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Some thoughts are presented regarding the question: when can a subgrid-scale model yield
correct statistics of resolved fields in a large-eddy simulation (LES) of turbulent flow. The
filtered Navier-Stokes equations are used to find necessary conditions on the statistical
properties of the modeled subgrid-scale stress tensor, for statistical equivalence between a "real"
and a modeled (via LES) turbulent velocity field. When trying to formulate sufficient
conditions, an unclosed hierarchy of expressions is obtained, essentially due to the "turbulence
problem" of the resolved scales of motion. Experimental (statistical a priori) testing of
subgrid-scale models is performed, based on single-probe measurements in grid turbulence and
on several key assumptions. Three versions of the eddy-viscosity model are considered: constant
eddy viscosity, subgrid kinetic energy, and the usual Smagorinsky eddy viscosity. Measured joint
moments between filtered velocity and real or modeled subgrid scale stresses show that both
energy and enstrophy dissipation can be properly captured, with a single value of the model
constants over a significant range of filter widths. These results are used to examine a new
subgrid model based on enstrophy equilibrium. The cross-correlation function of filtered velocity
with the subgrid stress tensor is measured, which is of special importance for large-scale energy
spectra. No significant differences are observed between the different models, and it is found that
they predict trends in the stress-velocity cross-correlation quite well. The results show that, in
nearly isotropic turbulence, the eddy-viscosity subgrid models correctly reproduce statistical
trends necessary for the accurate LES prediction of energy spectra and enstrophy evolution.

1. INTRODUCTION

Large-eddy-simulation (LES) is rapidly growing in
importance as a technique for the calculation of turbulent
flows in simple and complex geometries (Reynolds, 1990;1
and Rogallo and Moin, 19842). The discarded scales of
motion act on the resolved velocity field as new stresses,
which need to be modeled (subgrid scale, or SGS, model-
ing). The fact that the modeling is done at a length scale
smaller than the flow integral scale raises the hope that the
models can be more "universal" (flow independent) than
their counterparts for Reynolds stresses. Nevertheless,
there is a striking difference between SGS and Reynolds
stresses modeling. Whereas for the latter there exists a
large amount of information, e.g., measured Reynolds
stress profiles in a variety of flows, little is known about the
subgrid-scale stresses. The purpose of this paper is to ex-
amine through some elementary considerations what infor-
mation about subgrid stresses is needed, and to obtain such
information for a simple turbulent flow.

To inquire about the correctness of a particular SGS
model one can perform the simulation using the model and
compare the results with experimental data. For instance,
one can compare measured mean velocity profiles (for
which there is a lot of experimental and direct numerical
simulation (DNS) data available) with those resulting
from the LES. This approach is called a posteriori model
testing. It has been used to show that LES using simple
models, such as the Smagorinsky eddy viscosity, can yield
good predictions, both in terms of mean velocity profiles,
second-order moments and even energy spectra. This is

true quite generally for free shear flows, although the
model constants need some adjustments from flow to flow.
The recent "dynamic model"3'4 has so far yielded very
encouraging results.5' 6 Higher-order statistics were consid-
ered recently in Ref. 7 for isotropic turbulence, and good
LES predictions were obtained. It has even been argued
that if no SGS model is used, and one relies entirely on
numerical ("flux corrected") diffusion, reasonable results
can be obtained under certain circumstances.8 On the other
hand, SGS modeling for nonequilibrium flows, for the
near-wall behavior, etc., still presents considerable chal-
lenges. In this context, a drawback of a posteriori testing is
that it is not always easy to pinpoint the physics that cause
a model to work (or not to work), and to separate the SGS
model from other elements that affect the results, such as
numerics.

Another approach, called a priori testing, consists of
the direct use of known, fully resolved, velocity fields. They
are filtered to compute the stresses, and these can then be
compared on a local and instantaneous basis with features
of the large-scale field, which are also known. In this fash-
ion, a direct test can be made about the physical content of
a model, without actually performing the LES. This ap-
proach has so far been employed using direct numerical
simulations; see e.g., Clark etaL. (1979),9 McMillan and
Ferziger (1979),1o Piomelli (1988)," Meneveau et al.
(1992),12 Lund and Novikov (1992)," Domaradzki et al.
(l993),14 Hiirtel and Kleiser (1993)," etc. For recent
work, where both a priori and a posteriori testing is em-
ployed, see Horiuti (1993).16 In general, the results of a
priori testing based on DNS data have been discouraging:
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At a local instantaneous level, the real and modeled
stresses are almost never the same, exhibiting very low
correlation coefficients. This observation is made, even
when very sophisticated regression techniques are
employed. 12 However, it has been remarked quite often
(e.g., Reynolds, 19901) that the low correlation between
stresses and predictions does not necessarily translate into
poor results when a model is actually implemented in a
LES. In other words, the a priori analysis gives an exces-
sively pessimistic view of the modeling. From these con-
siderations it becomes clear that, despite its own shortcom-
ings, a posteriori testing is to remain of central importance
in the study of model performance, and in no way can be
replaced by a priori tests. Although in the present work the
focus is on a statistical version of the latter, we stress that
the two approaches are to be viewed as complementing
each other.

