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Surface/Wall Boundary Conditions

• In many flows of interest, a solid wall (or surface) is present in
some way

• It can be very costly to fully resolve the effects of the wall and
implement “natural” no-slip BCs

• Chapman (1979) performed the first analysis of grid-resolution
requirements for LES of wall-bounded flows
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Surface/Wall Boundary Conditions

We can divide the flow into 2 regions:

• Outer layer: viscosity isn’t as important and grid resolution
requirements are more or less (not including SGS model
errors) independent of Re

• Inner layer: near wall region where viscosity plays an
important role
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Surface/Wall Boundary Conditions

Inner layer:

• Structures (“eddies”) in the inner-layer are approximately
constant when non-dimensionalized with viscous length scales

• To resolve these motions we need grid spacing of

∆x+ ∼ 100 (x+ = xiuτ/ν)

∆z+ ∼ 20

where uτ =

√
τw

ρ
is the friction velocity
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Requirements to Resolve the Wall

• Using these ∆x+ and ∆z+ scales, we can show that

Nx ×Ny ×Nz ∝ Re1.8L

where ReL is the integral scale Reynolds number – that is the
Reynolds number that is based on the integral length scale of
turbulence

• The integral length scale is the characteristic length scale of
the larger eddies in a turbulent flow

• In order to resolve the viscous sublayer (to enforce the use of
the no-slip condition), the number of required grid points
scales as Re1.8L

• Conversely, Chapman (1979) showed that the number of grid
points required to resolve the outer layer scales as Re0.4L
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Requirements to Resolve the Wall

• For a BL with ReL = 106 (moderate-low Re), 99% of our
grid points must be in the near wall region

• This region is only 10% of the entire boundary layer!
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Approximate Wall-Boundary Conditions

• How do we handle this problem for high-Re boundary layers?

• Answer: with approximate wall-boundary conditions
• We pick our first grid-point to be sufficiently far from the wall

so it lies in the outer layer
• This has the potential to make our simulations only

weakly dependent on Re and grid resolution (if we don’t
consider model errors!)

• The goal is to create a model that calculates the wall shear
stress as a function of the resolved velocity at the lowest
grid level

• All of the dynamics of the inner layer must be accounted
for with the wall model
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Approximate Wall-Boundary Conditions

From Piomelli and Balaras (2002)
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Approximate Wall-Boundary Conditions

Typical high-Re wall models

• Many wall models use RANS-like approximations

• In high-Re BLs, the most common models are 0th-order RANS
(i.e. similarity theory)

• ũi and τw are assumed to be related by the well known log-law

• For a rough-wall:

U(z) =
uτ
κ

[
ln

(
z

zo

)
−ΨM

( z
L

)]
where U(z) is the mean velocity, uτ =

√
−τw is friction

velocity, z is the height of the first model level, zo is the
surface roughness, and ΨM is the stability correction function
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Approximate Wall-Boundary Conditions

Typical high-Re wall models

• Schumann (1975) introduced the
of this class of models where:

τi3,w(x, y, t) = 〈τw〉
ũi(~x, t)

U(z)
for i = 1, 2(x, y)

• 〈τw〉 was calculated from the mean pressure gradient
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Approximate Wall-Boundary Conditions

Typical high-Re wall models

• Grötzbach (1987) modified this by using the log-law to
calculate the average shear stress resulting in the flowing
model

τi3,w(x, y, t) = −
[

U(z)κ

ln(z/zo)−ΨM

] [
ũi(~x, t)κ

ln(z/zo)−ΨM

]
• This model has the advantage over Schumann’s because it

allows the total mass flux to change in time during a
simulation

• Both models assume that τw ∼ ũi
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Accounting for Flow Average Flow Structures

• Piomelli et al. (1989) altered the models of Schumann and
Grötzbach (SG) in an attempt to account for the structure of
the flow field

• Experimental and numerical studies have demonstrated that
coherent structures exist in the BL and that they are inclined
at oblique angles to the wall (e.g. Brown and Thomas 1977)
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Accounting for Flow Average Flow Structures

