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Abstract Two formulations of the surface thermal boundary condition commonly employed
in numerical modelling of atmospheric stably stratified surface-layer flows are evaluated using
analytical considerations and observational data from the Cabauw site in the Netherlands.
The first condition is stated in terms of the surface heat flux and the second is stated in
terms of the vertical potential temperature difference. The similarity relationships used to
relate the flux and the difference are based on conventional log-linear expressions for vertical
profiles of wind velocity and potential temperature. The heat-flux formulation results in two
physically meaningful values for the friction velocity with no obvious criteria available to
choose between solutions. Both solutions can be obtained numerically, which casts doubt on
discarding one of the solutions as was previously suggested based on stability arguments.
This solution ambiguity problem is identified as the key issue of the heat-flux condition
formulation. In addition, the agreement between the temperature difference evaluated from
similarity solutions and their measurement-derived counterparts from the Cabauw dataset
appears to be very poor. Extra caution should be paid to the iterative procedures used in the
model algorithms realizing the heat-flux condition as they could often provide only partial
solutions for the friction velocity and associated temperature difference. Using temperature
difference as the lower boundary condition bypasses the ambiguity problem and provides
physically meaningful values of heat flux for a broader range of stability condition in terms
of the flux Richardson number. However, the agreement between solutions and observations
of the heat flux is again rather poor. In general, there is a great need for practicable similarity
relationships capable of treating the vertical turbulent transport of momentum and heat under
conditions of strong stratification in the surface layer.
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172 J. A. Gibbs et al.

1 Introduction

In this study we re-examine the surface boundary condition for temperature/buoyancy com-
monly used in numerical models and simulations of stably stratified atmospheric surface-layer
and boundary-layer flows (Garratt 1992; Basu et al. 2008). This condition is typically applied
in three possible options. The first applies the condition in terms of potential temperature
and kinematic heat flux (also called the potential temperature flux). The second involves vir-
tual potential temperature and virtual potential temperature flux. The final approach relates
buoyancy (taken to be proportional to the departure of virtual potential temperature from a
prescribed environmental reference value) and kinematic buoyancy flux.

For the sake of brevity we use a version of this condition formulated in terms of potential
temperature θ and potential temperature flux Q, with θs denoting the potential temperature
at a specified level close to the underlying surface and Qs = w′θ ′

s is a near-surface value
of the turbulent kinematic heat flux. In the expression for the flux, w′ and θ ′ are, respec-
tively, turbulent deviations of the vertical component w of flow velocity and θ from their
corresponding mean values obtained by Reynolds averaging (denoted by the overbar).

In conventional atmospheric modelling, there are two options of implementation of the
local temperature boundary condition at the surface. In the first option, the heat flux is speci-
fied along with values of the mean surface velocity and potential temperature at the first model
level above the surface and the aerodynamic roughness length z0. Then, using integral simi-
larity relationships of the Monin–Obukhov (M–O) theory, the potential temperature value at
a specified near-surface level is evaluated. In the second option, the potential temperature at a
specified near-surface level is known. In this case, one prescribes values of mean velocity and
potential temperature at the first model level in combination with specified z0 and inverts M–
O similarity relationships to recover the value of the heat flux. The implementation of these
procedures is fraught with certain difficulties, as will be described in the following sections.

2 Boundary Condition Based on Surface Flux

2.1 Implementation of the Flux Condition

In the formulation of the surface flux boundary condition, a local value of the near-surface
kinematic heat flux (Qs = w′θ ′) is specified. It is either directly prescribed or derived from a
land-surface parametrization/model. Also given are the mean wind speed value, Um , at some
model level zm (located typically a few of metres to a few tens of metres above the ground),
mean potential temperature value at the same level (the collocation of the two levels is based
on the positioning of these measurements at the Cabauw site whose data are used herein),
θm , and the value of z0 where U0 = 0 by definition. Using these parameters, the potential
temperature θs at some prescribed near-surface level zs < zm is evaluated.

Applying the integral M–O similarity relationship for velocity difference Um −U0 = Um

along the lines specified in Taylor (1971), Garratt (1992), and Basu et al. (2008), we come to

Um = u∗
κ

(
ln

zm

z0
− �u0

)
, (1)

where κ is von Kármán’s constant (we use its commonly adopted value of 0.4), �u0 is
the stability correction, which in the general case is a function of zm/L and z0/L , u∗ is
the friction velocity (equal to the square root of the magnitude of the near-surface vertical
kinematic momentum flux), and
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Revisiting Surface Heat-Flux and Temperature Boundary Conditions 173

L = − u3∗
κ(g/θ0)Qs

(2)

is the Obukhov length (g = 9.81 m s−1 is the acceleration due to gravity and θ0 is a constant
reference temperature).

