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Basic Properties of Turbulence

• Turbulence is random
The properties of the fluid (ρ, P , u) at any given point (x,t)
cannot be predicted. But statistical properties – time and
space averages, correlation functions, and probability density
functions – show regular behavior. The fluid motion is
stochastic.

• Turbulence decays without energy input
Turbulence must be driven or else it decays, returning the
fluid to a laminar state.

3 / 54



Basic Properties of Turbulence

• Turbulence displays scale-free behavior
On all length scales larger than the viscous dissipation scale
but smaller than the scale on which the turbulence is being
driven, the appearance of a fully developed turbulent flow is
the same.

• Turbulence displays intermittency
“Outlier” fluctuations occur more often than chance would
predict.
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Basic Properties of Turbulent Flows

• Unsteady

• Three-dimensional
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Basic Properties of Turbulent Flows

• Large vorticity

• Vorticity describes the tendency of something to rotate.
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Vortex stretching can and does create small scale circulations
that increases the turbulence intensity I, where:

I =
σu
〈u〉

6 / 54



Basic Properties of Turbulent Flows

• Mixing effect

Turbulence mixes quantities (e.g., pollutants, chemicals,
velocity components, etc)., which acts reduce gradients. This
lowers the concentration of harmful scalars, but increases drag.

• A continuous spectrum (range) of scales.
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Random Nature of Turbulence

Figure: Sonic anemometer data at 20Hz taken in the ABL.

This velocity field exemplifies the random nature of turbulent flows.
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Random Nature of Turbulence

• The signal is highly disorganized and has structure on a wide
range of scales (that is also disorganized).

Notice the small (fast) changes verse the longer timescale
changes that appear in no certain order.
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Random Nature of Turbulence

• The signal appears unpredictable.

Compare the left plot with that on the right (100 s later).
Basic aspects are the same but the details are completely
different. From looking at the left signal, it is impossible to
predict the right signal.

10 / 54



Random Nature of Turbulence

• Some of the properties of the signal appear to be reproducible.

The reproducible property isn’t as obvious from the signal.
Instead we need to look at the histogram.
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Random Nature of Turbulence

Notice that the histograms are similar with similar means and
standard deviations.
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Random Nature of Turbulence

The left panel shows concentration in a turbulent jet, while the
right shows the time history along the centerline (see Pope).

13 / 54



Random Nature of Turbulence

Normalized mean axial velocity in a turbulent jet (see Pope).
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Random Nature of Turbulence

• The random behavior observed in the time series can appear
to contradict what we know about fluids from classical
mechanics.

• The Navier-Stokes equations are deterministic (i.e., they give
us an exact mathematical description of the evolution of a
Newtonian fluid).

• Yet, as we have seen, turbulent flows are random.

• How do we resolve this inconsistency?
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Random Nature of Turbulence

Question: Why the randomness?

• There are unavoidable perturbations (e.g., initial conditions,
boundary conditions, material properties, forcing, etc.) in
turbulent flows.

• Turbulent flows and the Navier-Stokes equations are acutely
sensitive to these perturbations.

• These perturbations do not fully explain the random nature of
turbulence, since such small changes are present in laminar
flows.

• However, the sensitivity of the flow field to these
perturbations at large Re is much higher.
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Random Nature of Turbulence

• This sensitivity to initial conditions has been explored
extensively from the viewpoint of dynamical system. This is
often referred to as chaos theory.

• The first work in this area was carried out by Lorenz (1963) in
the areas of atmospheric turbulence and predictability.
Perhaps you have heard the colloquial phrase, the butterfly
effect.

• Lorenz studied a system with three state variables x, y, and z
(see his paper or Pope for details). He ran one experiment
with x(0) = 1 and another with x = 1.000001, while y and z
were held constant.
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Random Nature of Turbulence

Figure: Time history of the Lorenz equations.
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Random Nature of Turbulence

• The work by Lorenz demonstrates the extreme sensitivity to
initial conditions.

