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Basic Properties of Turbulence

e Turbulence is random
The properties of the fluid (p, P, u) at any given point (z,t)
cannot be predicted. But statistical properties — time and
space averages, correlation functions, and probability density
functions — show regular behavior. The fluid motion is
stochastic.

e Turbulence decays without energy input

Turbulence must be driven or else it decays, returning the
fluid to a laminar state.



Basic Properties of Turbulence

e Turbulence displays scale-free behavior
On all length scales larger than the viscous dissipation scale
but smaller than the scale on which the turbulence is being
driven, the appearance of a fully developed turbulent flow is
the same.

e Turbulence displays intermittency
“Outlier” fluctuations occur more often than chance would
predict.
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Basic Properties of Turbulent Flows

e Large vorticity

e Vorticity describes the tendency of something to rotate.
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Vortex stretching can and does create small scale circulations
that increases the turbulence intensity I, where:
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Basic Properties of Turbulent Flows

e Mixing effect

Turbulence mixes quantities (e.g., pollutants, chemicals,
velocity components, etc)., which acts reduce gradients. This
lowers the concentration of harmful scalars, but increases drag.

¢ A continuous spectrum (range) of scales.

Range of eddy scales

Integral Scale Q O/ Kolmogorov Scale
—
S
— (Richardson, 1922)

“a

Energy production ——> (Energy cascade)—> Energy dissipation @
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Random Nature of Turbulence
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Figure: Sonic anemometer data at 20Hz taken in the ABL.

This velocity field exemplifies the random nature of turbulent flows.



Random Nature of Turbulence

e The signal is highly disorganized and has structure on a wide
range of scales (that is also disorganized).

Notice the small (fast) changes verse the longer timescale
changes that appear in no certain order. @
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Random Nature of Turbulence
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e The signal appears unpredictable.

Compare the left plot with that on the right (100 s later).

Basic aspects are the same but the details are completely

different. From looking at the left signal, it is impossible to

predict the right signal. @
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Random Nature of Turbulence

e Some of the properties of the signal appear to be reproducible.

The reproducible property isn't as obvious from the signal.
Instead we need to look at the histogram. @
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Random Nature of Turbulence
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Notice that the histograms are similar with similar means and
standard deviations.
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Random Nature of Turbulence
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The left panel shows concentration in a turbulent jet, while the
right shows the time history along the centerline (see Pope). @
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Random Nature of Turbulence
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Normalized mean axial velocity in a turbulent jet (see Pope). @
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Random Nature of Turbulence

e The random behavior observed in the time series can appear
to contradict what we know about fluids from classical
mechanics.

e The Navier-Stokes equations are deterministic (i.e., they give
us an exact mathematical description of the evolution of a
Newtonian fluid).

e Yet, as we have seen, turbulent flows are random.

e How do we resolve this inconsistency?
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Random Nature of Turbulence

Question: Why the randomness?

e There are unavoidable perturbations (e.g., initial conditions,
boundary conditions, material properties, forcing, etc.) in
turbulent flows.

e Turbulent flows and the Navier-Stokes equations are acutely
sensitive to these perturbations.

e These perturbations do not fully explain the random nature of
turbulence, since such small changes are present in laminar
flows.

e However, the sensitivity of the flow field to these
perturbations at large Re is much higher.

0
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Random Nature of Turbulence

e This sensitivity to initial conditions has been explored
extensively from the viewpoint of dynamical system. This is
often referred to as chaos theory.

e The first work in this area was carried out by Lorenz (1963) in
the areas of atmospheric turbulence and predictability.
Perhaps you have heard the colloquial phrase, the butterfly
effect.

e Lorenz studied a system with three state variables z, y, and z
(see his paper or Pope for details). He ran one experiment
with 2(0) = 1 and another with = 1.000001, while y and z
were held constant.

0
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Random Nature of Turbulence
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Figure: Time history of the Lorenz equations.



Random Nature of Turbulence

e The work by Lorenz demonstrates the extreme sensitivity to
initial conditions.

e The result of this sensitivity is that beyond some point, the
state of the system cannot be predicted (i.e., the limits of
predictability).

e In the Lorenz example, even when the initial state is known to
within 1079, predictability is limited to ¢ = 35.

0
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Random Nature of Turbulence

e In the Lorenz example, this behavior depends on the
coefficients of the system. If a particular coefficient is less
than some critical value, the solutions are stable. If, on the
other hand, it exceeds that value, then the system becomes
chaotic.

e This is similar to the Navier-Stokes equations, where solutions
are steady for a sufficiently small Re, but turbulent if Re
becomes large enough.