The common choice of expression for �u0 in atmospheric surface-layer modelling for
stable conditions (Webb 1970; Businger et al. 1971; Hicks 1976), is

�u0 = −α
zm − z0

L
, (3)

with a typical value of the coefficient α = 5 (Garratt 1992).
Denoting

rm0 = ln (zm/z0) , β = g/θ0, �m0 = zm − z0,

and using (2) and (3) Eq. 1 may be rearranged as

u3∗ − u∗N u2∗ − αβκ�m0 Qs

rm0
= 0, (4)

where

u∗N = κUm

rm0
(5)

may be interpreted as the friction velocity under neutral conditions when the mean velocity
follows the logarithmic profile (Basu et al. 2008).

We normalize Eq. 4 by u3∗N
to obtain the following dimensionless cubic equation,

û3∗ − û2∗ + Ri f = 0, (6)

where
û∗ = u∗

u∗N

(7)

is the normalized friction velocity and

Ri f = −α
(rm0

κ

)2 β�m0 Qs

U 3
m

, (8)

a quantity proportional to the heat flux, may be interpreted as a modified flux Richardson
number. This term represents a dimensionless form of the flux boundary condition and is
closely related to the normalized heat flux considered in Basu et al. (2008). A similar repre-
sentation is employed for the temperature boundary condition (expressed in the form of RiB ,
see Sect. 3.1). Analytical and iterative solutions of Eq. 6 are analyzed in Sect. 2.2.

Next, we obtain the value of û∗ that corresponds to the maximum Ri f . Differentiation of
Eq. 6 yields

d Ri f

dû∗
= 2û∗ − 3û2∗. (9)

Solving for û∗ that satisfies d Ri f /dû∗ = 0 gives the trivial solution û∗ = 0 and the non-
trivial solution û∗ = 2/3 ≈ 0.67. Substituting the latter value into Eq. 6 yields

Ri f max = 4

27
≈ 0.15. (10)

Thus, with the employed form of the stability correction function, Eq. 3, there is no physically
meaningful solution for the friction velocity in the case Ri f > 4/27, see Fig. 1. Basu et al.
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174 J. A. Gibbs et al.

Fig. 1 Dimensionless friction
velocity û∗ as a function of Ri f
after Eq. 6. Negative values
indicate that at least one of the
Eq. 6 solutions represents
non-physical values of u∗

(2008) suggested that û∗ = 2/3 represents the minimum dimensionless friction velocity
that can be obtained numerically using the iterative procedure they applied. On the other
hand, Basu et al. implied that all roots of (6) that are in the range 0 ≤ û∗ < û∗min = 2/3 are
unstable, following the reasoning and terminology of Taylor (1971), and should be discarded.
Yet, as will be shown in Sect. 4, these unstable roots are often in reasonable agreement with
measured values of friction velocity. Such agreement was previously noted in Wiel et al.
(2007).

Once u∗ = û∗κUm/rm0 is known, the surface-layer (potential) temperature scale is deter-
mined from

θ∗ = −Qs/u∗ (11)

and the M–O flux-profile relationship for the mean potential temperature,

θm − θs = θ∗
κ

[
ln

zm

zs
− �θs

]
, (12)

where the M–O stability correction function for temperature, �θs , is commonly taken in the
form,

�θs = −αθ

zm − zs

L
, (13)

with αθ ≈ 5 (Sorbjan 1989), is used to evaluate θs as

θs = θm + Qs
rms

u∗κ
− Q2

s
βαθ�ms

u4∗
. (14)

where

rms = ln (zm/zs) and �ms = zm − zs .

The value of the temperature difference �θ = θm − θs can be further used to calculate the
bulk Richardson number defined below by (25).
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Revisiting Surface Heat-Flux and Temperature Boundary Conditions 175

2.2 Solutions of the Cubic Equation for Friction Velocity

2.2.1 Analytical Solution

Following Abramowitz and Stegun (1965) we consider solutions of a general cubic algebraic
equation of the form

x3 + a2x2 + a1x + a0 = 0, (15)

and define the following supplementary quantities

q =
(

1

3

)
a1 −

(
1

9

)
a2

2 , (16a)

r =
(

1

6

)
(a1a2 − 3a0) −

(
1

27

)
a3

2 , (16b)

s1 = 3

√
r +

√
q3 + r2 , (16c)

s2 = 3

√
r −

√
q3 + r2 . (16d)

The three roots of (15),

x1 = s1 + s2 − a2

3
, (17a)

x2 = − s1 + s2

2
− a2

3
+ i

√
3(s1 − s2)

2
, (17b)

x3 = − s1 + s2

2
− a2

3
− i

√
3(s1 − s2)

2
, (17c)

have the following properties,
If

(i) q3 + r2 > 0, one real root and a pair of complex conjugate roots,
(ii) q3 + r2 = 0, all roots are real and at least two are equal,

(iii) q3 + r2 < 0, all roots are real.

In addition, the roots satisfy the condition x1x2x3 = −a0. Applying this condition in Eq. 6
we find that

x1x2x3 = −Ri f . (18)

Since Ri f , as defined in (8), is always positive then in case (i) above Eq. 18 can only be
satisfied if the single real root is negative, which is unphysical. In case (iii) above Eq. 18
can only be satisfied if two roots are positive (physical) while the third root is negative
(unphysical). We thus conclude that physical (real and non-negative) roots may only be
expected if the cubic equation coefficients satisfy the condition q3 + r2 ≤ 0.

