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8.4 Discrete Fourier Transform 

From Fourier analysis in calculus we remember that any well-behaved continuous 
function can be described by an infinite Fourier series - namely, the sum of an infinite 
number of sine and cosine terms. In the case of a discrete time series with a fmite number 
of points, we are required to have only a finite number of sine and cosine terms to fit our 
points exactly. 

8.4.1 Definition 

Using Euler's notation [ exp(ix) = cos (x) + i sin(x), where i is the square root of -1] 
as a shorthand notation for the sines and cosines, we can write the discrete Fourier series 
representation of A(k) as: 

N·! 

Inverse Transform: A (k) L FA (n) ei 21tnk/N (8.4.1 a) 
n=O 

where n is the frequency, and FA(n) is the discrete Fourier transform. We see that 
a time series with N data points (indexed from k=O through N-l) needs no more than N 
different frequencies to describe it (actually, it needs less than N, as will be shown later). 

There are a number of ways to describe frequency: 

n = number of cycles (per time period l?), 
fi = cycles per second = n/l?, 
f = radians per second = 21tn/l? = 21tn/(Nfit). 

A frequency of zero (n = 0) denotes a mean value. Thefundamental frequency. 
where n = I, means that exactly one wave fills the whole time period, l? Higher 
frequencies correspond to harmonics of the fundamental frequency. For example, n = 
5 means that exactly 5 waves fill the period l? 

F A(n) is a complex number, where the real part represents the amplitude of the cosine 
waves and the imaginary part is the sine wave amplitude. It is a function of frequency 
because the waves of different frequencies must be multiplied by different amplitudes to 
reconstruct the original time series. If the original time series A(k) is known, then these 
coefficients can be found from: 

Forward Transform: -i 21lnk/N 
FA(n) = L,; e 

k=O 
(8.4.1b) 

Notice the similarity between (8.4.la) and (8.4.1 b). These two equations are called 
Fourier transform pairs. The second equation performs the forward transform. 
creating a representation of the signal in phase space (another name for the frequency 
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or spectral domain). This process is also known as Fourier decomposition . The flrst 
equation performs the inverse transform, converting from frequencies back into 
physical space. 

8.4.2 Example 

Problem: Given the following 8 data points of speciflc humidity, q, as a function of 
time: 

Index (k): 
Time (lITC): 

q (g/kg): 

o 
1200 

8 

1 
1215 

9 

2 
1230 

9 

3 
1245 

6 

4 
1300 

10 

5 
1315 

3 

6 
1330 

5 

7 
1345 

6 

Perform a forward Fourier transform to flnd the 8 coefflcients, Fq(n). To check your 
results, perform an inverse transform to conflrm that the time series is recreated. 
Remember that the Fq(n) coefflcients are complex, each having a real and an imaginary 
part: Fq(n) = Freal(n) + i Fimag(n) . 

. Solution: N = 8 and 6t = 15 min. Thus, the total period is P = N6t = 2 h. 
Equation (8.4.1b) must be used to find Fq(n). For those computer languages that accept 
complex numbers, (8.4.1b) can be programmed directly, where each of the A(k) data 
points has a real part equal to the value listed in the table, and an imaginary part of zero. 

For hand calculation, we can use Euler's formula to translate (8.4.1b) back into sines 
and cosines: 

FA (n) = L A(k) cos(21t1lk1N) - L A(k) sin(21tnk/N) 
k=O k=O 

As an example. for n = O. all of the cosines of zero are unity and all of the sines are 
zero. This leaves: 

which is just the mean of A. For our case: Fq(O) = 7.0 - 0.0 i . For n = 1 we can't 
make such a simpliflcation. so we are forced to sum over all k for both the real and 
imaginary parts. This gives us Fq (1) = 0.28 - 1.03 i. Continuing this procedure for all 
other n yields: 

n I: q(n) n Fq(n) 
0 7.0 4 1.0 

I 

1 0.28 - 1.03 i 5 -0.78 + 0.03 i 
2 0.5 6 0.5 
3 -0.78 - 0.03 i 7 0.28 + 1.03 i 
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This is the answer to the first part of the problem. Note that for frequencies greater than 
4, the Fourier transform is just the complex conjugate of the frequencies less than 4. 