0
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Random Nature of Turbulence

e We have seen that turbulent flows are random, but their
histograms are apparently reproducible.

e As a consequence, turbulence is usually studied from a
statistical viewpoint.
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Basic Properties of Turbulence

e Consider the velocity field U.

e Since U is a random variable, its value is unpredictable for a
turbulent flow.

e Thus, any theory used to predict a particular value for U will
likely fail.

e Instead, theories should aim at determining the probability of
events (e.g., U <10 m s71).

e \We need statistical tools to characterize random variables.
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Sample Space

e In reality, a velocity field U(Z,t) is more complicated than a
single random variable.

e In order to consider more general events than our example of
U <10 m s™!, we need to think in terms of sample space.

e Consider an independent velocity variable V', which is the
sample-space variable for U.
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Sample Space
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B={U <V}

C={V,<U <V}

B and C are events (or values) that correspond to different regions @
of the sample space (i.e., velocity field).
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Probability

e Using the previous example, the probability of event B is
given as:

p=P(B) = P{U < Vi)
e This is the likelihood of B occurring (U < V3).
e pis a real number, 0 <p < 1.
e p =0 is an impossible event.

e p=1Is a certain event.
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Cumulative Distribution Function

e The probability of any event is determined by the cumulative
distribution function (CDF)

FV)y=P{U <V}
e For event B:
P(B) ={U <V} = F(V})
e For event C":

P(C)={Va <U <W} = P{U < W} = P{U < Vu}
:F(VIJ)_F(Va)

0
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Cumulative Distribution Function

Three basic properties of CDF:
e F(—00) =0, since {U < —oo} is impossible.
e F(00) =1, since {U > oo} is impossible.
o F(V) > F(V,), for Vi, >V, since p > 0. Thus, F'is a
non-decreasing function.
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Probability Density Function

The probability density function (PDF) is the derivative of the CDF

dF(v)
dv
Based on the properties of the CDF, it follows that:
e f(V)>0
o ffooo f(WV)dv =1
e f(=00) = f(o0) =0

V) =
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Probability Density Function

The probability that a random variable is contained within a
specific interval is the integral of the PDF over that interval

P(C) = PV, <U < Vi} = F(Vi) — F(Va)
_ " jvyav
Va

Or, for a very small interval dV;:

P(Cs) = P{V, <U < Vo +dVi} = F(Vy +dVi) — F(Va)
= f(Va)dVs
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Probability Density Function

More details about the PDF f(V):

e f(V) is the probability per unit distance in the sample space —
hence, the term density.

e f(V) has dimensions of U~!, while the CDF is dimensionless.
e The PDF fully characterizes the statistics of a signal (random
variable).

e |f two or more signals have the same PDF, then they are
considered to be statistically identical.
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CDF (top) vs. PDF (bottom)
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Means and Moments

We can also define a signal by its individual statistics, which
collectively describe the PDF.

The mean (or expected) value of a random variable U is given by:

o) z/ V VYAV
or in discrete form:
1 N
(U) = N ;Vz

The mean represents the probability-weighted sum of all possible
values of U.

0

32/54



Means

Consider some function of U, Q(U).

= [ T QW f(v)av

The mean (Q(U)) only exists if the above integral converges
absolutely. From this equation, we can show that for Q(U), R(U),
and constants a and b:

(@Q(U) + bR(U)) = o(Q(U)) + b(R(V))

Thus, () behave as a linear operator.
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Means

Although U, Q(U), and R(U) are random variables, (U), (Q(U)),
and (R(U)) are not.

Thus, the mean of the mean is just the mean (i.e., ((U)) = (U)).
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Variance

Let's define a fluctuation (or perturbation) from the mean:
u'=U— (U)
The variance is just the mean-square fluctuation:

o2 =var(U) = (u'%)

Or, in discrete form:

1

2 _ . 2

ou= v V= (O)
=1

Variance essentially measures how far a set of (random) numbers

are spread out from their mean. @

*note the (N — 1). This is the Bessel correction — used to correct for bias.
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https://en.wikipedia.org/wiki/Bessel%27s_correction

Standard Deviation

The standard deviation, or root-mean square (rms) deviation, is
just the square-root of the variance:

oy = sdev(U) = /02 = (u/*)05

The standard deviation basically measures the amount of variation
of a set of numbers.
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Other moments

The nt" central moment is defined as:

o= ") = [ =@y

—00
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Standardized Moments

It is often advantageous to express variables as standardized
random variables. These standardized variables have zero mean
and unit variance.

The standardized version of U (centered and scaled) is given by:

U —(U)

Ou

U=

Accordingly, the n'" standardized moments are expressed as:

MEWWZ%:/wWﬂmW

n
g Gu —0o0
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Other moments

Different moments each describe an aspect of the shape of the
PDF:

e 111 = mean (expected value)

e 15 = variance (spread from the mean)

e [i3 = skewness (asymmetry of PDF)

e iy = kurtosis (sharpness of the PDF peak)
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Example PDFs

Read Pope (Chapter 3.3) for descriptions of different PDFs.

