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Overview

1 Lagrangian Particle Dispersion Modeling in LES
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Lagrangian Particle Dispersion Modeling in LES

•
This is a special lecture on Lagrangian particle dispersion in

LES created by Brian Bailey
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Visualizations
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Lagrangian vs Eulerian Reference Frames

Eulerian

Best for smoothly varying

scalar fields (i.e., continuum)

Governing Equation

@C

@t

+
@ujC

@xj
= D

@

2
C

@xjxj

Lagrangian

Best for discrete sources, or

when details of individual

particles are of interest

Governing Equation

dxi
dt

= ui
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Numerical solution

dx
i

dt
= u

i

x

i

(t +�t)� x
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Note

Side Note:

This form assumes particles are massless.

Could add generic velocity (say u

⇤
i

) to account
for gravitational settling, inertia, etc.

dx
i

dt
= u

i

+u

⇤
i
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Numerical solution example

xi(t+�t) = xi(t) + ui(t)�t

Consider x(0) = 0
u(x = 0) = 1, u(x = 0.5) = 2, u(x = 1) = 1.5
�t = 0.1

t x u

0 0 1

0.1 0.1 1.2

0.2 0.22 1.44

0.3 0.36 1.73

0.4 0.54 0.71
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Application to LES

What’s the problem if we want to apply

this to LES?

dx
i

dt
= u

i

= ũ

i|{z}
resolved

+ u

s,i|{z}
subgrid

We don’t know u

s,i

!
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Framework for modeling u

s,i

Could neglect it (u
s,i

= 0)

e.g.,

Pure Convection:

Gopalakrishnan, S. G., and R. Avissar, 2000: An LES study of

the impacts of land surface heterogeneity on dispersion in the

convective boundary layer. J. Atmos. Sci., 57, 352–371.

Near-Canopy Flow:

Bailey, B. N., R. Stoll, E. R. Pardyjak, and W. F. Maha↵ee,

2014: The e↵ect of canopy architecture and the structure of

turbulence on particle dispersion. Atmos. Env., 95, 480–489.
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Framework for modeling u

s,i

Modeling u

s,i

:

where should we start?

Let’s copy the RANS people.

Why? RANS is essentially LES with the grid
scale equal to the domain size....so this should be
easier.
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Framework for modeling u

s,i

Lagrangian dispersion in RANS:

dx
i

dt
= u

i|{z}
mean

+ u

i|{z}
fluctuations
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RANS models

Analogy to molecular motion (Brownian motion):
Langevin Equation

du
i

= �au
i

dt| {z }
memory

+ bd⇠
i|{z}

di↵usion

ui - molecule velocity

d⇠i - random Gaussian process with mean zero and variance dt
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Langevin Equation

Application to isotropic turbulence:
u

i

! Lagrangian particle velocity

du
i

= �au
i

dt+ bd⇠
i

How do we get a and b?
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Langevin Equation: finding b

dui = �auidt+ bd⇠i (1)

b comes directly from Kolmogorov’s second
hypothesis
Lagrangian structure function:

D(�t) = h(�w)2i = C0"�t

Provided �t is in the internal subrange (i.e., ⌧⌘ ⌧ �t ⌧ ⌧L)

Square Eq.1 and take ensemble average:

h(�w)2i = �haw2
����*⇡ 0
(�t)2i � abh���*0

w�⇠i�t+ b2h����*�t

(�⇠)2i

h(�w)2i = b2�t = C0"�t ! b = (C0")
�1/2
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Langevin Equation: finding a

dui = �auidt+ bd⇠i

Using stochastic calculus, we can solve this equation

analytically

w(t) = w(0)e�at + be�at
Z t

0
e

as
⇠(s)ds

Square this equation and take ensemble average:

hw2(t)i = hw2(0)ie�2at+h���* 0
w(0)ie�2at

Z t

0
eas⇠(s)ds+hb2e�2at

Z t

0
eas⇠(s)ds

�2
i

hw2(t)i = hw2(0)ie�2at +
b2

2a

⇥
1� e

�2at
⇤
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Langevin Equation: finding a

hw2(t)i = hw2(0)ie�2at +
b2

2a

⇥
1� e

�2at
⇤

(2)

For homogeneous and isotropic turbulence,

hw2(t)i = hw2(0)i = �

2
w (const.)

Make this substitution and evaluate Eq. 2 at t ! 1

�

2
w =

b2

2a

a =
b2

2�2
w

=
C0"

2�2
w
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Langevin Equation

Application to homogeneous isotropic turbulence

dui = �C0"

2�2
uidt+ (C0")

1/2 d⇠i

for homogeneous isotropic turbulence,

2�2

C0"
= ⌧L is the integral timescale

dui = � ui

⌧L
dt+ (C0")

1/2 d⇠i
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Langevin Equation

dw = � w

⌧L
dt

| {z }
I

+ (C0")
1/2 d⇠i

| {z }
II

I Gives correct integral timescale of ⌧L (long-time behavior)

hw(t)w(0)i
hw2(0)i = e

�t/⌧L
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Langevin Equation

dw = � w

⌧L
dt

| {z }
I

+ (C0")
1/2 d⇠i

| {z }
II

I Gives correct integral timescale of ⌧L (long-time behavior)

II Makes velocity consistent with Kolmogorov’s second

hypothesis (short-time behavior)
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Langevin Equation

Inhomogeneous Turbulence

(in 1D)

@k

@z

6= 0 implies a

mean flux!
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Well-Mixed Condition

Well-Mixed Condition1 or Thermodynamic
Constraint2

An initially well-mixed (uniform) particle
distribution must remain well-mixed for all time
in the absence of sources or sinks (second law of
thermodynamics).

