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Recap

• The Navier-Stokes equations describe the motion of fluids,
through the conservation of mass, momentum, and energy.

• The equations are nonlinear, which complicates our ability to
analyze and simulate fluid flows.

• Why? The nonlinearity creates a continuous spectrum of
different flow features.
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Recap of N-S equations

• This spectrum contains very large integral scales and very
small dissipation scales.

• The simultaneous representation of both large and small
scales makes for a very large computational problem.

• Current computational resources limit the amount of small
features that can be accurately simulated.
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Recap

• The complexity of a flow can be reduced to alleviate this
computation bottleneck.

• This technique is aimed at capturing the primary features of a
flow with sufficient detail and accepting that the full turbulent
solution may not be obtained perfectly.

• This sets the stage for LES as a tool to solve for the
“reduced” flow.

• Before diving into LES, we will go over the description of the
DNS, LES, and RANS techniques.
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Approximating the equations of motion

• Numerical studies require that the equations of motion for a
(compressible, incompressible, Boussinesq) fluid must be
approximated on a computational grid using discrete physical
points or basis functions.

• Three basic methodologies are prevalent in turbulence
application and research:

• Direct Numerical Simulation (DNS)
• Large-Eddy Simulation (LES)
• Reynolds-Averaged Navier-Stokes (RANS)
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Approximating the equations of motion

Direct Numerical Simulation

• The DNS approach focuses on finding a numerically-accurate
solution to the N-S equations (i.e., resolve all eddies).

• As we saw last class, it is an expensive operation.
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Approximating the equations of motion

Large-Eddy Simulation

• The LES approach emphasizes capturing those primary flow
features that are larger than a prescribed filter width (∆) (i.e.,
resolve larger-eddies and model smaller “universal” ones).

• Since ∆ is prescribed, one has control over the required
resolution and computational effort.

• The LES approach introduces the closure problem and reduces
the information of the resolved flow.

• Has primarily trended toward engineering applications, but its
use in atmospheric science is increasing.
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Approximating the equations of motion

Reynolds-Averaged Navier-Stokes

• The RANS approach focuses on a statistical description of the
basic fluctuation-correlations (i.e., model ensemble statistics).

• Can be used to study flows with realistic complexity.
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Approximating the equations of motion
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Pros and cons of each method

Direct Numerical Simulation

• Pros
• Does not require the use of a turbulence model
• Accuracy is only limited by computational capabilities since

errors are generally only due to sensitivity to perturbations or
accumulated round-off errors.

• All aspects of the flow in time and space are available, which is
not possible for experiments (i.e., 3D velocity and scalar fields).
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Pros and cons of each method

Direct Numerical Simulation

• Cons
• Restricted to low-Re flows with relatively simple geometries.
• Very high memory and computational time costs.
• Typically the “largest possible” number of grid points is used

without proper convergence evaluation (i.e., does not allow for
systematic variation of numerical and physical parameters)
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Pros and cons of each method

Large-Eddy Simulation

• Pros
• Only small scales require require modeling. Since the small

scales are likely insensitive to specifics of the flow, these
models can be rather simple and “universal”.

• Much cheaper computational cost than DNS.
• Unsteady predictions of the flow are made, which implies that

information about extreme events are available over some
period of time.

• Properly designed LES should allow for Re⇒∞.
• In principle, we can gain as much accuracy as desired by

refining our numerical grid.
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Pros and cons of each method

Large-Eddy Simulation

• Cons
• Basic assumption (small scales are universal) requires

independence of small (unresolved) scales from boundary
conditions (especially important for flow geometry). This is a
problem for boundary layers, where proximity to the wall
defines some of the smallest scales of the flow – which
necessitates explicit modeling of the region.

• Still very costly for many practical engineering applications.
• Filtering and turbulence theory of small scales still needs

development for complex geometry and highly anisotropic
flows.
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Pros and cons of each method

Reynolds-Averaged Navier-Stokes

• Pros
• Low computational cost (can obtain mean statistics in a short

time).
• Can be used for highly complex flow geometries.
• When combined with empirical information, can be highly

useful for engineering applications and to parameterize
near-wall behavior.
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Pros and cons of each method

Reynolds-Averaged Navier-Stokes

• Cons
• Only steady flow phenomena can be explored with full

advantage of computational reduction.
• Models are not universal since dynamic consequences of all

scales must be represented. Usually a pragmatic “tuning” of
model parameters is required for specific applications.

• Most accurate turbulence models give rise to highly complex
equations sets, which can lead to numerical formulation and
convergence issues.

16 / 48



Relationship between each method

• DNS delivers the most accurate data (in general).

• DNS can be used to validate and analyze aspects of LES,
such as numerical methods and subgrid model.