As a check of our transform, we can perform the inverse transform using (8.4.la) 
directly in a computer program. Otherwise, we can use Euler's formula to write it as: 

N·t 

A (k) = L F (n) ·cos(21tnk/N)-
n=O (relf part) 

L F (n) 'sin(21tnk/N) 
n=O (imag.pan) 

In actuality; there are four sums, not just the two listed above. The remaining sums 
consist of the real part of F times the imaginary factor i·sin(. .. ), and the imaginary part of 
F times the real factor cos( ... ). Because the last half of the Fo;uier transforms are the 
complex conjugates of the first half (not counting the mean), these two sums identically 
cancel, leaving the two listed above. Upon perfonning the calculations for A(k). we do 
indeed reproduce the original time series. 

Discussion: To graphically demonstrate that the sum of these sines and cosines does 
indeed equal our original series. Fig 8.5 shows each individual wave multiplied by its 
appropriate amplitude. As can be seen. the reconstructed time series fits perfectly the eight 
original data points. In between these points, however. the sum oscillates in a manner that 
is not necessarily realistic. but which is irrelevant because it occurs below the 
discretization resolution specified by the original data points. 
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Fig. 8.5 (a-c) Superposition of sine and cosine waves that recreate (d) 
the ori inal timeseries, 
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8.4.3 Aliasing and Other Hazards. 

Measurements: A basic rule of discrete data analysis is that at least two data points 
are required per period or wavelength in order to resolve a wave. Since Fourier analysis 
involves splitting arbitrary signals into waves. the two data point requirement also holds 
for our arbitrary signals. For example. if we have a total of N data points. then the 
highest frequency that can be resolved in our Fourier transform is nf = N/2. which is 
called the Nyquist frequency. These requirements apply to measurements; namely. if 
a wave period as small as 0.1 s must be measured while flying in an aircraft, then the 
physical signal must be digitized at least once every 0.05 s. Similarly. if a wavelength as 
small as 1 m must be measured. then the physical signal must be digitized at least once 
every 0.5 m. 

What happens when there is a physical signal of high frequency that is not sampled or 
digitized frequently enough to resolve the signal? The answer is that the true high-
frequency signal is folded or aliased into a lower frequency. creating an erroneous 
and deceiving Fourier transform. This is illustrated with aid of the example in the 
previous subsection. Look at the nrst graph in Fig 8.5. where the cosine waves for n = 2, 
4 and 6 are plotted. Since we started with N = 8 data points. we can anticipate a Nyquist 
frequency of nf = 4. Namely, the shortest period wave that can be resolved is one that has 
4 cycles per period!P. Thus, the curve corresponding to n = 6 is greater than the Nyquist 
frequency, and is likely to cause problems. 

Look closely at the curves for n = 2 and n = 6. They coincide exactly at the points k = 
0, I, 2, 3, 4, 5, 6 and 7. In other words, if there were a true signal of n = 6 that was 
sampled only at the integer k values listed above, then anyone connecting the resulting 
plotted points with a line or curve would nnd that they have drawn a wave with n = 2 
cycles per period. In other words, the n = 6 signal was folded into the n = 2 frequency. 
Similarly. looking at the third graph in Fig 8.5. the n = 7 sine waves are folded into an 
n = I sine wave. In general, if nh represents a frequency higher than the Nyquist 
frequency, then the signal or amplitude of that wave will be folded down to a frequency of 
n = N - nh. where it will be added to any true amplitude that already exists at n. 

Since this folding or reflection occurs around the Nyquist frequency, it is also known 
as the folding frequency . Such folding is readily apparent when wave amplitudes are 
plotted as spectral energies (to be discussed in Section 8.6). As illustrated in Fig 8.6, any 
nonzero wave amplitudes and spectral energies in the "true" signal at frequencies higher 
than the Nyquist frequency are folded back and added to the energies of the "true" signal 
at the lower frequencies, yielding an aliased (and erroneous) spectrum. 