• The result of this sensitivity is that beyond some point, the
state of the system cannot be predicted (i.e., the limits of
predictability).

• In the Lorenz example, even when the initial state is known to
within 10−6, predictability is limited to t = 35.
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Random Nature of Turbulence

• In the Lorenz example, this behavior depends on the
coefficients of the system. If a particular coefficient is less
than some critical value, the solutions are stable. If, on the
other hand, it exceeds that value, then the system becomes
chaotic.

• This is similar to the Navier-Stokes equations, where solutions
are steady for a sufficiently small Re, but turbulent if Re
becomes large enough.
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Random Nature of Turbulence

• We have seen that turbulent flows are random, but their
histograms are apparently reproducible.

• As a consequence, turbulence is usually studied from a
statistical viewpoint.
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Basic Properties of Turbulence

• Consider the velocity field U .

• Since U is a random variable, its value is unpredictable for a
turbulent flow.

• Thus, any theory used to predict a particular value for U will
likely fail.

• Instead, theories should aim at determining the probability of
events (e.g., U < 10 m s−1).

• We need statistical tools to characterize random variables.
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Sample Space

• In reality, a velocity field U(~x, t) is more complicated than a
single random variable.

• In order to consider more general events than our example of
U < 10 m s−1, we need to think in terms of sample space.

• Consider an independent velocity variable V , which is the
sample-space variable for U .
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Sample Space

B ≡ {U < Vb}
C ≡ {Va ≤ U < Vb}

B and C are events (or values) that correspond to different regions
of the sample space (i.e., velocity field).
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Probability

• Using the previous example, the probability of event B is
given as:

p = P (B) = P{U < Vb}

• This is the likelihood of B occurring (U < Vb).

• p is a real number, 0 ≤ p ≤ 1.

• p = 0 is an impossible event.

• p = 1 is a certain event.
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Cumulative Distribution Function

• The probability of any event is determined by the cumulative
distribution function (CDF)

F (V ) ≡ P{U < V }

• For event B:

P (B) = {U < Vb} = F (Vb)

• For event C:

P (C) = {Va ≤ U < Vb} = P{U < Vb} − P{U < Va}
= F (Vb)− F (Va)
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Cumulative Distribution Function

Three basic properties of CDF:

• F (−∞) = 0, since {U < −∞} is impossible.

• F (∞) = 1, since {U >∞} is impossible.

• F (Vb) ≥ F (Va), for Vb > Va, since p > 0. Thus, F is a
non-decreasing function.
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Probability Density Function

The probability density function (PDF) is the derivative of the CDF

f(V ) ≡ dF (v)

dV

Based on the properties of the CDF, it follows that:

• f(V ) ≥ 0

•
∫∞
−∞ f(V )dV = 1

• f(−∞) = f(∞) = 0
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Probability Density Function

The probability that a random variable is contained within a
specific interval is the integral of the PDF over that interval

P (C) = P{Va ≤ U < Vb} = F (Vb)− F (Va)

=

∫ Vb

Va

f(V )dV

Or, for a very small interval dVs:

P (Cs) = P{Va ≤ U < Va + dVs} = F (Va + dVs)− F (Va)
= f(Va)dVs
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Probability Density Function

More details about the PDF f(V ):

• f(V ) is the probability per unit distance in the sample space –
hence, the term density.

• f(V ) has dimensions of U−1, while the CDF is dimensionless.

• The PDF fully characterizes the statistics of a signal (random
variable).

• If two or more signals have the same PDF, then they are
considered to be statistically identical.
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CDF (top) vs. PDF (bottom)
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Means and Moments

We can also define a signal by its individual statistics, which
collectively describe the PDF.

The mean (or expected) value of a random variable U is given by:

〈U〉 ≡
∫ ∞
−∞

V f(V )dV

or in discrete form:

〈U〉 ≡ 1

N

N∑
i=1

Vi

The mean represents the probability-weighted sum of all possible
values of U .
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Means

Consider some function of U , Q(U).