Since Eq. 15 becomes Eq. 6 if

a0 = Ri f , (19a)

a1 = 0, (19b)

a2 = −1, (19c)

the condition q3 + r2 ≤ 0 corresponds to the inequality

Ri f ≤ 4

27
. (20)
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Fig. 2 Analytical and iterative solutions to Eq. 6 as functions of Ri f . The blue and red curves correspond,
respectively, to the upper-branch and lower-branch real and non-negative (physical) û∗ roots for Ri f ≤
Ri f max. The green line shows the negative real (unphysical) û∗ root branch for Ri f ≤ Ri f max. The purple
line corresponds to the negative real (unphysical) û∗ root branch for Ri f > Ri f max. The yellow and black dots
show the iterative solutions for û∗ following Algorithms 1 and 3, respectively. The grey dashes merging into
gray zones indicate iterative solution by the Algorithm 2. At Ri f ≤ Ri f max this solution is indistinguishable
from the upper-branch analytical (blue line) and Algorithm 1 (yellow dots) solutions

This condition is equivalent to the maximum normalized heat flux identified in Basu et al.
(2008). Therefore, Eq. 6 has physical (real and positive) roots, two in total, only if (20) is
satisfied. For Ri f > Ri f max = 4/27, the adopted M–O similarity relationship (3) cannot
provide usable solutions for u∗. In a slightly different formulation this result was first reported
by Taylor (1971) and revisited by Basu et al. (2008).

2.2.2 Iterative Solution

Numerical codes typically solve Eq. 6 iteratively rather than analytically. The iterative algo-
rithm considered in Basu et al. (2008), hereafter called Algorithm 1, is based on a straight-
forward rearrangement of Eq. 6,

û∗ = 1

1 + Ri f /û3∗
. (21)

To start the iteration procedure, the dimensionless friction velocity corresponding to a neutral
flow (û∗ = 1) is substituted into the right-hand side of Eq. 21 to obtain an updated û∗. The
process is repeated for a number of times specified by the user.

The corresponding converged solution for a range of Ri f is shown in Fig. 2. One can
see that with Ri f ≤ Ri f max this solution coincides with the upper branch of the analytical
roots (û∗ ≥ û∗min = 2/3). With Ri f > Ri f max, Algorithm 1 produces û∗ values dropping
practically to zero. From our analytical considerations we know that these values do not
represent any solution of the cubic equation (Eq. 6). It is important to note that the failure
of Algorithm 1 to produce a legitimate positive solution for û∗ in this Ri f range is not a
deficiency of the algorithm: such a solution simply does not exist.
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We now explore alternative algorithms for the iterative solution of Eq. 6. One possible
algorithm (hereafter Algorithm 2) is based on rearranging (6) as

û∗ = 1 − Ri f

û2∗
. (22)

The procedure again starts with the neutral-flow estimate for û∗ and continues until con-
vergence. This approach yields the upper-branch analytical root for Ri f ≤ Ri f max, but
results in noisy and unstable û∗ values for Ri f > Ri f max. However, as discussed above, no
physically meaningful solution for û∗ exists in this range of Ri f .

Another tested algorithm for iterative solution (Algorithm 3) employs yet another version
of Eq. 6,

û∗ =
√

−Ri f

û∗ − 1
. (23)

Initially, û∗ is set to zero instead of one because this particular formulation does not lead to
division by zero. As a result, the converged solution in this case matches the lower-branch
analytical root for Ri f ≤ Ri f max.

In this way Algorithms 1 and 3 tie together approximate iterative solutions of Eq. 6 to its
full analytical solution for the whole range of acceptable Ri f that provide û∗ ≥ 0.

The duality of the û∗ solution (when two physical û∗ roots exist for a single Ri f propor-
tional to the heat flux Qs) poses an obvious practical problem because there is no reasonable
a priori way to decide which root is preferable. Taylor (1971) conjectured that the first (upper-
branch) root is dynamically stable, while the second (lower-branch) root is unstable. This
indirectly implied that only the larger of the two physical roots (the upper-branch root in our
Fig. 2) should be used. Seeking support for this consideration, Wiel et al. (2007) employed
a linear stability analysis to show that the turning point (û∗min, Ri f max) in the solution sep-
arates the stable and unstable roots of Eq. 6. However, as in Basu et al. (2008), only the
upper-branch solution for û∗ was numerically obtained in Wiel et al. (2007), which was used
indirectly to imply that for practical purposes only the stable (upper-branch) root should be
used. As we have demonstrated above, though, it is entirely possible to iteratively obtain
the lower-branch root of Eq. 6 using our Algorithm 3. The usability of this root in model
applications is further discussed in Sect. 4.