Aliasing is a problem whenever two conditions both occur: (I) the sensor can respond 
to frequencies higher than the rate that the sensor is sampled; and (2) the true signal has 
frequencies higher than the sampling rate. As we already know, there is a spectrum of 
wavenumbers and frequencies of turbulence in the atmosphere, some of which are very 
high. All measurement systems have limitations on the rate at which they can sample. 
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,'-
Fig. 8.6 

+ " "r 
Illustration that the "measured" spectrum (solid lire) can give 
incorrect spectral energies as well as erroneous peak locations 
compared to the "true" spectrum (shaded line), when aliasing 
causes energies at the higher frequencies to fold back around the 
Nyquist frequency (nr) and add to energies at the lower ones. 

Sometimes this rate is given by limitations of the data logger or computer digitizer. If this 
is the case, then the raw electronic analog signal from the sensor (thermistor, 
thermocouple, gust probe accelerometer, etc) should be filtered by an l!!lll!Qg, electronic 
filter prior to the digitizing or sampling to remove frequencies higher than the Nyquist 
frequency. Sometimes the sensor itself has such a slow response that it performs the 
analog filtering automatically. 

If the analog filtering is not performed, then there is no way to remove the erroneous 
aliased component from the resulting time series. Postprocessing of the discrete time 

with digital filters will NOT work, because it is impossible to know what portion of 
the wave amplitude at the resolvable frequencies is real, and what is folded into it. 

Digital averaging is sometimes successfully used for other reasons, however. 
Suppose that a sensor is designed with appropriate analog filters to yield unaliased data 
when sampled at a very high frequency. Next, suppose that the amount of this unbiased 
discr'!te data is too large to record in a convenient manner, or is coming in too fast to be 
processed. The stream of incoming discrete data values can be block averaged (e.g., 
average every 10 data points), or filtered with a variety of filters (e.g., Butterworth fillers) 
before being recorded or processed further. This yields a lower-frequency sample without 
aliasing errors. If, however, one records only every fifth or tenth (or any interval) value 
from '.he sampled stream, then aliasing is again a problem. 

Fourier analysis. Now that we are convinced that we can't resolve frequencies 
greater than the Nyquist frequency, why does the Fourier transform operation given by 
'8.4.1b) give amplitudes FA(n) up to the frequency n = N - I? The answer is that it 
doesn't really. Looking at example 8.4.2 again, we again note that Fq(n) for n > nf is just 
the complex conjugate of the Fq(n) values for n < nf. This is always the case and can be 
proved mathematically, assuming that the initial time series consists of only real numbers. 
Hence, the half of the Fq(n) values for which n > nr give no new information. 
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Thus, the N different FA values having both real and imaginary parts superficially 
gives 2N pieces of information, but since half of that is the complex conjugate of the other 
half, we are left with only N pieces of spectral information. It is reassuring that given 
only N data points in our original time series in physical space, we require only N pieces 
of information in phase space to precisely describe the data. 

For an original time series consisting of complex numbers (2N pieces of data), the 
Fourier transform does not have the complex conjugate property described above, 
resulting in 2N pieces of information is phase space too. For meteorological data where 
the time series is usually real, we still need to utilize the whole Fourier transform with the 
complex conjugate information, because without it the inverse transform will produce 
complex numbers instead of our desired real number physical field. 

Data Window. Fourier series apply to infinite-duration periodic data sets. Stated in 
other words, if we examine only a finite size record of data, the Fourier analysis implicitly 
assumes that the data is periodic and thus repeats itself both before and after our limited 
period of measurement. 

In boundary layer meteorology, nothing is periodic for infinite time, or for infinite 
distance. Given a true signal (for example temperature) that varies as in Fig 8.7a, if we 
measure it over period lP (our data window) as in Fig 8.7b, then we are left with the 
segment shown in Fig 8.7c. Given this segment, the Fourier analysis assumes that it is 
dealing with a periodic (repeating) signal as shown in Fig 8.7d .. 

In this example, a smoothly varying meteorological signal appears as a saw-tooth 
pattern to the Fourier analysis. From basic calculus, recall that a Fourier analysis can 
indeed describe series such as sawtooth or square wave patterns, but a wide range of 
frequencies are required to get the sums of all the sines and cosines to make the sharp 
bends at the points of the teeth. These spurious frequencies are called red noise by 
analogy to visible light because they appear at the low frequency end of the spectrum. To 
avoid red noise, we must at the very least detrend the data series by subtracting the 
straight line best-fit from the data segment (Fig 8.7c), leaving a modified time series as 
exemplified in Fig 8.7e. 