1
Thomson, D. J., 1987: Criteria for the selection of stochastic

models of particle trajectories in turbulent flows. J. Fluid

Mech., 180, 529–556.

2
Pope, S. B., 1987: Consistency conditions for random walk

models of turbulent dispersion. Phys. Fluids, 30, 2374–2379.
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Langevin Equation: Inhomogeneous

Turbulence

du
i

= a0dt|{z}
drift

correction

+a1uidt| {z }
memory

+ bd⇠
i|{z}

di↵usion
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Langevin Equation: Inhomogeneous

Turbulence

How to determine unknown coe�cients?

Fokker-Planck Equation

@P

E

@t

+
@u

i

P

E

@x

i

= �@(aP
E

)

@u

i

+
1

2

@

2(b2P
E

)

@u

2
i

Advection-di↵usion for Eulerian velocity PDF –
Eulerian equivalent of Langevin equation.
For derivation see:
van Kampen, N.G.; 2nd ed., 1981. Stochastic Processes in Physics and

Chemistry. North-Holland Pub. Co., 465 pp.
Rodean, H. C., 1996: Stochastic Lagrangian Models of Turbulent Di↵usion.
Amer. Meteor. Soc., Boston, MA, 84 pp.
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Langevin Equation: Inhomogeneous

Turbulence

Solution in one dimension (unique):

dw =
1

2

@�

2
w

@z

dt
| {z }

I

�

C0"

2�2
w
� w

2�2
w

@�

2
w

@z

�
wdt

| {z }
II

+ (C0")
1/2 d⇠i

| {z }
III

I Drift correction term

II Memory term

III Di↵usion term
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Langevin Equation: Non-Uniqueness Problem

Solution in three dimensions: method for
determining Langevin coe�cients is
non-unique!

Thomson’s (1987) ‘simplest solution’ (weak solution):

dui =
1

2

@Ril

@xl
dt� C0"

2
R

�1
ik uk +

1

2

dRil

dt
R

�1
lj ujdt+ (C0")

1/2 d⇠i

Rij is the Reynolds stress tensor and R

�1
ij is its inverse

We can add any arbitrary rotation vector to the drift term and

we’ll still satisfy the well-mixed condition.
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Langevin Equation: Rogue Trajectory

Problem

dw =
1

2

@�

2
w

@z

dt�

C0"

2�2
w
� w

2�2
w

@�

2
w

@z

�
wdt+ (C0")

1/2 d⇠i

It is possible for our Langevin equation to
become unstable and get cases where u

i

! 1

ROGUE TRAJECTORY!

SSSSH! This is our dirty little secret.
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2

@�

2
w

@z

dt�

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2�2
w
� w

2�2
w

@�

2
w

@z

�
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1/2 d⇠i
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Rogue Trajectories

What can we do about rogue trajectories?
•
ad hoc constraints (violates well-mixed condition)

•
Yee and Wilson (2007): semi-analytical scheme

•
Postma et al. (2012): refine timestep

•
Bailey et al. (2014): semi-implicit scheme
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Langevin Equation: LES

Application to LES

dws =
1

2

@�

2
s

@z

dt�

C0"s

2�2
s

� ws

2�2
s

@�

2
s

@z

�
wsdt+ (C0"s)

1/2 d⇠⇤i

Replace ‘fluctuating’ quantities with subgrid quantities

•
w ! ws

•
�

2 ! �

2
s

•
" ! "s (for � in inertial subrange, " ⇡ "s = �S̃ij⌧ij)

⇤NOTE: this form assumes horizontal homogeneity and that ⌧ij is
isotropic. See Weil et al. (2004) for fully general version.
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Langevin Equation: LES

e.g.,

•
Kemp, J. R. and Thomson, D. J. (1996). Dispersion in

stable boundary layers using large-eddy simulation. Atmos.

Env. 30:2911-2923.

•
Weil, J. C. and Sullivan, P. P. and Patton, E. G. (2004).

The use of large-eddy simulations in Lagrangian particle

dispersion models. J. Atmos. Sci. 61:2877-2997.

•
Vinkovic, I., Aguirre, C., and Simoëns, S. (2006).

Large-eddy simulation and Lagrangian stochastic modeling

of passive scalar dispersion in a turbulent boundary layer.

J. Turb. 7:N30.

End Current Literature
(this is state-of-the-art)
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LES Lagrangian Energy Spectra

No SGS model (usi = 0)

SGS model
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LES Lagrangian Energy Spectra

Where might all this energy be coming from?