3 Using Temperature as a Lower Boundary Condition

3.1 Implementation of the Temperature Condition

In the case of the temperature boundary condition, our goal is to calculate the near-surface
kinematic heat flux Qs given values of Um , θm , θs , and z0. By using (14), we obtain

�θ = θm − θs = −Qs
rms

u∗κ
+ Q2

s
βαθ�ms

u4∗
. (24)

Now we introduce the following bulk Richardson number

RiB = β�θ/�ms

U 2
m/�2

m0

, (25)

123



178 J. A. Gibbs et al.

which may be related, using (5), (7), (8), and (24) to û∗ and Ri f as

RiB = αθ

α2

Ri2
f

û4∗
+ 1

α

rms�m0

rm0�ms

Ri f

û∗
. (26)

Applying Ri f obtained from Eq. 6 in Eq. 26 and rearranging the resulting equation yields
the following quadratic equation for û∗ in terms of Ri B ,

û2∗ + F − 2G

G − F
û∗ + G − RiB

G − F
= 0, (27)

where

F = 1

α

rms�m0

rm0�ms
, G = αθ

α2 . (28)

Equation 27 is of the form x2 + Bx + C = 0, where

B = F − 2G

G − F
, C = G − RiB

G − F
. (29)

Analytical and iterative solutions for û∗ are detailed in Sects. 3.2.1 and 3.2.2.
Using (11) and (24), we express �θ through θ∗ and u∗, and obtain with the following

quadratic equation for θ∗,

θ2∗ + u2∗
αθβ�ms

rms

κ
θ∗ − u2∗

αθβ�ms
�θ = 0 . (30)

We solve this equation analytically (see Sect. 3.2.3) using the value of û∗ obtained from
Eq. 27 and converted to u∗ using (6) and (7). After that, we calculate Qs from (11) and then
obtain Ri f using Eq. 8.

3.2 Solutions for Friction Velocity and Temperature Scale

3.2.1 Analytical Solution of Quadratic Equation for Friction Velocity

Equation 27 has two roots, x1 and x2, expressed through x1,2 = −B/2 ± √
B2/4 − C .

Analysis of the discriminant B2/4 − C , presented in the Appendix, indicates that both roots
of Eq. 27 are real under the assumptions zm > zs ≥ z0 and αθ = α. Moreover, of the
two roots, x2 (one with the minus in front of the square root) is the only physical root for
Ri B ≤ 1/α. In the opposite case, when Ri B > 1/α, neither root results in a physical, i.e.,
belonging to the interval from 0 to 1 (see Appendix), value of û∗.

Thus, Rimax = 1/α represents an upper limit of Ri Bmax for which a physical û∗ solution
exists within the adopted formulation of the stability-correction function. Since there is only
one physical root in this case, using temperature as a lower boundary condition allows us
to avoid the duality problem associated with the flux condition. Notably, the temperature
condition provides physically relevant û∗ values also under conditions when Ri f > Ri f max.
This property is illustrated in Fig. 3, where Ri B1 corresponding to Ri f max is indicated
together with Ri B max in relation to the single û∗ root.

3.2.2 Iterative Solution for Friction Velocity

With a given �θ , the value of the friction velocity in numerical models is commonly obtained
using an iterative approach denoted as Algorithm 2 in Basu et al. (2008). We recast it here
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Fig. 3 Analytical and iterative
solutions to Eq. 27 as functions
of Ri B . The blue line presents the
analytical solution. The yellow
dashed line shows the iterative
solution obtained with
Algorithm 4
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û
∗

RiB1 RiB max
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in terms of Ri f and Ri B , and refer to it hereafter as Algorithm 4. This algorithm iteratively
solves the following sequence of equations,

û∗ = rm0

rm0 − �u0
, (31a)

Ri f = αrm0

rms − �θs

�ms

�m0
û∗ RiB , (31b)

L = α
�m0

rm0

û3∗
Ri f

, (31c)

�u0 = −α
�m0

L
, (31d)

�θs = −αθ

�ms

L
, (31e)

where �u0 and �θs are set to zero initially and αθ is taken equal to α. The solution is
shown in Fig. 3. For Ri B ≤ Ri B max, the iterative solution closely follows the corresponding
analytical solution. Similar to the case of the flux boundary condition, this iterative procedure
yields values of û∗ for Ri B exceeding Ri B max. Because our analysis of (27) has shown that no
physical root of this equation exists beyond Ri B max, any iterative solutions for Ri B > Ri B max
is spurious.