In general, any very low frequency that has a period longer than our whole sampling 
period will also generate the noise. If we know a-priori the period of this frequency, such 
as diurnal or annual, then we can perform a least-squares fit of this frequency to the time 
series and subtract the result from the series. Otherwise, we might try to fit a simple 
polynomial curve to the data and subtract it to both detrend it and remove thest' low 
frequencies. 

Even after detrending, the sharp edges of the data Window cause what is known as 
leakage, where spectral estimates from anyone frequency are contaminated with some 
spectral amplitude leaking in from neighboring frequencies. To reduce leakage, a 
modified data window with smoother edges is recommended, such as is shown in Fig 
8.7f. Although a variety of smoothers can be used, a common one utilizes sine or cosine 
squared terms near the beginning and ending 10% of the period of record, and is known 
as a bell taper: 
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Fig. 8.7 A true signal (a) sampled over a finite time (b) gives the segment (c) 
that is assumed to be periodic (d) by the Fourier transform. When 
the detrended signal (e) is sine or cosine tapered (I) the result is 
called "conditioned" data (g). This "conditioned" data (g) can then be 
used by FFT routines. 
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{ 

sin2(51tk/N) 

W(k) = 1 

sin2(51tk/N) 

for 

elsewhere (8.4 .3) 

for 0.9 N k N 

When this window weight, W(k), is multiplied by the time series, A(k), the result yields a 
modified time series with fluctuations that decrease in amplitude at the beginning and end 
of the series (see Fig 8.7g). The Fourier transform can then be performed in this modified 
time series. 

The bell taper data window is not without its problems. Although the tapered ends 
reduced the leakage, they also reduce our ability to resolve spectral amplitude differences 
between small changes in frequencies. Also, the tapered window reduces high-frequency 
noise at the expense of introducing low-frequency noise. 

The process of detrending, despiking (removing erroneous data points), filtering, and 
bell tapering is known as conditioning the data. Conditioning should be used with 
caution, because anytime data is modified, errors or biases can be introduced. The best 
recommendation is to do as little conditioning as is necessary based on data qUality. 

8.5 Fast Fourier Transform 

The fast Fourier transform, or F FT, is nothing more than a discrete Fourier 
transform that has been factored and restructured to take advantage of the binary 
computation processes of the digital computer. As a result, it produces the same output, 
and has the same limitations and requirements as the discrete transform. It can also be 
used for forward as well as inverse transforms. The description that follows is not meant 
to be a comprehensive review of FFT methods, but is designed to give an overview of the 
process. 

In general, both the forward and the inverse discrete transform can be written as 

where 

N·! 

X = L YZnk 

Forward Transform 

X(n) = FA(n) 

Y(k) = A(k)/N 

ZN = exp(-i27t/N) 

k = 0 (forward) 
n = 0 (inverse) 

Inverse Transform 

X(k) = A(k) 

Yen) = FA(n) 

ZN = exp(i2n/N) 

(8 .5a) 
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The decimal numbers nand k can be represented by their binary equivalents: 

and (8.5b) 

where nj and kj represent the individual bits of the number. For example, if N = 8, then 
we need only three bits (j = 0 to 2) to represent nand k, since they can take on values of 
only 0 to 7. Thus n = 4·n2 + 2·nj + l·no. For example, 101 is the binary 
representation of the decimal 5, giving n2 = 1, nl = 0, and no = 1 . 

Using this binary representation, any function of n is now a function of n2, nl' and 
no, with similar forms for functions of k. Thus, X(n) becomes X( n2, nl' no). Equation 
(8.5a) can now be rewritten, using the forward transform with N = 8 as the example, as: 

Performing the multiplications in the exponent of Z, rearranging terms, and remembering 
that Z to certain powers equals unity because of the nature of sines and cosines, we find: 

In this last equation the Z's are essentially weighting factors. To solve this equation, 
the inner sum is performed, using only the first weight because it is the only weight that is 
a function of k2. When the next sum is performed, the additional two weights are 
included. Finally, the last sum uses the remaining three weights. This pattern of solving 
the sums, and gradually eliminating the k bits and replacing them with n bits can be 
programmed recursively, requires relatively little scratch storage, and is very efficient in 
computer time. 