〈Q(U)〉 ≡
∫ ∞
−∞

Q(V )f(V )dV

The mean 〈Q(U)〉 only exists if the above integral converges
absolutely. From this equation, we can show that for Q(U), R(U),
and constants a and b:

〈aQ(U) + bR(U)〉 = a〈Q(U)〉+ b〈R(U)〉

Thus, 〈 〉 behave as a linear operator.
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Means

Although U , Q(U), and R(U) are random variables, 〈U〉, 〈Q(U)〉,
and 〈R(U)〉 are not.

Thus, the mean of the mean is just the mean (i.e., 〈〈U〉〉 = 〈U〉).
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Variance

Let’s define a fluctuation (or perturbation) from the mean:

u′ ≡ U − 〈U〉

The variance is just the mean-square fluctuation:

σ2u = var(U) = 〈u′2〉

=

∫ ∞
−∞

(V − 〈U〉)2f(V )dV

Or, in discrete form:

σ2u =
1

N − 1∗

N∑
i=1

(Vi − 〈U〉)2

Variance essentially measures how far a set of (random) numbers
are spread out from their mean.

∗note the (N − 1). This is the Bessel correction – used to correct for bias.
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Standard Deviation

The standard deviation, or root-mean square (rms) deviation, is
just the square-root of the variance:

σu ≡ sdev(U) =
√
σ2u = 〈u′2〉0.5

The standard deviation basically measures the amount of variation
of a set of numbers.
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Other moments

The nth central moment is defined as:

µn ≡ 〈u′n〉 =
∫ ∞
−∞

(V − 〈U〉)nf(V )dV
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Standardized Moments

It is often advantageous to express variables as standardized
random variables. These standardized variables have zero mean
and unit variance.

The standardized version of U (centered and scaled) is given by:

Û ≡ U − 〈U〉
σu

Accordingly, the nth standardized moments are expressed as:

µ̂n ≡
〈u′n〉
σnu

=
µn
σnu

=

∫ ∞
−∞

V̂ nf̂(V̂ )dV̂
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Other moments

Different moments each describe an aspect of the shape of the
PDF:

• µ1 = mean (expected value)

• µ2 = variance (spread from the mean)

• µ̂3 = skewness (asymmetry of PDF)

• µ̂4 = kurtosis (sharpness of the PDF peak)
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Example PDFs

Read Pope (Chapter 3.3) for descriptions of different PDFs.

Examples include:

• uniform

• exponential

• Gaussian

• log-normal

• gamma

• Delta-function

• Cauchy

40 / 54



Joint Random Variables

So far, our statistical description has been limited to single random
variables. However, turbulence is governed by the Navier-Stokes
equations, which are a set of 3 coupled PDEs.

We expect this will result in some correlation between different
velocity components.
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Joint Random Variables

Example: turbulence data from the ABL: scatter plot of horizontal
(u) and vertical (w) velocity fluctuations.

The plot appears to have a pattern (i.e., negative slope).
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Joint Random Variables - Sample Space

We will now extend the previous results from a single velocity
component to two or more.

The sample-space variables corresponding to the random variables
U = {U1, U2, U3} are given by V = {V1, V2, V3}.
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Joint Random Variables - CDF

The joint CDF (jCDF) of the random
variables (U1, U2) is given by:

F12(V1, V2) ≡ P{U1 < V1, U2 < V2}

This is the probability of the point
(V1, V2) lying inside the shaded region
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Joint Random Variables - CDF

The jCDF has the following properties:

• F12(V1 + δV1, V2 + δV2) ≥ F12(V1, V2) (non-decreasing)
for all δV1 ≥ 0, δV2 ≥ 0

• F12(−∞, V2) = P{U1 < −∞, U2 < V2} = 0
since {U1 < −∞} is impossible.