Basu et al. (2008) also tried to determine the analytical behaviour of u∗ as a function of
�θ (in our terms, the dependence of û∗ on Ri B). This was accomplished in Basu et al. by
first iteratively solving for u∗ and Qs (which would be equivalent to solving for û∗ and Ri f )
using Eq. 31 and then employing a cubic equation for u∗, a relative of our Eq. 4, to investigate
the analytical roots of this equation in relation to stable and unstable, according to Taylor
(1971), solutions for u∗. It was found that the u∗ solution for Ri B ≤ Ri B1 represents the
stable solution branch, while the u∗ solution for Ri B > Ri B1 represents the unstable solution
branch. However, the physical irrelevance of the estimated u∗ solutions for Ri B > Ri B1 was
not pointed out in Basu et al. (2008). That is to say, it was already shown that there is no
solution to Eq. 4 beyond Ri f max. Thus, any discussion of the solution for Ri B > Ri B1 is
unwarranted.
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Fig. 4 Normalized friction
velocity as a function of observed
Ri f evaluated from Eq. 6 (blue
and red dots) and from Cabauw
data (gray dots). See Fig. 1 for
other notation

3.2.3 Analytical Solution of Quadratic Equation for Temperature Scale

Equation 30 is of the form x2 + Bx + C = 0, with B = u2∗rms/ (αθβκ�ms) and C =
−u2∗/ (αθβ�ms). Given the signs of the variables entering expressions for B and C , we
conclude that B > 0 and C < 0, so the discriminant B2/4 − C is positive, and the roots
of the equation are real. We note, however, that only one root x1 = −B/2 + √

B2/4 − C
provides the required positive θ∗.

4 Comparison with Observations

We now explore the applicability of the employed Monin–Obukhov similarity formula-
tions for stable conditions using data from the Cabauw Experimental Site for Atmospheric
Research (CESAR; see www.cesar-observatory.nl) for the entire calendar year of 2012. The
site collects and records meteorological measurements on wind speed at 10 m, air temperature
at 2 and 10 m, and near-surface kinematic heat and momentum fluxes. Turbulent flow statis-
tics (means, variances, and co-variances) are obtained though 10-min averaging. A detailed
description of the site’s instrumentation is given in Russchenberg et al. (2005).

Cabauw data selected for this study were limited to conditions when the measured �θ

value was positive and the measured Qs value was negative. While there are occasions
when the temperature difference and flux are of opposite sign during stable conditions, the
imposed restrictions ensured conditions that M–O relationships are applicable. In terms of
notation adopted in the above preceding sections, level zs was at 2 m, level zm was at 10 m, and
z0 = 0.03 m (Bosveld 2012). In total, 26,350 data points were used in the boundary-condition
comparison exercise.

4.1 Evaluation of the Heat-Flux Condition

In Fig. 4, analytical solutions to Eq. 6 are shown as functions of Eq. 8, where the flux Richard-
son number is calculated using the measured heat flux at the Cabauw tower. Observational
values of friction velocity and flux are also shown. As implied by analyses presented in Sect. 2,
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Fig. 5 Calculated (blue and red
dots) and observed (grey dots)
Ri B versus observed Ri f . Blue
and red symbols correspond,
respectively, to the upper-branch
and lower-branch solutions for û∗
in Fig. 4. See Figs. 1 and 3 for
other notation

there are no analytical solutions for Ri f exceeding 4/27. Such out-of-limit conditions com-
prised 9,689 data points, or roughly 37 % of all stably-stratified flow cases considered within
the 2012 dataset. Figure 5 relates Ri f evaluated from the Cabauw data to Ri B computed
based on the flux boundary condition using Eq. 26 and evaluated from the observed �θ using
Eq. 25. For data where Ri f < 4/27, Fig. 5 shows that larger (i.e., upper-branch) solutions for
friction velocity produce smaller values of Ri B (which is merely the normalized temperature
difference �θ ) and vice versa: the smaller (lower-branch) solutions for u∗ produce larger �θ

values. There are 1,698 data points for which the calculated temperature differences obtained
with the lower-branch root for u∗ were closer to the observed �θ values than those obtained
with the upper-branch root u∗. In other words, if modellers followed the implications of pre-
vious studies (Taylor 1971; Wiel et al. 2007; Basu et al. 2008), then 10 % of the considered
solutions would yield degraded results.

This appreciable percentage of data, for which values are in better agreement with the
lower-branch root than with the upper-branch one, was already noted in Wiel et al. (2007),
where the lower branch is termed an unstable branch: “An interesting result is the fact that
data points close to the unstable branch are found”. It seems unjustified to dismiss the smaller
lower-branch root only because of conjecture surrounding physical stability or because it is
not readily obtained by a particular iterative algorithm. We have demonstrated above that this
lower-branch root is produced by our Algorithm 3. While discussing the suggested rejection
of the unstable-branch root in Taylor (1971), Arya (1972) stated that a criterion for choosing
between the two roots must come from the observed potential temperature difference �θ

rather than from consideration of the root stability.
Although the Arya (1972) suggestion sounds reasonable, it would be impossible to make

any judgment regarding the appropriateness of an individual value of �θ calculated from the
prescribed heat flux value without a priori knowledge of the actual temperature difference. In
practice, model simulations would provide two estimates for �θ , although having no infor-
mation to indicate which of these estimates is more relevant. What is even more discouraging
in the analysis of real data based on the considered similarity relationships is the fact that,
even if the procedure of selecting the appropriate root were known, the agreement between
similarity-theory solutions and experimentally obtained values of u∗ and �θ (expressed in
terms of Ri B ) would still be very poor, as evidenced by the measurements shown in Figs. 4
and 5.
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Fig. 6 Normalized friction
velocity û∗ as a function of Ri B
analytically obtained from Eq. 27
(blue) and retrieved from Cabauw
data (grey). See Figs. 1 and 3 for
other notation