To a first approximation, the normal discrete Fourier transform requires N2 
operations, while the FFT requires only (3N!2)log2N operations. For small data sets (N 
< 1 (0) the resulting computer time or cost difference is insignificant for all practical 
purposes, because of other overhead costs such as input and output. But for a data set of 
1000 points, for example, the FFT computation takes 0.5% of the time that a traditional 
discrete transform computation would take. There is even some microprocessor 
hardware available that is specially configured to run FFTs. The bottom line is that the 
FFT is fast. 

Most modem computer centers, and some statistical packages for microcomputers, 
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have "canned" FFf algorithms that users can access without having to write their own. 
Some of the early FFf packages were restricted to data sets with N = 2m. where m was 
any integer. This meant that data sets slightly too long were truncated to the proper size. 
or data sets slightly too short we lengthened by adding bogus data (often zeros or the 
mean value). Both of these data mutilation tricks are not recommended. Modem FFfs 
factor the series into a variety of prime numbers in addition to the prime number 2. 
resulting in very little truncation of the time series. 

One problem with all discrete Fourier transforms including FFfs. is that the input 
must consist of equally-spaced data points. No missing data is allowed. If the data set 
has gaps caused by instrument failures or by spurious data spikes that were removed. then 
artificial data points must be inserted to fill the gap. One is not allowed simply to close the 
gap by bringing the remaining pans of the data set together. because this alters the periods 
or wavelengths present in the original signal. The artificial data points must be chosen 
with care. otherwise this "fudge" can destroy an otherwise unbiased data set. Data with 
significant gaps can be analyzed with periodograrn methods instead (see Section 8.9). 

8.6 Energy Spectrum 

8.6.1 Discrete Energy Spectrum 

In meteorology we are frequently curious about how much of the variance of a time 
series is associated with a particular frequency. without regard to the precise phase of the 
waves. Indeed for turbulence. we anticipate that the original signal is not physically like 
waves at all. but we still find it useful to break the signal into components of different 
frequencies that we like to associate with different eddy sizes. 

The square of the norm of the complex Fourier transform for any frequency n is: 

(8.6.la) 

When IF A (n)12 is summed over frequencies n = 1 to N-l. the result equals the total biased 
variance of the original time series: 

N-l 
2 1 L - 2 cr = - (A - A) 
A N k 

k=O 

N-l 

= L IFA(n)12 

n=l 
(8.6.1b) 

Thus. we can interpret IF A (n)12 as the portion of variance explained by waves of 
frequency n. Notice that the sum over frequencies does not include n=O, because IFA(O)I 
is the mean value and does not contribute any information about the variation of the signal 
about the mean. To simplify the notation for later use, define: G A (n) = IF A (n)12 • The 

ratio G A (n) / cr A 2 represents the fraction of variance explained by component n, and is 
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very much like the correlation coefficient squared, r2. 
For frequencies greater than the Nyquist frequency the IFA(n)12 values are identically 

equal to those at the corresponding folded lower frequencies, because the Fourier 
transforms of high frequencies are the same as those for the low frequencies, except for a 
sign change in front of the imaginary part. Also, since frequencies higher than the 
Nyquist cannot be resolved anyway, the IFA(n)12 values at high frequencies should be 
folded back and added to those at the lower frequencies. 

Thus, discrete spectral intensity (or energy), EA (n). is defined as 

EA(n) = 2.IFA(n)12, for n = I to nr, with N = odd. For N = even, EA(n) = 2.IFA(n)12 is 

used for frequencies from n = 1 to (nr -1), along with EA(n) = IF A (n)12 (not times 2) at 
the Nyquist frequency. This presentation is called the discrete variance (or energy) 
spectrum. It can be used for any variable such as temperature, velocity, or humidity to 
separate the total variance into the components, EA(n), related to different frequencies. 
For variables such as temperature and humidity, however, we must not associate the 
resulting spectrum with concepts of eddy motions, because variations in these variables 
can persist in the atmosphere in nonturbulent flow as the "footprints" of formerly active 
turbulence. 

