid boundaries

(Gresho, 1990; Guermond et al., 2006; Hosseini and Feng,

2011).
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Code availability

The Fortran program used to generate output data files from

the analytical solution is available as a supplement to this

article. That program (square.f) is configured for test A-1

but can be easily adjusted to run test A-2 or other tests.

Running square.f automatically generates an output file for

each dependent variable (e.g. u.dat) as well as an output file

(square.out) that summarizes the test parameters and gives

the computed values of the linearity ratios Rη and Rb defined

in Eq. (43).

The Supplement related to this article is available online

at doi:10.5194/gmd-8-1809-2015-supplement.
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