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@ Stochastic Burgers Equation



Stochastic Burgers Equation

e Originally conceived by Dutch scientist J.M. Burgers in the
1930s

e One of the first attempts to arrive at the statistical theory of
turbulent fluid motion
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This represents a very simplified model that describes the
interaction of non-linear inertial terms and dissipation in the
motion of a fluid

0



Stochastic Burgers Equation

The original Burgers equation shares a lot in common with the N-S
equations

e advective nonlinearity
e diffusion (can compute Re)

e invariance and conservation laws, such as translation in space
and time



Stochastic Burgers Equation

e There were downsides discovered

e The equation can be integrated explicitly — meaning that it
does not share the N-S equations sensitivity to small changes
in initial conditions in presence of boundaries, forcing, and at
high Re

e Thus Burgers equation is not an ideal model for the chaotic
nature of turbulence

e |t was also found that shock waves form in the limit of
vanishing viscosity



Stochastic Burgers Equation

e The use of Burgers with a forcing term has been popular
because the original model is an incomplete description of a
turbulent system

e The forcing term can account for the neglected effects

e For instance, one may perturb the system with a stochastic
process that is stationary in time and space (this preserves
translational invariance)

e One example is white noise - which preserves Galilean
invariance



Stochastic Burgers Equation

e Project #1 is based on a useful model of the Navier-Stokes
equations: the 1D Stochastic Burgers Equation
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e This analog has been found to be a useful one for the study of
turbulent like nonlinear systems (e.g., Basu, 2009 and

references contained within).

e Although 1D, this equation has some of the most important
characteristics of a turbulent flow — making it a good model
case
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Stochastic Burgers Equabasution

e In short, the Burgers system has been popular because it
allowed one to gain insight into turbulence structure before
having to generalize for the fully-3D case

e It shares many characteristics of 3D turbulence, such as
nonlinearity, energy spectrum, intermittent energy dissipation

e The system is also super-cheap computationally



Stochastic Burgers Equation
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e In the above equation, the “new"” term is n — which is called

the stochastic term

e 1n(x,t) should be white noise in time, but spatially correlated
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Stochastic Burgers Equation

e Here we use

n(e,t) = s {72 (k) )

where

Dy = noise amplitude
At = time step
5§ ! = inverse Fourier transform
f = Gaussian random noise with mean = 0 and
standard deviation = V'N (where N is # of points)
3 = spectral slope of the noise (taken as —3/4 here)
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Stochastic Burgers Equation

Many solutions exist for stochastic Burgers equation

Here we follow Basu (2009) — Fourier collocation

Basically, use Fourier methods but advance time in real space
(compare to Galerkin)

To do this, the main numerical methods we need to know are
how to calculate derivatives and how to advance time

11 /17



Fourier Derivatives

e Mathematically the discrete Fourier transform pair is (see also
Lecture 3 as a supplement)
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recall
eflkmxj — COS(kmeTj) + ZSln(kmx]) @
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Fourier Derivatives

e How is this used numerically to calculate a derivative?

e A Fourier series can be used to interpolate f(z;) at any point

x in the flow and at any time ¢

e If we differentiate the Fourier representation of f(z;) (Eq. 1)

with respect to x
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Fourier Derivatives

e If we compare this to Eq. (1), we notice that we have
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Fourier Derivatives

Procedurally, we can use this to find %‘ ~given f(z;) as follows:
j
e calculate f(ky,) by the forward transform (Eq. 2)
e multiply by ik, to get g(ky,), and then
e perform a backward (inverse) transform (Eq. 1) to get %fj A
j
The method easily generalizes to any order derivative
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Fourier Derivatives

Although Fourier methods are quite attractive due to their high
accuracy and near-exact representation of derivatives, they have a
few important limitations

e f(xj) must be continuously differentiable
e f(xj) must be periodic

e grid spacing must be uniform
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Time Advancement

e Time advancement in this code is accomplished using a
2"d_order Adams-Bashforth scheme

e This is a basic extension of the Euler method — multipoint (in
time), with the idea to fit a polynomial of desired order (e.g.,
2") through 3 points in time to get

A
¢n+1 — ¢n + Tt [3f(tn7¢n) _ f(tn—l,¢n—1>]

e For specifics on how these things are implemented, see the
Matlab code on the course website or on Canvas
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