The variance of velocity fluctuations, u', has the same units as turbulence kinetic 
energy per unit mass. Thus, the spectrum of velocity is called the discrete energy 
spectrum. As defined above, the name "energy spectrum" is sometimes used for all 
variance spectra. 

8.6.2 Spectral Density 

Although this chapter has dealt with discrete spectra, a number of theoretical concepts 
such as the spectral similarity discussed in the next chapter use continuous spectral 
representations. Namely, instead of summing the discrete spectral energy over all n to 
yield the total variance, these theories assume that there is a spectral energy density, 
SA(n) that can be integrated over n to yield the total variance. 

(S.6.2a) 

The spectral energy density has units of A squared per unit frequency . 
We can approximate the spectral energy density by 

(S.6.2b) 
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where 6.n is the difference between neighboring frequencies. When n is used to represent 
frequency, =1. For other representations of frequency such as f, we will find that 
is not necessarily equal to unity. 

The SA(n) points estimated from (8.6.2b) can then be connected with a smooth curve 
to represent the shape of the spectrum. An example of this was shown in Chapter 2, Fig. 
2.2. Thus, even with discrete meteorological data, we can estimate spectral densities that 
can be compared to theories. 

8.6.3 Example 

Problem: Use the results from the N = 8 data point example of section 8.4.2 to 
calculate the discrete spectral energies for all frequencies. Plot the result in the usual 
presentation format for discrete spectra. Show an additional graph of the estimate of 
spectral density. 

Solution: 
n 

0 
1 
2 
3 
4 =nf 
5 
6 
7 

3 

2 

Fig. 8.8 

Fq(n) IF q(n)12 Eq(n) 

7.0 (= mean) 
0.28 - 1.03 i 1.14 2.28 
0.5 0.25 0.5 

-0.78 - 0.03 i 0.61 1.22 
1.0 1.0 1.0 

-0.78 + 0.03 i 0.61 
0.5 0.25 
0.28 + 1.03 i 1.14 

Sum = 5.0 5.0 

(a) Discrete spectrum and (b) spectral density graphs for 
exam Ie 8,6,3, 

Sq(n) 

2.28 
0.5 
1.22 
1.0 
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where Eq(n) has units of specific humidity squared, and Sq(n) has units of specific 
humidity squared per unit frequency. Finally, the discrete spectrum is plotted in Fig 8.8a, 
and the spectral energy density is plotted in Fig 8.8b. 

Discussion. The sum of the spectral energies equals the biased variance of the 
original signal, ol = 5.0. This is always a good check of the FFT for you to perfonn. 

8.6.4 Graphical Presentation of Atmospheric Spectra 

A wide range of intensities are present in atmospheric turbulence spectra over an even 
larger range of frequencies. Atmospheric turbulence spectral energies characteristically 
peak at the lowest frequencies, namely at about 1 to 10 cycles per hour. At higher 
frequencies, the spectral energy decreases. For example, at frequencies of 1<r cycles per 
hour the energy is one to two orders of magnitude smaller than at the peak. 

We are often concerned about the full range of the spectrum: the peak is associated 
with the production of turbulence and usually the largest eddy sizes; the middle 
frequencies are associated with the inenial subrange, which is important for estimated 
dissipation rates; and the highest frequencies are associated with the dissipation of TKE 
into heat by viscous effects. Hence, we need a way to graphically present the spectral data 
in a form that not only highlights the important peaks and other characteristics, but which 
shows all portions of the wide range of data. 

In the discussions that follow, a single idealized spectrum is presented in a variety of 
formats in Fig 8.9. The data for these plots is listed in Table 8-1. See Chapter 9 for 
examples of real atmospheric spectra. 

Linear-linear presentation. When SA(f) is plotted vs . f on a linear-linear graph, 
the result has the desirable characteristic that the area under the curve between any pair of 
frequencies is proportional to the portion of variance explained by that range of 
frequencies. Unfortunately, the plot is useless to view because the wide range in values 
results in a compression of the data onto the coordinate axes (see Fig 8.9a). Alternatives 
include expanding the low frequency portion of the spectrum (Fig 8.9b) and plotting 
f.S(f) instead of just S(f) on the ordinate (Fig 8.9c). Both techniques focus on the 
spectral peak at the expense of losing information at the higher frequencies. 

