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Overview

1 Stochastic Burgers Equation
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Stochastic Burgers Equation

• Originally conceived by Dutch scientist J.M. Burgers in the
1930s

• One of the first attempts to arrive at the statistical theory of
turbulent fluid motion

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2

This represents a very simplified model that describes the
interaction of non-linear inertial terms and dissipation in the
motion of a fluid
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Stochastic Burgers Equation

The original Burgers equation shares a lot in common with the N-S
equations

• advective nonlinearity

• diffusion (can compute Re)

• invariance and conservation laws, such as translation in space
and time

4 / 17



Stochastic Burgers Equation

• There were downsides discovered

• The equation can be integrated explicitly – meaning that it
does not share the N-S equations sensitivity to small changes
in initial conditions in presence of boundaries, forcing, and at
high Re

• Thus Burgers equation is not an ideal model for the chaotic
nature of turbulence

• It was also found that shock waves form in the limit of
vanishing viscosity
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Stochastic Burgers Equation

• The use of Burgers with a forcing term has been popular
because the original model is an incomplete description of a
turbulent system

• The forcing term can account for the neglected effects

• For instance, one may perturb the system with a stochastic
process that is stationary in time and space (this preserves
translational invariance)

• One example is white noise - which preserves Galilean
invariance
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Stochastic Burgers Equation

• Project #1 is based on a useful model of the Navier-Stokes
equations: the 1D Stochastic Burgers Equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ η(x, t)

• This analog has been found to be a useful one for the study of
turbulent like nonlinear systems (e.g., Basu, 2009 and
references contained within).

• Although 1D, this equation has some of the most important
characteristics of a turbulent flow – making it a good model
case
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Stochastic Burgers Equabasution

• In short, the Burgers system has been popular because it
allowed one to gain insight into turbulence structure before
having to generalize for the fully-3D case

• It shares many characteristics of 3D turbulence, such as
nonlinearity, energy spectrum, intermittent energy dissipation

• The system is also super-cheap computationally
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Stochastic Burgers Equation

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
+ η(x, t)

• In the above equation, the “new” term is η – which is called
the stochastic term

• η(x, t) should be white noise in time, but spatially correlated
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Stochastic Burgers Equation

• Here we use

η(x, t) =

√
2D0

∆t
F−1

{
|k|β/2f̂(k)

}
where

D0 = noise amplitude

∆t = time step

F−1 = inverse Fourier transform

f = Gaussian random noise with mean = 0 and

standard deviation =
√
N (where N is # of points)

β = spectral slope of the noise (taken as −3/4 here)
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Stochastic Burgers Equation

• Many solutions exist for stochastic Burgers equation

• Here we follow Basu (2009) – Fourier collocation

• Basically, use Fourier methods but advance time in real space
(compare to Galerkin)

• To do this, the main numerical methods we need to know are
how to calculate derivatives and how to advance time
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Fourier Derivatives

• Mathematically the discrete Fourier transform pair is (see also
Lecture 3 as a supplement)

f(xj) =

N/2−1∑
m=−N/2

f̂(km)eikmxj → backward transform (1)

f̂(km)︸ ︷︷ ︸
Fourier
coeffs

=
1

N

N∑
j=1

f(xj)e
−ikmxj → forward transform (2)

where

km =
2πm

N∆x
→ wave number (wave period)

recall
e−ikmxj = cos(kmxj) + i sin(kmxj)
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Fourier Derivatives

• How is this used numerically to calculate a derivative?

• A Fourier series can be used to interpolate f(xj) at any point
x in the flow and at any time t

• If we differentiate the Fourier representation of f(xj) (Eq. 1)
with respect to x

∂f

∂x
=

∂

∂x

 N/2−1∑
m=−N/2

f̂(km)eikmxj


=

N/2−1∑
m=−N/2

f̂(km)
∂eikmxj

∂x

=

N/2−1∑
m=−N/2

ikmf̂(km)eikmxj
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Fourier Derivatives

• If we compare this to Eq. (1), we notice that we have

∂f

∂x
= g =

N/2−1∑
m=−N/2

ikmf̂(km)︸ ︷︷ ︸
ĝ(km)

eikmxj

=

N/2−1∑
m=−N/2

ĝ(km)eikmxj
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Fourier Derivatives

Procedurally, we can use this to find ∂f
∂xj

∣∣∣
j

given f(xj) as follows:

• calculate f̂(km) by the forward transform (Eq. 2)

• multiply by ikm to get ĝ(km), and then

• perform a backward (inverse) transform (Eq. 1) to get ∂f
∂xj

∣∣∣
j

The method easily generalizes to any order derivative
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Fourier Derivatives

Although Fourier methods are quite attractive due to their high
accuracy and near-exact representation of derivatives, they have a
few important limitations

• f(xj) must be continuously differentiable

• f(xj) must be periodic

• grid spacing must be uniform
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Time Advancement

• Time advancement in this code is accomplished using a
2nd-order Adams-Bashforth scheme

• This is a basic extension of the Euler method – multipoint (in
time), with the idea to fit a polynomial of desired order (e.g.,
2nd) through 3 points in time to get

φn+1 = φn +
∆t

2

[
3f(tn, φn)− f(tn−1, φn−1)

]
• For specifics on how these things are implemented, see the

Matlab code on the course website or on Canvas
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