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Website for those auditing

Materials will be cross-posted here:

http://gibbs.science/les
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Turbulence Scales

Recall that one of the properties of turbulent flows is a continuous
spectrum (range) of scales.
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Turbulence Scales

• The largest scale is the integral scale (`o).

• The integral scale is on the order of the auto-correlation
length.

• In a boundary layer, the integral scale is comparable to the
boundary layer.

5 / 53



Richardson and eddy cascade

• Lewis Fry Richardson
(1881–1953)

• Pioneered the idea of predicting
weather by solving differential
equations.

• Weather Prediction by Numerical
Process (1922)
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Richardson and eddy cascade

Richardson, from Weather Prediction by Numerical Process (1922)

“Big whorls have little whorls
That feed on their velocity;
And little whorls have lesser whorls
And so on to viscosity. ”

7 / 53



Richardson and eddy cascade

The idea of the turbulent cascade:

• Vorticity is created on large scales by some driving mechanism
that feeds energy to the fluid.

• Shear instability causes smaller vortices to be shed, drawing
energy from the larger ones.

• This process continues on ever smaller scales.

• On the smallest scales, diffusion destroys eddies and converts
their kinetic energy to thermal energy.
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Remember da Vinci?

“ ... the smallest eddies are almost numberless,
and large things are rotated only by large eddies
and not by small ones, and small things are
turned by small eddies and large. ”Sounds like Richardson’s turbulent cascade!
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Turbulence Scales
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Kolmogorov’s similarity hypothesis (1941)

• Andrey Nikolaevich Kolmogorov
(1903–1987).

• Famous Russian mathematician.

• Very influential 1941 theory of
homogeneous, isotropic,
incompressible turbulence based
on Richardson’s ideas.
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Kolmogorov’s similarity hypothesis (1941)

Kolmogorov’s theory of turbulence

• Turbulence displays universal properties independent of initial
and boundary conditions.

• Energy is added to the fluid on the inertial scale `o and is
dissipated as heat on the dissipative scale.

• Energy transfer between eddies on intermediate scales is
lossless.

12 / 53



Kolmogorov’s similarity hypothesis (1941)

Kolmogorov’s first hypothesis

• Smallest scales receive energy at a rate proportional to the
dissipation of energy rate.

• Motion of the very smallest scales in a flow depend only on:
• rate of energy transfer from small scales

ε

[
L2

T 3

]
• kinematic viscosity

ν

[
L2

T

]
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Kolmogorov’s similarity hypothesis (1941)

Using these, he defined the Kolmogorov scales (dissipation scales)

• length scale

η =

(
ν3

ε

) 1
4

• time scale

τ =
(ν
ε

) 1
2

• velocity scale

v =
η

ν
= (νε)

1
4

Check units for yourself.
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Kolmogorov’s similarity hypothesis (1941)

• Recall, that the Reynolds number (Re=UL/ν) is the ratio of
inertia to viscous forces.

• Based on the Kolmogorov scales:

Re =
vη

ν
=

(νε)
1
4

(
ν3

ε

) 1
4

ν
= ν

1
4 ε

1
4 ν

3
4 ε−

1
4 ν−1 = 1

Or in other words, the Kolmogorov length scale is the scale at
which Re=1
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Kolmogorov’s similarity hypothesis (1941)

• From these scales, we can also form the ratios of the largest
to smallest scales in a flow.

• We will denote the largest length, time, and velocity scales as
`o, to, and Uo, respectively.