1 Langevin equation is inappropriate?

2 Langevin coe�cients are incorrect?

3 Rogue trajectories?
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Rogue Trajectories

Where do ROGUE TRAJECTORIES come from?

Homogeneous version (1D RANS):

dw = � C0"

2�2|{z}
1/⌧L

wdt+ (C0")
1/2 d⇠

Inhomogeneous version (1D RANS):

dw =
1

2

@�

2

@z| {z }
drift

correction

�

C0"

2�2
� w

2�2

@�

2

@z

�

| {z }
1/⌧L

wdt+(C0")
1/2 d⇠
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Rogue Trajectories

Where do ROGUE TRAJECTORIES come from?

Homogeneous version (1D RANS):

dw = � C0"

2�2|{z}
1/⌧L

wdt+ (C0")
1/2 d⇠

Inhomogeneous version (1D RANS):

dw =
1

2

@�

2

@z| {z }
drift

correction

�

C0"

2�2
� w

2�2

@�

2

@z

�

| {z }
1/⌧L

wdt+(C0")
1/2 d⇠
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Rogue Trajectories

Where do ROGUE TRAJECTORIES come from?
Memory term:

�

C0"

2�2
s

� w

2�2
w

@�

2
w

@z

�

| {z }
1

⌧

=
1

⌧1
�
1

⌧2

wdt

• ⌧1: Local decorrelation time scale (isotropic)

• ⌧2: Heterogeneity decorrelation time scale
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Rogue Trajectories

�

C0"

2�2
w

� w

2�2
w

@�

2
w

@z

�

| {z }
1

⌧

wdt

What if ⌧ turns out to be NEGATIVE? Or

C0" < w

@�

2
w

@z

Recall our autocorrelation function:

hw(t)w(0)i
hw2(0)i = e

�t/⌧
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Rogue Trajectories

�

C0"

2�2
w

� w

2�2
w

@�

2
w

@z

�

| {z }
1

⌧

wdt

What could cause ⌧ to be NEGATIVE?

�t not in the inertial subrange i.e., ⌧L . �t

Thus

2�2
w

C0"
is not the proper decorrelation timescale!

In this case, it is the problem not the discretization scheme

that is unstable!!!!
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Rogue Trajectories

Generalizing to 3D (assume ⌧

ij

is isotropic)

dus,i =
1

2

@�

2
s

@xi
dt�

✓
C0"s

2�2
s

� 1

2�2
s

d�2
s

dt

◆

| {z }
1/⌧

us,idt+ (C0"s)
1/2 d⇠i

Unstable if

C0"s <
d�2

s

dt
(this means ⌧ is negative)
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Rogue Trajectories
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1

2

@�

2
s

@xi
dt�

✓
C0"s

2�2
s

� 1

2�2
s

d�2
s

dt

◆

| {z }
1/⌧
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1/2 d⇠i
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d�2
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dt
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Rogue Trajectories

Generalizing to 3D (anisotropic ⌧

ij

)

dus,i =
1

2

@⌧il

@xl
dt�C0"s

2
�ikus,k+

1

2

d⌧il
dt

�ljus,jdt+(C0"s)
1/2 d⇠i

Unstable if
G

ij

= �

ij

+ �t

2

�
�C0"s�ij

+ d⌧il
dt �lj

�

|�
max

| > 1 (�max is largest eigenvalue of Gij)
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Rogue Trajectories

Generalizing to 3D (anisotropic ⌧

ij

)

dus,i =
1

2

@⌧il

@xl
dt�C0"s

2
�ikus,k+

1

2

d⌧il
dt

�ljus,jdt+(C0"s)
1/2 d⇠i

Unstable if
G

ij

= �

ij

+ �t

2

�
�C0"s�ij

+ d⌧il
dt �lj

�

|�
max

| > 1 (�max is largest eigenvalue of Gij)
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LES: Rogue Trajectory Problem

Possible Solution: Reduce �t

Sometimes not computationally feasible.
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LES: Rogue Trajectory Problem

Possible Solution: ad-hoc intervention

Violates well-mixed condition.
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LES: Rogue Trajectory Problem

Possible Solution: Use mean quantities to
calculate memory term

dus,i =
1

2

@�

2
s

@xi
dt�

"
C0"s

2�2
s

� us,j

2�2
s

@�

2
s

@xj

#
us,idt+ (C0"s)

1/2 d⇠i
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LES Energy Spectra
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LES: Rogue Trajectory Problem

Possible Solution: Directly calculate ⌧

L,s

We use Lagrangian scale-dependent SGS momentum model,

which gives ⌧Ls

See:

Stoll, R., and Porté-Agel, F. (2006). Dynamic Subgrid-Scale Models for
Momentum and Scalar Fluxes in Large-Eddy Simulations of Neutrally
Stratified Atmospheric Boundary Layers Over Heterogeneous Terrain.
Water Resour. Res. 42:W01409.

dus,i =
1

2

@�

2
s

@xi
dt� us,i

⌧Ls
dt+ (C0"s)

1/2 d⇠i

this form is unconditionally stable!

bbailey@eng.utah.edu


	Lagrangian Particle Dispersion Modeling in LES