• LES provides a more complete picture of turbulent flow than
RANS.

• RANS can be validated against LES data (where LES is used
to obtain statistical information about the flow).
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Relationship between each method
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Scale separation

• So far, we have discussed LES very generically:
• Resolve only the largest energy-containing scales.
• Model the small “universal” scales.

• We will now formalize the idea of scale separation
mathematically to show how to deal with the equations of
motion and derive subgrid models.
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Scale separation

• How do we accomplish scale separation?
• A low-pass filter

• What is meant by low-pass?
• A low-pass filter passes over signals with a frequency

(wavenumber) lower than a certain cutoff frequency
(wavenumber) and only smooths signals with a frequency
(wavenumber) higher than the cutoff value.

• Our goal for the low-pass filter:
• Attenuate (smooth) high frequency (high wavenumber/small

scale) turbulence features that are smaller than a prescribed
characteristic scale ∆ while leaving low-frequency (low
wavenumber/large scale) motions unchanged.
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Filtering

Filtering (Sagaut Chapter 2, Pope Chapter 13.2)

• The formal (mathematical) LES filter is a convolution filter
defined for a quantity φ(~x, t) in physical space as:

φ̃(~x, t) =

∫ ∞
−∞

φ(~x− ~ζ, t)G(~ζ)d~ζ

• G ≡ the convolution kernel of the chosen filter.

• G is associated with the characteristic cutoff scale ∆ (also
called the filter width).
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Convolution

• So, we have the convolution filter

φ̃(~x, t) =

∫ ∞
−∞

φ(~x− ~ζ, t)G(~ζ)d~ζ

• Here we will use Pope’s notation for the Fourier transform:

F{φ(x)} =

∫ ∞
−∞

e−ikxφ(x)dx
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Convolution

• Take the Fourier transform of φ̃(~x) (dropping t for simplicity):

F{φ̃(~x)} =

∫ ∞
−∞

e−i
~k~x

∫ ∞
−∞

φ(~x− ~ζ, t)G(~ζ)d~ζd~x

• We can define a new variable ~r = ~x− ~ζ:

F{φ̃(~x)} =

∫ ∞
−∞

e−i
~k(~r+~ζ)

∫ ∞
−∞

φ(~r)G(~ζ)d~ζd~r

=

∫ ∞
−∞

∫ ∞
−∞

e−i
~k(~r+~ζ)φ(~r)G(~ζ)d~ζd~r

Note: d~r = d~x because ~ζ 6= f(~x) and we changed the order of
integration
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Convolution

• We left off with:

F{φ̃(~x)} =

∫ ∞
−∞

∫ ∞
−∞

e−i
~k(~r+~ζ)φ(~r)G(~ζ)d~ζd~r

• Recall that ea+b = eaeb:

F{φ̃(~x)} =

∫ ∞
−∞

∫ ∞
−∞

e−i
~k~re−i

~k~ζφ(~r)d~rG(~ζ)d~ζ

=

∫ ∞
−∞

e−i
~k~rφ(~r)d~r

∫ ∞
−∞

e−i
~k~ζG(~ζ)d~ζ

= F{φ(~x)}F{G(~ζ)}

where we changed the order for integration
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Convolution

• We found this convolution relationship:

F{φ̃(~x)} = F{φ(~x)}F{G(~ζ)}

• Segaut writes this as:

˜̂
φ(~k, ω) = φ̂(~k, ω)Ĝ(~kω)

where (ˆ) denotes a Fourier coefficient.

25 / 48



Convolution

• F{φ̃(~x)} = F{φ(~x)}F{G(~ζ)} or
˜̂
φ(~k, ω) = φ̂(~k, ω)Ĝ(~kω)

• Ĝ is the transfer function associated with the filter kernel G.

• Recall, that a transfer function is the wavespace (Fourier)
relationship between the input and output of a linear system.

• A convolution is an integral that expresses the amount of
overlap of one function G as it is shifted over another function
φ (i.e., it blends one function with another).
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Decomposition into resolved and subfilter components

• Just as G is associated with a filter scale ∆ (filter width), Ĝ
is associated with a cutoff wavenumber kc.

• In a similar manner to Reynolds decomposition, we can use
the filter function to decompose the velocity field into resolved
and unresolved (or subfilter) components:

φ(~x, t)︸ ︷︷ ︸
total

= φ̃(~x, t)︸ ︷︷ ︸
resolved

+φ′(~x, t)︸ ︷︷ ︸
subfilter
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Fundamental properties of “proper” LES filters

• The filter should not change the value of a constant a∫ ∞
−∞

G(~x)d~x = 1⇒ ã = a

• Linearity

φ̃+ ζ = φ̃+ ζ̃

(this is automatically satisfied for a convolution filter)

• Commutation with differentiation

∂̃φ

∂~x
=
∂φ̃

∂~x
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LES and Reynolds Operators

• In the general case, LES filters that verify these properties are
not Reynolds operators.