• The inclination of these structures can be measured by looking
at the correlation between shear stress and velocity in a BL

• With the average inclination given by the lag to max
correlation with height

From Marusic et al (2001)
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Accounting for Flow Average Flow Structures

• Another example taken from an idealized LLJ simulation
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Accounting for Flow Average Flow Structures

• Piomelli et al. (1989) took this into account by shifting the
SG model downstream

τi3,w(x, y, t) = 〈τw〉
ũi(x+ δd, y, z, t)

U(Z)

where δ = z cot(γ) is the displacement and γ ≈ 13◦ for
high-Re flows
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Approximate Wall-Boundary Conditions

a priori analysis

• Analysis of hotwire data from
Marusic et al (2001)

• Found low correlation between
SG model and measured data

• Figures show: time series of SG
model vs. data (a), 2pt
correlations from the SGS
model (b) and shear stress
spectra from SG model (c) from
Marusic et al (2001)
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Approximate Wall-Boundary Conditions

a priori analysis

• Based on their analysis, Marusic et al (2001) proposed a new
model

τi3,w(x, y, t) = 〈τw〉−αuτ [ũi(x+ ∆, y, z, t)− 〈ũi(x+ ∆, y, z, t)〉]

• Basic motivation: low frequency filtered velocity spectra will
collapse under outer-flow scaling and that the filtered shear
stress spectra should follow the filtered velocity spectra

• Based on this, α should be a constant under a variety of
conditions
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Approximate Wall-Boundary Conditions

a priori analysis

• Following Stoll and Porté-Agel (2006) we can compare this to
the SG model

τi3,w(x, y, t) = 〈τw〉
ũi(x+ ∆, y, z, t)

Ui(z)

= 〈τw〉+
〈τw〉
Ui(z)

[ũi(x+ ∆, y, z, t)− Ui(z)]

= 〈τw〉 − αequτ [ũi(x+ ∆, y, z, t)− Ui(z)]

where

αeq =
〈τw〉

uτUi(z)
=

κ

ln(z/zo)
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Approximate Wall-Boundary Conditions

a priori analysis
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Local and Higher-order RANS Approximations

The local log-law for ABL flows

• In the ABL or general flows where no directions of
homogeneity exist for determining 〈τw〉, the log-law is often
used directly to calculate the local shear stress by

τi3,w(x, y, t) = −
[

ũr(~x, t)κ

ln(z/zo)−ΨM

]2 [ ũi(~x, t)
ũr(~x, t)

]
where

ũr =
√
ũ2x + ũ2y

• The formulation assumes τw ∼ ũ2i and does not preserve 〈τw〉
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Local and Higher-order RANS Approximations

2-layer models (higher-order RANS):

• Balaras et al., (AIAA, 1996) used a higher order RANS
closure based on the thin-BL equations

∂ũi
∂t

+
∂

∂xi
(ũnũi) = − p̃

∂xi
+

∂

∂xn

[
(ν + νT )

∂ũi
∂xn

]
where i = 1, 2, un is the wall normal component found from
continuity and νT is an eddy-viscosity parameterized with an
algebraic model. The equations are solved to the wall.
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Local and Higher-order RANS Approximations

2-layer models (higher-order RANS):

From Piomelli and Balaras (2002)
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Even more variations

The filtered local log-law for ABL flows:

• Bou-Zeid et al. proposed to use the filtered velocity to find
the surface stress

τi3,w(x, y, t) =

[ ¯̃ui(x+ ∆, y, z, t)κ

log(z/zo)

]2
ũi(x+ ∆, y, z, t)
¯̃ui(x+ ∆, y, z, t)

• Poimelli et al. (1989) – and others – suggested using the wall
normal velocity

τi3,w(x, y, t) = 〈τw〉 − C〈τw〉1/2w̃(x+ ∆, y, t)

• Hultmark et al. (2013) suggested using velocity variance
scaling to develop a local correction for the problem that the
instantaneous log-law above won’t preserve the mean shear
stress value
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