Specifically, there are 6,126 data points (approximately 37 % of those where Ri f

≤ 4/27 ) in Fig. 4 for which the lower-branch root of u∗ is closer to the observed u∗
than the upper-branch root. This high percentage of the u∗ points that better agree with the
lower-branch solution far exceeds the percentage of the �θ points (10 %) that better fit the
lower-branch solution in Fig. 5. Such a disproportion in the amount of relevant data is an
indication of a fundamental disconnect between friction-velocity and temperature-difference
predictions based on the employed M–O similarity function formulations using the flux
boundary condition. Furthermore, the relationship between Ri f (which is the measure of
Qs) and Ri B (which is the measure of �θ ), experimentally evaluated from the Cabauw
data (see Fig. 5), points to the profound failure of the considered similarity expressions to
reproduce the observed relationship between these quantities under strong stability condi-
tions (with large Ri f and Ri B). It is possible, though, that the latter conditions would be
better handled by the recently proposed (Zilitinkevich and Esau 2007) non-linear similarity-
function formulations that extend M–O relationships to turbulence regimes with larger Ri f

and Ri B . These relationships generally predict that the rate of the Ri f growth with Ri B

gradually decays with increasing stability – a tendency that is only vaguely recognizable in
the data presented in Fig. 5.

4.2 Evaluation of the Temperature Condition

In Fig. 6, the analytical solution to Eq. 27 is shown as a function of Ri B evaluated from the
Cabauw data using (25). This figure clearly illustrates the benefit of formulating the lower
boundary condition in terms of temperature rather than in terms of heat flux. In the former
case, a single value of u∗ exists for each value of observed Ri B satisfying the constraint
Ri B ≤ Ri B max imposed by the employed forms of similarity relationships. In addition to
avoiding the duality problem – a crucial disadvantage of the flux condition – the solution
for u∗ obtained with the temperature condition envelopes observational data over a broader
range of stability conditions than in the case of the flux condition (cf. Fig. 4). This previously
discussed feature is exhibited by the considerable number of points that fall within the interval
between Ri B1 and Ri B max. Indeed, in this case there are only 1,570 data points (6 %) that
exceed the upper bound of Ri B , which represents a substantial improvement over the 9,689
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Fig. 7 Calculated (blue dots)
and observed (grey dots) Ri f
versus observed Ri B . See Figs. 1
and 3 for other notation

outliers (data points spreading beyond Ri f max in Fig. 4) in the case when the flux is used
as the lower boundary condition. Another reason in favour of using the temperature-based
boundary condition is the relatively large magnitude of potential temperature gradients under
stable conditions as compared to turbulent heat fluxes, which are usually small and poorly
measurable (Baas et al. 2006).

Despite the advantages of using �θ as the lower boundary condition in stably-stratified
flow models, the agreement between the M–O solutions and observed values of u∗ and Qs

(expressed in terms of Ri f ) in Fig. 6 remains marginal. Figure 7 relates Ri B evaluated from
the Cabauw data to Ri f computed based on the temperature boundary condition and evaluated
from the observed Qs using Eq. 8. Although the solution dualism is not a factor in this case
(cf. Fig. 5), we again witness the overall failure of the employed similarity expressions to
reproduce the observed relationship between �θ and Qs , especially for large values of Ri B

and Ri f .

5 Summary and Conclusions

Two alternative formulations of the surface thermal boundary condition commonly employed
in numerical modelling of atmospheric stably stratified surface-layer flows were evaluated
using analytical considerations and observational data from the Cabauw site in the Nether-
lands. A surface heat-flux formulation and a potential temperature difference formulation
were considered. The similarity relationships between the flux and the temperature differ-
ence were based on conventional log-linear expressions for the vertical profiles of both wind
velocity and potential temperature.

It was confirmed that, in the case of the surface heat-flux formulation, the analytical
solution of the problem results in two physically sensible values for the friction velocity u∗
(if the solution exists). It was impossible, however, to determine which of these two values was
more appropriate (physically relevant) based on available data. The analytical solutions were
compared with iterative solutions obtained by three alternative numerical algorithms. It was
found that one of the two analytically obtained u∗ values, which was identified in previous
studies as an unstable root following the terminology of Taylor (1971), was successfully
recovered by one of the employed iterative algorithms. This result questions considerations
by Wiel et al. (2007) and Basu et al. (2008), whose implication to discard this u∗ value
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in model applications was, in part, based on the inability of their numerical algorithms to
reproduce the unstable, although possibly physically relevant, root.

