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Overview

@ Recap of filters
@ Deriving the incompressible equations of motion
® Non-dimensional incompressible equations of motion

O Filtering the incompressible equations of motion



Decomposition of turbulence for real filters

e The LES filter can be used to decompose the velocity field
into resolved and subfilter scale (SFS) components:

(ﬁ(f, t) = (;S(f, t) + ¢/(fv t)
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N .
total resolved subfilter

e We can use our filtered DNS fields to look at how the choice
of our filter kernel affects this separation in wavespace.
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Decomposition of turbulence for real filters

Spectral cutoff filter gaussian filter
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e The Gaussian (or box) filter does not have as compact of
support in wavespace as the cutoff filter.

e This results in attenuation of energy at scales larger than the
filter scale.

e The scales affected by the attenuation are referred to as @
resolved SFSs.
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Deriving the incompressible equations of motion

e We want to apply the filters to the N-S equations of motion.

e First, let's start with the fully compressible form of the
equations of motion and derive the incompressible
counterparts.

e Next, we will apply the filtering operation to the
incompressible equations of motion.

o Lastly, we will relate the final forms of the equations to the
conceptual idea of LES.
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Conservation of mass

We start with the full equation for the conservation of mass:

op | Opui)
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We apply the incompressibility condition — that a fluid parcel’s
density is constant (p = p,):

Finally, we divide by p, to arrive at the conservation of mass
equation for incompressible flows:
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Conservation of momentum

We start with the full equation for the conservation of momentum:
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Apply the incompressibility condition:
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Conservation of momentum

Recall that

1 /0u; Ou;
v=p/po  and Sij=2<3$.+a;)
j )

To arrive at:
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And we can apply the incompressible mass conservation equation
and distribute the 9/0z; in the first term on the right side:
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Conservation of momentum

We can rearrange and again apply the mass continuity equation:
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and we arrive at the conservation of momentum equation for
incompressible flows:
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Conservation of a general scalar

We start with the full equation for the conservation of momentum:

d(pd)  O(pu) 0 00
ot aﬂfj aﬂfj
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Apply the incompressibility condition:
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Divide by p, and we arrive at the conservation of a general scalar
equation for incompressible flows:
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Non-dimensional incompressible equations of motion

Recall that we can non-dimensionalize these equations by using

representative scales, U and /:
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where the * denotes a non-dimensionalized term.

11/22



Non-dimensional conservation of mass

Start with the incompressible conservation of mass and apply the

non-dimensional relationships:

ou;  O(uU) _ZUZau;‘ _0
ox;  O(xrl) /L oxr

divide by U/ to arrive at the non-dimensional incompressible

conservation of mass:
ou;
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Non-dimensional conservation of momentum

Start with the incompressible conservation of momentum and
apply the non-dimensional relationships:
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Recall that Re=U//v = v = U{/Re:
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divide by U? /¢ to arrive at the non-dimensional incompressible

conservation of momentum:
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Non-dimensional conservation of a general scalar

Start with the incompressible conservation of a general scalar and
apply the non-dimensional relationships:
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Recall that Sc= v /vy = vy = v/Sc= U¥/(Sc Re):
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divide by U6, /¢ to arrive at the non-dimensional incompressible
conservation of a general scalar:
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Filtering the incompressible equations of motion

Next we apply the filter to the non-dimensional incompressible
equations of motion, recalling that the filters hold the following

properties:
a=a
b+C=0+¢
9 _ 06
or  Ox

That is: a constant is unaffected by the filter, the filtered sum of
two variables is the sum of the filtered variables, and the filter is
commutative for differentiation.

0
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Filtered conservation of mass

Start with the non-dimensional incompressible conservation of
mass and apply the filter (where the * notation is dropped for
convenience):
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This is the non-dimensional form of the filtered conservation of
mass equation for incompressible flows.

0
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Filtered conservation of momentum

Start with the non-dimensional incompressible conservation of
momentum and apply the filter (where the * notation is dropped
for convenience):

P
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We have a problem because u;u; is the filtered product of two
non-filtered variables. We do not have knowledge of these variables
and thus the term cannot be solved a priori. @
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Filtered conservation of momentum

Following Leonard (1974), we can decompose the unknown term as
wuy = Uity + T
where 7/ is the subfilter scale (SFS) stress tensor.

We can substitute this back into the previous equation to arrive at
the non-dimensional form of the filtered conservation of
momentum equation for incompressible flows:

81]1' + a(ﬂl’a]) o _@ + iaz’l]i _ 87‘;}
ot Ox;j N 0r; Re (‘31‘? Ox;j

+ F;

Welcome to the closure problem because T[j is unknown — thus the
equation is not closed. The SFS stress tensor must be modeled. @
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Filtered conservation of a general scalar

Start with the non-dimensional incompressible conservation of a
general scalar and apply the filter (where the * notation is dropped
for convenience):
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Again, we have a problem because uAZJH is the filtered product of
two non-filtered variables. We do not have knowledge of these
variables and thus the term cannot be solved a priori. @
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Filtered conservation of a general scalar

We again decompose the unknown term as
uif = 6 + qa
where ¢; is the SFS flux.

We can substitute this back into the previous equation to arrive at
the non-dimensional form of the filtered conservation of
momentum equation for incompressible flows:

0 o(wh) 1 @_aq;JrQ
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Similarly, ¢ is unknown — thus the equation is not closed. The

SFS flux must be modeled. @

20 /22



LES filtered equations for incompressible flows

Mass
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Up next, turbulence kinetic energy

e We've talked about variance (or energy) when discussing
turbulence and filtering.

e When we examined the application of the LES filter at scale
A we saw the effect of the filter on the distribution of energy
with scale.

e A natural way to extend our examination of scale separation
and energy is to look at the evolution of the filtered variance
or turbulence kinetic energy.
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