Note that the f.S(f) plot causes the apparent peak to shift from the low frequency end 
of the spectrum towards the middle of the spectrum. Since f.S(f) is also used in a number 
of the other formats listed below, we should not be deceived into thinking that the middle 
frequencies are the ones with the most spectral energy. 

Semi-log presentation. By plotting f.S A (f) vs. log f, the low frequency portions 
of the spectra are expanded along the abscissa. Also, the ordinate for the high frequency 
portions are enhanced because the spectral density is multiplied by frequency (see Fig 
8.9d). Another excellent quality is that the area under any portion of the curve continues 
to be proportional to the variance. 
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Fig. 8.9 Different presentations of the same spectrum (see text for details). 

Log-log presentation. When 10g[SA(0) vs. log f is plotted, the result allows a 
wide range of frequencies and spectral densities to be displayed. Also, any power law 
relationships between SA (0 and f appear as straight lines on this graph. As will be 
discussed in more detail in the next chapter, SA(O is proportional to f·S!3 in the inertial 
subrange portion of the spectrum, which will appear as a straight line with -5/3 slope on a 
log-log graph (see Fig. 8.ge). Unfortunately, the area under the curve is no longer 
proportional to the variance. ' 

Log f SA (0 vs. log f. A plot of 10g[f.S A (0) vs. log f, has all of the desirable 
characteristics of the log-log presentation described above. In addition, the quantity 
f·SA(O has the same units as the variance of A, making scaling or normalization easier. 
Unfortunately, the area under the curve is also not proportional to variance (see Fig. 8.90. 
Regardless of this problem, this presentation is the most used in the literature. 
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Table 8·1. Artificial data and spreadsheet calculations used to demonstrate 
various ways to present spectra. 

YalJJ.e. 
This is assumed to be the spectrum of a Zi(m) 1000 
time series of velocity measurements. U (mls) 5 

Dissip.(m2 S-3) 
Size 21 

_Logarithm of __ 

Normalized Normalized Normalized Normalized S 
Frequency Spectrum Frequency Spectrum (lIs) (m2ls3) 

-1.0 -1 .3010 0.1000 0.0500 0.0005 158.7401 
-0.8 -1.2412 0.1580 0.0574 0.0008 115.3005 
-0.6 -1 .1807 0.2510 0.0660 0.0013 83.4309 
-0.4 -1.1204 0.3980 0.0758 0.0020 60.4486 
-0.2 -1 .0602 0.6310 0.0871 0.0032 43.8016 
-0.0 -1 .0000 1.0000 0.1000 0.0050 31 .7480 
0.2 -1.0000 1.5850 0.1000 0 .0079 20.0303 
0.4 -1.0000 2.5120 0.1000 0 .0126 12.6385 
0.6 -1.0827 3.9810 0.0827 0 .0199 6 .5914 
0.8 -1.2175 6.3100 0.0606 0.0316 3.0495 
1.0 -1 .3521 10.0000 0.0445 0.0500 1.4112 
1.2 -1 .4868 15.8490 0.0326 0.0792 0.6530 
1.4 -1 .6215 25.1190 0.0239 0.1256 0.3022 
1.6 -1 .7562 39.8110 0.0175 0.1991 0 .1398 
1.8 -1 .8909 63.0960 0.0129 0.3155 0.0647 
2.0 -2.0255 100.0000 0.0094 0.5000 0.0299 
2.2 -2.1602 158.4890 0.0069 0.7924 0.0139 
2.4 -2.2949 251.1890 0.0051 1.2559 0.0064 
2.6 -2.4296 398.1070 0.0037 1.9905 0.0030 
2.8 -2.5643 630.9570 0.0027 3.1548 0.0014 
3 .0 -2.6990 1000.0000 0.0020 5 .0000 0.0006 

IS 
(m2/s2) 

0.0794 
0 .0911 
0 .1047 
0.1203 
0 .1382 
0.1587 
0.1587 
0.1587 
0.1312 
0.0962 
0.0706 
0.0517 
0.0379 
0.0278 
0.0204 
0.0150 
0.0110 
0.0080 
0.0059 
0 .0043 
0.0032 