• Recall for a Reynolds operator (average) defined by 〈 〉
• 〈aφ〉 = a〈φ〉
• 〈φ′〉 = 0
• 〈φ+ ζ〉 = 〈φ〉+ 〈ζ〉
• 〈〈φ〉〉 = 〈φ〉

• 〈
∂φ

∂~x
〉 =

∂〈φ〉
∂~x
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LES and Reynolds Operators

• For our LES filter, in general using Sagaut’s shorthand∫∞
−∞ φ(~r, t)G(~ζ)d~ζ = G ? φ:

• ˜̃
φ = G ? G ? φ = G2 ? φ 6= φ̃ = G ? φ

• φ̃′ = G ? (φ−G ? φ) 6= 0

• For an LES filter, a twice filtered variable is not equal to a
single filtered variable – unlike it is for a Reynolds average.

• Likewise, the filtered subfilter scale component is not equal to
zero as it is for a Reynolds average.
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Common (or classic) LES filters

• Box or “top-hat” filter (equivalent to a local average):

G(r) =

{
1
∆ if r ≤ ∆

2

0 otherwise︸ ︷︷ ︸
filter function

Ĝ(k) =
sin (k∆/2)

k∆/2︸ ︷︷ ︸
transfer function

• Gaussian filter (γ typically 6):

G(r) =
( γ

π∆2

) 1
2

exp

(
−γ|r|2

∆2

)
Ĝ(k) = exp

(
−∆2k2

4γ

)
• Spectral or sharp-cutoff filter:

G(r) =
sin(kcr)

kcr
Ĝ(k) =

{
1 if |k| ≤ kc
0 otherwise

recall that kc is the characteristic wavenumber cutoff.
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Common (or classic) LES filters

Only the Gaussian filter is local in both real and wave space.
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Filters: local vs non-local

• Where we apply a filter is important.

• The Fourier transform of a box filter is a wave, and the
inverse transform of a spectral cutoff filter is a wave.

• This means we will get different results for these two filters
depending on where they are applied.
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Filters: local vs non-local

• Thus, we say a box filter is local in physical space and
non-local in wavespace.

• Conversely, a cutoff filter is local in wavespace and non-local
in physical space.

• When a filter is non-local, think about it in terms of adding
“wiggles” everywhere.

• As opposed to the box and cutoff filters, the Gaussian filter is
(semi) local in both physical space and wavespace (semi
because it differs by constants).

• This is because the Fourier transform of a Gaussian is also a
Gaussian.
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Spectral resolution

• We can tie the notion of filters and local/non-local behavior
to numerical models and resolution.

• The notion of “spectral” or “effective” resolution arises
because the spectra from LES often does not fall at ∆, but
rather at some larger scale that is a multiple of ∆.

• For instance, a finite difference scheme (perhaps 2nd-order
central difference) is local in physical space, but non-local in
wavespace.

• This impacts smaller wavenumbers (larger scales).
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Spectral resolution

From Gibbs and Fedorovich (2014).
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Spectral resolution
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Convolution example

• We defined the convolution of two functions as:

φ̃(~x, t) =

∫ ∞
−∞

φ(~x− ~ζ, t)G(~ζ)d~ζ

• How can we interpret this relation? G, our filter kernel,
‘moves’ along our other function φ and smooths it out
(provided it is a low-pass filter).
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Convolution example

• One example is using a box filter applied in real space.

• See convolution example.m (and associated iso vel128.mat
data file) on Canvas or website.
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Filtering turbulence (real space, cutoff filter)
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Filtering turbulence (real space, Gaussian filter)
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Filtering turbulence (real space, box filter)
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Filtering turbulence (real space, box filter)

Another example (Fedorovich and Gibbs, submitted)
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Filtering turbulence (real space)
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Filtering turbulence (wave space)
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Filtering turbulence (wave space)
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Decomposition of turbulence for real filters

• The LES filter can be used to decompose the velocity field
into resolved and subfilter scale (SFS) components:

φ(~x, t)︸ ︷︷ ︸
total

= φ̃(~x, t)︸ ︷︷ ︸
resolved

+φ′(~x, t)︸ ︷︷ ︸
subfilter

• We can use our filtered DNS fields to look at how the choice
of our filter kernel affects this separation in wavespace.
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Decomposition of turbulence for real filters

• The Gaussian (or box) filter does not have as compact of
support in wavespace as the cutoff filter.

• This results in attenuation of energy at scales larger than the
filter scale.

• The scales affected by the attenuation are referred to as
resolved SFSs.
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