• We can approximate dissipation at large scales as

ε ∼ U3
o

`o
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Kolmogorov’s similarity hypothesis (1941)

• length scale

η =

(
ν3

ε

) 1
4

∼
(
ν3`o
U3
o

) 1
4

⇒ `
1
4
o

η
∼ U

3
4
o

ν
3
4

⇒ `o
η
∼ U

3
4
o `

3
4
o

ν
3
4

⇒ `o
η
∼ Re

3
4
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Kolmogorov’s similarity hypothesis (1941)

• velocity scale

v =
η

ν
∼
(
νU3

o

`o

) 1
4

⇒ U
3
4
0

v
∼ `

1
4
o

ν
1
4

⇒ U0

v
∼ U

1
4
o `

1
4
o

ν
1
4

⇒ U0

v
∼ Re

1
4
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Kolmogorov’s similarity hypothesis (1941)

• time scale

τ =
η

v

⇒ to
τ

=
`o/Uo
η/v

⇒ to
τ

=

(
`o
η

)(
Uo
v

)−1
⇒ to

τ
∼ Re

3
4 Re−

1
4

⇒ to
τ
∼ Re

1
2

19 / 53



Kolmogorov’s similarity hypothesis (1941)

• For very high-Re flows (e.g., Atmosphere), we have a range of
scales that is small compared to `o but large compared to η.

• As Re increases, η/`o increases. This results in a larger
separation of between large and small scales.
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Kolmogorov’s similarity hypothesis (1941)

• Consider typical atmospheric scales:

Uo ∼ 10 m s−1, `o ∼ 103 m, ν ∼ 10−5 m2 s−1

• which gives us,

Re =
Uo`o
ν
∼ (10 m s−1)(103 m)

10−5 m2 s−1
∼ 109

• thus,

η ∼ `oRe−
3
4 ∼ 0.00018 m

v ∼ UoRe−
1
4 ∼ 0.06 m s−1

τ ∼ `o
Uo

Re−
1
2 ∼ 0.003 s

You can start to see why explicitly resolving all scales in a typical
atmosphere is expensive!
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Kolmogorov’s similarity hypothesis (1941)

Kolmogorov’s second hypothesis

• In turbulent flow, a range of scales exists at very high Re
where statistics of motion in a range l (`o � `� η) have a
universal form that is determined only by ε (dissipation) and
independent of ν (kinematic viscosity).

• Kolmogorov formed his hypothesis and examined it by looking
at the PDF of velocity increments ∆u.
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Kolmogorov’s similarity hypothesis (1941)

What are structure functions? The PDF? Let’s quickly recap
statistics and how they tie in to scales.
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Stats review

• The PDF is the integral of the CDF

• It gives the probability per unit distance in the sample space –
hence, the term density

• If two or more signals have the same PDF, then they are
considered to be statistically identical.

• Practically speaking, we find the PDF of a time (or space)
series by:

• Create a histogram of the series(group values into bins)
• Normalize the bin weights by the total # of points
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Stats review

Autocovariance measures how a variable changes with different
lags, s.

R(s) ≡ 〈u(t)u(t+ s)〉

or the autocorrelation function

ρ(s) ≡ 〈u(t)u(t+ s)〉
u(t)2

Or for the discrete form

ρ(sj) ≡
∑N−j−1

k=0 (ukuk+j)∑N−1
k=0 (u2k)
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Stats review

Notes on autocovariance and autocorrelation

• These are very similar to the covariance and correlation
coefficient

• The difference is that we are now looking at the linear
correlation of a signal with itself but at two different times (or
spatial points), i.e. we lag the series.

• We could also look at the cross correlations in the same
manner (between two different variables with a lag).

• ρ(0) = 1 and |ρ(s)| ≤ 1
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Stats review

• In turbulent flows, we expect the correlation to diminish with
increasing time (or distance) between points

• We can use this to define an integral time (or space) scale. It
is defined as the time lag where the integral

∫
ρ(s)ds

converges.
• It can also be used to define the largest scales of motion

(statistically).
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Stats review

The structure function is another important two-point statistic.

Dn(r) ≡ 〈[U1(x+ r, t)− U1(x, t)]
n〉

• This gives us the average difference between two points
separated by a distance r raised to a power n.

• In some sense it is a measure of the moments of the velocity
increment PDF.

• Note the difference between this and the autocorrelation
which is statistical linear correlation (i.e., multiplication) of
the two points.
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Fourier transforms

Alternatively, we can also look at turbulence in wave (frequency)
space. Fourier transforms are a common tool in fluid dynamics
(see Pope, Appendix D-G, Stull handouts online).