Examples include:

e uniform

exponential

e Gaussian

log-normal
e gamma

Delta-function

Cauchy
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Joint Random Variables

So far, our statistical description has been limited to single random
variables. However, turbulence is governed by the Navier-Stokes
equations, which are a set of 3 coupled PDEs.

We expect this will result in some correlation between different
velocity components.
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Joint Random Variables

Example: turbulence data from the ABL.: scatter plot of horizontal
(u) and vertical (w) velocity fluctuations.
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The plot appears to have a pattern (i.e., negative slope).
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Joint Random Variables - Sample Space

We will now extend the previous results from a single velocity
component to two or more.

The sample-space variables corresponding to the random variables
U = {Uy,Us,Us} are given by V = {V, Vs, V3}.
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Joint Random Variables - CDF

The joint CDF (jJCDF) of the random
variables (U1, Us) is given by: 0s
Fio(V1, Vo) = P{U; < V1,Us < Va} Vo©

This is the probability of the point
(V1, V2) lying inside the shaded region




Joint Random Variables - CDF

The jCDF has the following properties:

o Fio(Vi 4+ 0Vi, Vo + 8Va) > Fi2(Vh, V) (non-decreasing)
for all V7 >0, 6V >0

o Fio(—o0, Vo) = P{U; < —00,Us < V2} =0
since {U; < —oo} is impossible.

° Flg(oo,‘/g) = P{Ul < OO,U2 < VQ} = P{U2 < VQ}
Fia(00, Vo) = Fy(Va), since {U; < oo} is certain.

In the last example, F» (V%) is called the marginal CDF.

0
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Joint Random Variables - PDF

The joint PDF (jPDF) is defined as:
2

fiz(V1, Vo) = av.av;

————F12(V1, Va)

If we integrate over V7 and V5, we get the probability:
Vib Vb

P{Vig Ui < Vip, Vog < Uz < Vi } = f12(Va, Va)dVadVy
Via Voa

0
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Joint Random Variables - PDF

Based on the jCDF, the jPDF has the following properties:
o fi2(V1,V2) >0

o [% fr2(Vi,Va)dVi = fo(Va)
o [Z [ fro(Vi, Vo)dVidVa =1

In the middle example, fo(V3) is called the marginal PDF.
Practically speaking, we find the PDF of a time (or space) series
by:

e Create a histogram of the series(group values into bins)

e Normalize the bin weights by the total # of points

0
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Joint Random Variables - Means

Similar to the single variable form, if we have Q(Uy, Us):

(Q(Uy,Us)) = /_00 /_OO Q(V1, V2) f12dVadVy

We can use this equation to define a few important statistics.
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Joint Random Variables - Covariance

We can define covariance as:
cov(Uy, Us) = (ujub)
= [T i @ - W i va)avaan;

Or for discrete data

cov(U1,Us) = <u1u2)

N
Z Vij = (U1)(Va; — (U2))
—1

Covariance is basically a measure of how much two random
variables change together. @
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Joint Random Variables - Correlation Coefficient

The correlation coefficient is given by:
(uyug)
2 2
(uy ™) (uy”)
Correlation coefficient has the following properties:

e —1<pp<1

e Positive values indicate correlation.

P12 =

e Negative values indicate anti-correlation.
e p1o = 1 is perfect correlation.

e pio = —1 is perfect anti-correlation.
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Two-point Statistical Measures

Autocovariance measures how a variable changes with different
lags, s.
R(s) = (u(t)u(t + s))

or the autocorrelation function

_ {u(®u(t +5))
p(s) = Toa)?

Or for the discrete form

N—j—1

] Zk:o] (UkUkJrj)
p(s;) N—1, 2
k=0 (uk)
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Two-point Statistical Measures

Notes on autocovariance and autocorrelation

e These are very similar to the covariance and correlation
coefficient

e The difference is that we are now looking at the linear
correlation of a signal with itself but at two different times (or
spatial points), i.e. we lag the series.

e We could also look at the cross correlations in the same
manner (between two different variables with a lag).

e p(0) = 1 and |p(s)| < 1
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Two-point Statistical Measures

e In turbulent flows, we
expect the correlation to
diminish with increasing
time (or distance)

between pOI nts Pract?cally a statistical significance
level is usually chosen

e We can use this to define
an integral time (or
space) scale. It is defined Integral
as the time lag where the
integral [ p(s)ds
converges.

y.

e [t can also be used to
define the largest scales

of motion (statistically). @
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Two-point Statistical Measures

The structure function is another important two-point statistic.

Dn(T) = ([Ul(.fl} +r, t) — Ul(.il?, t)]n>

e This gives us the average difference between two points
separated by a distance r raised to a power n.

e In some sense it is a measure of the moments of the velocity
increment PDF.

e Note the difference between this and the autocorrelation
which is statistical linear correlation (i.e., multiplication) of
the two points.

0
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