Comparisons with Cabauw data showed that for approximately 10 % of data points, �θ

values computed using the lower-branch (unstable) root of u∗ were closer to the observed
values than�θ values obtained with the upper-branch (stable) root of u∗. This feature suggests
that the lower-branch root of u∗ should not be dismissed based on the stability arguments,
or as a result of the numerical solution inadequacy. Moreover, the agreement between the
�θ values evaluated from similarity solutions and their measurement-derived counterparts
from the Cabauw dataset is very poor. In addition, there are 37 % of data points for which the
lower-branch (unstable) root of u∗ is closer to the observed u∗ than the upper-branch root.
Therefore, even if a model user could choose the u∗ based on a better match of computed �θ

with measurement data, the corresponding computed u∗ would not be guaranteed to represent
the best match with the observed u∗.

It was demonstrated that using temperature as the lower boundary condition eliminates
the duality issue and provides physically sensible values of heat flux for a broader range
of stability condition in terms of the flux Richardson number Ri f . While this approach
does not require one to choose between two roots of u∗, the agreement between solutions
and observations of Qs remains poor overall. The limitations of the employed similarity
expressions are particularly evident in strongly stable regimes, when the observed relationship
between Qs and �θ (in terms of Ri f versus Ri B ) strongly deviates from the behaviour
predicted by the considered similarity relationships. Physically, this behaviour represents
a scenario where the increasing temperature gradient progressively inhibits the turbulent
heat flux but does not completely reduce it to zero as implied by the considered similarity
relationships.

Our study thus provides further arguments in favour of using a temperature surface condi-
tion in models of stably stratified boundary-layer flows based on log-linear flux-profile M–O
similarity relationships in the surface layer. The application of the heat-flux condition in this
case is fraught with duality of solutions and is limited to a narrower stability range compared
to the temperature condition. Extra caution should be paid to the iterative procedures used
in the heat-flux condition calculations as they often provide only partial solutions for the
friction velocity and associated temperature difference.

In general, the need is evident for practicable similarity relationships capable of treating
the turbulent transport of momentum and heat under conditions of strong stratification in
the surface layer. The applicability of the similarity relationships proposed in Zilitinkevich
and Esau (2007)) for formulating the thermal boundary conditions should be investigated
in this regard. Without such new relationships being verified and implemented, the conven-
tional iterative algorithms employed for imposing thermal surface boundary conditions in
boundary-layer models will continue to produce irrelevant values of u∗, �θ , and Qs , and the
performance of the near-surface flux-profile parametrizations in strongly stable boundary-
layer flows will remain largely inadequate.
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Appendix

By evaluating the discriminant B2/4 − C in Sect. 3.2.1 one can assess whether the roots of
Eq. 27 are real or complex. The condition for solutions to be real is B2/4 ≥ C . Invoking
(29) for B and C , this condition provides
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RiB(G − F) ≥ −F2/4. (32)

We now show that G − F on the left-hand side of Eq. 32 is non-negative. First use (28) to
write G − F as

G − F = αθ

α2 − 1

α

rms�m0

rm0�ms
. (33)

In view of the definitions of β, rm0, rms , z0, and zs , we obtain

rms�m0

rm0�ms
= ln (zm/zs)

ln (zm/z0)

(zm − z0)

(zm − zs)

= ln
[
1 − (1 − γ )

]
1 − γ

1 − μ

ln [1 − (1 − μ)]
,

where γ = zs/zm and μ = z0/zm . The Taylor series expansion,

ln(1 − x) = −
(

x + x2

2
+ x3

3
+ x4

4
. . .

)
,

with 1 − γ and 1 − μ used in place of x , yields

rms�m0

rm0�ms
=

1 + (1 − γ )

2
+ (1 − γ )2

3
+ (1 − γ )3

4
+ · · ·

1 + (1 − μ)

2
+ (1 − μ)2

3
+ (1 − μ)3

4
+ · · ·

.

Under the natural assumption of zm > zs ≥ z0, we have γ ≥ μ ≥ 0, and therefore
rms�m0/(rm0�ms) ≤ 1. Further assuming (as done in most model applications) αθ = α, we
conclude that G − F is non-negative and thus the right-hand side of Eq. 32 is non-positive.
On the other hand, Ri B is non-negative under stable/neutral conditions for which (32) is
satisfied, and thus Eq. 27 is guaranteed to have two real roots.

Next we must determine whether these roots are physically meaningful. First we note that
the dimensionless friction velocity must be greater than zero. Combining the definitions of
β, rm0, rms , z0, and zs with (1), (5), and (7), we obtain

û∗ = rm0

rm0 − �u0
. (34)

Noting that �u0 is negative (see Eq. 3), we conclude that û∗ must also be less than unity.
Thus, the roots of Eq. 27 must satisfy 0 < û∗ < 1.