Some uses:

• Analysis of turbulent flow

• Numerical simulations of N-S equations

• Analysis of numerical schemes (modified wavenumbers)
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Fourier transforms

• Consider a periodic functioon f(x) (could also be f(t)) on a
domain of length 2π.

• The Fourier representation of this function (or a general
signal) is:

f(x) =

k=∞∑
k=−∞

f̂ke
ikx

where k is the wavenumber (frequency if f(t)), and f̂k are the
Fourier coefficients which in general are complex.
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Fourier transforms

Why pick eikx?

• Orthogonality∫ 2π

0
ei(k−k

′)xdx =

{
0, if k 6= k′

2π if k = k′

• a big advantage of orthogonality is independence between
Fourier modes

• eix is independent of ei2x, just like we have with Cartesian
coordinates – where i, j, k are all independent of each other
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Fourier transforms

What are we doing?

• Recall from Euler’s formula that eix = cos(x)− i sin(x)

• The Fourier transform decomposes a signal (space or time)
into sine and cosine wave components of different amplitudes
and wave numbers (or frequencies).
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Fourier transforms

Fourier transform example (from Stull, see FourierTransDemo.m)
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Fourier transforms

• The Fourier representation below is a representaion of a series
as a function of sine and cosine waves. It takes f(x) and
transforms it into wave space.

• Fourier transform pair: consider a periodic function on a
domain of 2π

fk = F{f(x)} ≡ 1

2π

∫ 2π

0
f(x)e−ikxdx → forward transform

f(x) = F{f̂k}−1 ≡
k=∞∑
k=−∞

f̂ke
ikx → backward transform

• The forward transform moves us into Fourier (or wave) space
and the backward transform moves us from wave space back
to real space.
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Fourier transforms

An alternative form of the Fourier transform (using Euler’s) is:

f(x) = a0 +

k=∞∑
k=−∞

ak cos(kx)− bk sin kx

where ak and bk are the real and imaginary components of fk,
respectively.
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Fourier transform properties

• if f(x) is real, then:
f̂k = f̂kA

∗

• Parseval’s Theorem:

1

2π

∫ 2π

0
f(x)f∗(x)dx =

k=∞∑
k=−∞

f̂kf̂
∗
k

• The Fourier representation is the best possible representation
for f(x) in the sense that the error:

e =

∫ 2π

0

∣∣∣∣∣f
(
x−

N∑
k=−N

cke
ikx

)∣∣∣∣∣
2

dx

is a minimum when ck = f̂k
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Discrete Fourier transform

• Consider the periodic function fj on the domain 0 ≤ x ≤ L
(periodicity implies that f(0) = f(N))

• Discrete Fourier representation:

fj =

N/2−1∑
k=−N/2

f̂ke
i 2π
L
kxj ⇒ backward (inverse) transform

We know fj at N pts, don’t know f̂k at k values (N of them).

• Using discrete orthogonality:

f̂k =
1

N

N−1∑
j=0

fje
−i 2π

L
kxj ⇒ forward transform
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Discrete Fourier transform

• Discrete Fourier Transform (DFT) example and more
explanation found on the website/Canvas (Stull, Chapter
8.4–8.6., Pope appendix F, FourierTransDemo.m).

• Implementation of DFT by brute force → O(N2) operations.

• In practice, we almost always use a Fast Fourier Transform
(FFT) → O(N log2N) operations.
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Discrete Fourier transform

• Almost all FFT routines (e.g., Matlab, FFTW, Intel,
Numerical Recipes, etc.) save their data with the following
format:
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Fourier transform applications: autocorrelation

Autocorrelation

• We can use the discrete Fourier Transform to speed up the
autocorrelation calculation (or in general any cross-correlation
with a lag). Discretely,

Rff (sl) =

N−1∑
j=0

f(xj)f(xj + sl) ⇒ O(N2)operations

• If we express Rff as a Fourier series

Rff (sl) =
∑

k
R̂ffe

iksl ⇒ Rff(0) =
∑
k

R̂ff

and we can show that

Rff (0) =
∑

k
N |f̂k|2︸︷︷︸
magnitude of

Fourier Coefficients
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Fourier transform applications: autocorrelation

How can we interpret this?