• F12(∞, V2) = P{U1 <∞, U2 < V2} = P{U2 < V2}
F12(∞, V2) = F2(V2), since {U1 <∞} is certain.

In the last example, F2(V2) is called the marginal CDF.
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Joint Random Variables - PDF

The joint PDF (jPDF) is defined as:

f12(V1, V2) ≡
∂2

∂V1∂V2
F12(V1, V2)

If we integrate over V1 and V2, we get the probability:

P{V1a ≤ U1 < V1b, V2a ≤ U2 < V2b} =
∫ V1b

V1a

∫ V2b

V2a
f12(V1, V2)dV2dV1
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Joint Random Variables - PDF

Based on the jCDF, the jPDF has the following properties:

• f12(V1, V2) ≥ 0

•
∫∞
−∞ f12(V1, V2)dV1 = f2(V2)

•
∫∞
−∞

∫∞
−∞ f12(V1, V2)dV1dV2 = 1

In the middle example, f2(V2) is called the marginal PDF.
Practically speaking, we find the PDF of a time (or space) series
by:

• Create a histogram of the series(group values into bins)

• Normalize the bin weights by the total # of points

47 / 54



Joint Random Variables - Means

Similar to the single variable form, if we have Q(U1, U2):

〈Q(U1, U2)〉 ≡
∫ ∞
−∞

∫ ∞
−∞

Q(V1, V2)f12dV2dV1

We can use this equation to define a few important statistics.
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Joint Random Variables - Covariance

We can define covariance as:

cov(U1, U2) ≡ 〈u′1u′2〉

=

∫ ∞
−∞

∫ ∞
−∞

(V1 − 〈U1〉)(V2 − 〈U2〉)f12(V1, V2)dV2dV1

Or for discrete data

cov(U1, U2) ≡ 〈u′1u′2〉

=
1

N − 1

N∑
j−1

(V1j − 〈U1〉)(V2j − 〈U2〉)

Covariance is basically a measure of how much two random
variables change together.
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Joint Random Variables - Correlation Coefficient

The correlation coefficient is given by:

ρ12 ≡
〈u′1u′2〉√
〈u′1

2〉〈u′2
2〉

Correlation coefficient has the following properties:

• −1 ≤ ρ12 ≤ 1

• Positive values indicate correlation.

• Negative values indicate anti-correlation.

• ρ12 = 1 is perfect correlation.

• ρ12 = −1 is perfect anti-correlation.
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Two-point Statistical Measures

Autocovariance measures how a variable changes with different
lags, s.

R(s) ≡ 〈u(t)u(t+ s)〉

or the autocorrelation function

ρ(s) ≡ 〈u(t)u(t+ s)〉
u(t)2

Or for the discrete form

ρ(sj) ≡
∑N−j−1

k=0 (ukuk+j)∑N−1
k=0 (u

2
k)
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Two-point Statistical Measures

Notes on autocovariance and autocorrelation

• These are very similar to the covariance and correlation
coefficient

• The difference is that we are now looking at the linear
correlation of a signal with itself but at two different times (or
spatial points), i.e. we lag the series.

• We could also look at the cross correlations in the same
manner (between two different variables with a lag).

• ρ(0) = 1 and |ρ(s)| ≤ 1
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Two-point Statistical Measures

• In turbulent flows, we
expect the correlation to
diminish with increasing
time (or distance)
between points

• We can use this to define
an integral time (or
space) scale. It is defined
as the time lag where the
integral

∫
ρ(s)ds

converges.

• It can also be used to
define the largest scales
of motion (statistically).
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Two-point Statistical Measures

The structure function is another important two-point statistic.

Dn(r) ≡ 〈[U1(x+ r, t)− U1(x, t)]
n〉

• This gives us the average difference between two points
separated by a distance r raised to a power n.

• In some sense it is a measure of the moments of the velocity
increment PDF.

• Note the difference between this and the autocorrelation
which is statistical linear correlation (i.e., multiplication) of
the two points.
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