We also need to determine ranges of variability of B and C (Eq. 29). Taking into account
that G − F is non-negative and αθ = α, the difference

F − 2G = 1

α

(
rms�m0

rm0�ms
− 2

)
(35)

is negative since rms�m0/(rm0�ms) ≤ 1 (see above), it becomes clear that B is always
negative. Considering the numerator of C ,

G − RiB = 1

α
− RiB , (36)

we find that

C ≥ 0 if Ri B ≤ 1/α, (37a)

C < 0 if Ri B > 1/α. (37b)
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Fig. 8 Roots of Eq. 27 as
functions of Ri B . The blue line
indicates the x1 root (note that its
value at Ri B = 0 is equal to
−B ), and the red line indicates
the x2 root

Now consider

x1 = − B

2
+

√
B2

4
− C, x2 = − B

2
−

√
B2

4
− C . (38)

Because the condition B2/4 ≥ C is globally satisfied and B is non-negative, x1 > 0 regardless
of whether C is positive or negative. On the other hand, x2 < 0 when C < 0, and x2 > 0
when C > 0.

However, as previously noted, we need û∗ < 1, so the following condition:

x1 = − B

2
+

√
B2

4
− C < 1

must be satisfied for x1. According to (28) and (29), this would require Ri B < 0, so x1

is physically irrelevant. Conversely, with C > 0 and Ri B < 1/α, see (37), we come to
0 < x2 < 1, so in this case x2 is a physically relevant root.

Collecting results, we see that there is no physical solution for û∗ when Ri B > 1/α. When
Ri B ≤ 1/α, Eq. 27 provides only one physical root given by −B/2 − √

B2/4 − C . Thus,
1/α = 0.2 is the maximum value of Ri B for which a physically relevant û∗ exists within the
framework of the adopted assumptions. This solution behaviour is illustrated in Fig. 8.

References

Abramowitz M, Stegun IA (1965) Handbook of mathematical functions with formulas, graphs, and mathe-
matical tables. Dover, New York 1046 pp

Arya SPS (1972) Comment on the paper by P. A. Taylor: ‘A note on the log-linear velocity profile in stable
conditions’. Q J R Meteorol Soc 98:460–461

Baas P, Steeneveld GJ, van de Wiel BJH, Holtslag AAM (2006) Exploring self-correlation in fluxgradient
relationships for stably stratified conditions. J Atmos Sci 63:3045–3054

Basu S, Moene AF, Holtslag AAM, Steeneveld G-J, van de Wiel BJH (2008) An inconvenient “truth” about
using sensible heat flux as a surface boundary condition in models under stably stratified regimes. Acta
Geophys 56(1):88–99

123



Revisiting Surface Heat-Flux and Temperature Boundary Conditions 187

Bosveld FC (2012) Cabauw observational program on landsurface-atmosphere interaction (2000-today).
Online at http://www.knmi.nl/bosveld/experiments/documentation. Accessed 18 Feb 2014

Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface
layer. J Atmos Sci 28:181–189

Garratt JR (1992) The atmospheric boundary layer. Cambridge University Press, Cambridge 316 pp
Hicks BB (1976) Wind profile relationships from the Wangara experiment. Q J R Meteorol Soc 102:535–551
Russchenberg H, Bosveld F, Swart D, ten Brink H, de Leeuw G, Uijlenhoet R, Arbesser-Rastburg B, van

der Marel H, Ligthart LP, Boers R, Apituley A (2005) Ground-based atmospheric remote sensing in the
Netherlands: European outlook. IEICE Trans Commun 88-B(6):2252–2258

Sorbjan Z (1989) Structure of the atmospheric boundary layer. Prentice Hall, New Jersey 317 pp
Taylor PA (1971) A note on the log-linear velocity profile in stable conditions. Q J R Meteorol Soc 97:326–329
van de Wiel BJH, Moene AF, Steeneveld G-J, Hartogensis OK, Holtslag AAM (2007) Predicting the collapse

of turbulence in stably stratified boundary layers. Flow Turbul Combust 79(3):251–274
Webb EK (1970) Profile relationships: the log-linear range, and extension to strong stability. Q J R Meteorol

Soc 96:67–90
Zilitinkevich S, Esau I (2007) Similarity theory and calculation of turbulent fluxes at the surface for the stably

stratified atmospheric boundary layer. In: Baklanov A, Grisogono B (eds) Atmospheric boundary layers.
Springer, New York, pp 37–49

123

http://www.knmi.nl/bosveld/experiments/documentation

	Revisiting Surface Heat-Flux and Temperature Boundary Conditions in Models of Stably Stratified Boundary-Layer Flows
	Abstract
	1 Introduction
	2 Boundary Condition Based on Surface Flux
	2.1 Implementation of the Flux Condition
	2.2 Solutions of the Cubic Equation for Friction Velocity
	2.2.1 Analytical Solution
	2.2.2 Iterative Solution


	3 Using Temperature as a Lower Boundary Condition
	3.1 Implementation of the Temperature Condition
	3.2 Solutions for Friction Velocity and Temperature Scale
	3.2.1 Analytical Solution of Quadratic Equation for Friction Velocity
	3.2.2 Iterative Solution for Friction Velocity
	3.2.3 Analytical Solution of Quadratic Equation for Temperature Scale 


	4 Comparison with Observations
	4.1 Evaluation of the Heat-Flux Condition
	4.2 Evaluation of the Temperature Condition

	5 Summary and Conclusions
	Acknowledgments
	Appendix
	References