• In physical space

Rff (0) =

N−1∑
j=0

f2j (i.e., the mean variance)

⇒
N−1∑
j=0

f2j =

N/2−1∑
k=−N/2

N |f̂k|2︸ ︷︷ ︸
energy

spectral density

}total contribution
to the variance
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Fourier transform applications: spectrum

Energy Spectrum: (power spectrum, energy spectral density)

• If we look at specific k values from we can define:

E(k) = N |f̂k|2

where E(k) is the energy spectral density

• The square of the Fourier coefficients is the contribution to
the variance by fluctuations of scale k (wavenumber or
equivalently frequency)

• Typically (when written as) E(k) we mean the contribution to
the turbulent kinetic energy (TKE) = 0.5(u2 + v2 + w2) and
we would say that E(k) is the contribution to TKE for
motions of the scale (or size) k . For a single velocity
component in one direction we would write E11(k1).
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Fourier transform applications: spectrum

Example energy spectrum
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Spectrum: sampling theorem

• Band-Limited function: a function where f̂k = 0 for |k| > kc.
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Spectrum: sampling theorem

• Theorem: if f(x) is band-limited, then f(x) is completely
represented by its values on a discrete grid, xn = nπ/kc,
where n is an integer (∞ < n <∞) and kc is called the
Nyquist frequency.
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Spectrum: sampling theorem

• Implication: if we have xj = jπ/kc = jh (h = π/kc) with a
domain of 2π, then h = 2π/N = π/kc ⇒ kc = N/2

• If the number of points is ≥ 2kc, then the discrete Fourier
transform is the exact solution. For example, if
f(x) = cos(6x), then we need N ≥ 12 points to represent the
function exactly.
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Spectrum: sampling theorem

• What if f(x) is not band-limited?

• What if f(x) is band-limited, but sampled at a rate < kc
(e.g., f(x) = cos(6x) with 8 points)?

• The result is aliasing → contamination of resolved energy by
energy outside of the resolved scales.
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Spectrum: aliasing

• Consider eik1xj and eik2xj and let k1 = k2 + 2mkc, where kc
is the Nyquist frequency, m = ± any integer, and xj = jπ/kc:

eik1xj = ei(k2+2mkc)xj

= eik2xje2mkcxj

= eik2xje2mkcjπ/kc

= eik2xj ei2πmj︸ ︷︷ ︸
=1, integer fn of 2π

eik1xj = eik2xj

The result is that we cannot distinguish between k2 and
k1 = k2 + 2mkc on a discrete grid. k1 is aliased onto k2.
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Spectrum: aliasing

• What does this mean for spectra?

• What is actually happening?
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Spectrum: aliasing

Consider a function: f(x) = cos(x) + 0.5 cos(3x) + 0.25 cos(6x)

• Fourier coefficients (all real)

• Consider N = 8→ kc = 4

• Aliasing, if m = 1, ⇒ k1 = k2 + 2mkc = k2 + 8m⇒ −6 gets
aliased to 2. If m = −1, k1 = k2 − 8⇒ 6 gets aliased to −2.
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Spectrum: aliasing

• Aliasing decreases if N (sampling rate) increases.

• For more on Fourier Transforms see Pope Ch. 6, online
handout from Stull, or Press et al., Ch 12-13.
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Spectrum and Kolmogorov

Back to Kolmogorov

• Another way to look at this (equivalent to structure functions)
is to examine what it means for E(k) where E(k)dk =TKE
contained between k and k + dk.

• What are the implications of Kolmogorov’s hypothesis for
E(k)? – K41⇒ E(k) = f(k, ε)

• By dimensional analysis we can find that:

E(K) = ckε
2/3k−5/3

Kolmogorov’s 5/3 power law.

• This expression is valid for the range of length scales ` where
`o � `� η and is usually called the inertial subrange of
turbulence.
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Spectrum and Kolmogorov

Example energy spectrum
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