Having reviewed these basic aspects and difficulties in
the study of SGS parametrization, we now consider placing
conditions on the model that are weaker than those usually
expected in a priori testing. During a LES, the dynamics of
the small scales is not captured. Thus it is clear that an
exact, deterministic relation between stresses and function-
als of the resolved field must be impossible to formulate.
Also (except for control purposes or for short-term
predictability' 7 ) one is not necessarily interested in a par-
ticular realization of the LES since the hydrodynamic ev-
olution of the large scales is typically expected to be cha-
otic anyway, even with a "perfect" subgrid closure. Such
considerations suggest placing weaker conditions on the
stresses: namely, that they cause the LES to reproduce
correct statistical features of the flow field. The question
then becomes, what conditions must they satisfy to cor-
rectly generate some desired statistical feature of the flow?
This question, as well as how such conditions can be used
in statistical a priori testing of models using experimental
data, are the main themes of this paper.

To allow for a more focused discussion, an incompress-
ible turbulent flow obeying the Navier-Stokes equations in
a domain fQ, bounded by art, is considered. It follows that
Wi(x,t), the convolution of the real velocity field with some
spatial filter of characteristic width A (or possibly a non-
isotropic filter with widths Ai, i= 1,2,3), obeys the dynam-
ical equation (filtered Navier-Stokes equations),

field ii(x,t) is considered to be the "real" (not modeled)
field, whose properties a velocity field computed through
LES should strive to reproduce.

Now, let ul*(x,t) be such a field resulting from a LES
at a resolution similar to the filter-size considered before. It
is divergence-free and is obtained by integration of the dy-
namical LES equation:

aui* au? a fp*
atU' axax kp +V V

where Ff (u*) is a model for the SGS stresses, expressed
(closed) as a function of the resolved part of the velocity
field. The functional dependence of 7if on the field u* is
meant to be entirely general (i.e., it could, in principle,
include dependence on the velocity at different points, any
velocity gradients, the field at prior times, pressure gradi-
ents, etc., although subjected to general constraints such as
Galilean invariance, causality, etc.). In this paper, we then
consider the following question: What common statistical
properties must Til, the real SGS stresses, and -ii(u*),
the modeled ones, share in order to generate correct statis-
tical features of the resolved velocity field.

Ideally, if the entire multiple point, multiple time, joint
probability density of .7 1 1 (u*) and u* equals that of rij
and u, then all statistical features of u* should equal those
of if. However, accurate prediction of all statistics is prob-
ably too much to ask from a LES. A more useful set of
questions is to find specific conditions that 5%(u*) must
obey in order to "cause" some low-order statistics of the
LES velocity field to agree with the real statistics. Such
questions are posed at several levels throughout the first
part (Sec. II) of this paper: at the mean velocity level in
Sec. II A, at the second-order level in Sec. II B, at the PDF
level in Sec. II C and at the two-point statistics level in Sec.
II D. In the second part of this paper (Sec. III), experi-
mental data in grid turbulence is used for statistical a priori
testing of several variants of the eddy viscosity model. In
particular, a velocity-stress cross-correlation function rele-
vant to the energy spectrum of the large-eddy field is mea-
sured and compared with predictions from the models. A
summary, the final conclusions, and an outlook are pre-
sented in Sec. IV.

(1)

aiiiaiii la 
~t+Uj xjy - X~ Pbi1 j + ±vrui) (2) II. NECESSARY CONDITIONS FOR SGS STRESS

STATISTICS

(4)

The anisotropic part of the SGS stress tensor is given by

T'i-Ui1Uj--3ij (U-Uk- kik), (3)

and the trace has been absorbed in the filtered pressure .
Also needed are the initial data Wi(x,O) and boundary con-
ditions on Qfl. These are given by filtering the "real" initial
and boundary conditions. For the discussion to follow, the

A. Mean flow

Here the following question is posed: What common
statistical properties must the real SGS stresses rij and the
modeled ones 1i1 (u*) share, in order to generate the cor-
rect ensemble average of the velocity field. To this end, it is
instructive to perform an ensemble average of the filtered
Navier-Stokes equations. This yields an equation for (us),
the mean velocity field occurring in the real (filtered) flow,
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at + (u) axJ -vV20ii)
(x)

=-J ( p S>+(uuj-(i)uy)+ri)) (5)

The LES simulation, on the other hand, would yield a
mean velocity field (ui*), which obeys the following version
of the Reynolds equation [obtained from ensemble averag-
ing Eq. (4)],

Atu) + (uj > Mi-VV2 (Ui*)at ax1

a ( P*) °i+(urujn - (ut))
ax+ ( )

+ (iu*).(6)

B. Second-order moments

A more useful result would have been to find, in the
last section, that the equality of the real and modeled
stresses is a sufficient condition for the equality of the mean
velocity profiles. For this to be true, however, one must
learn from a source different of Eqs. (5) and (6) that the
second-order moments (u0u0') are the "correct" ones.

The second-order moments computed from the filtered
velocity field obey

a(iij) + (i'k) ii (ijj) -VV 2 (iWj)

aE~kij
-_ ak+Q 11-E 1 1- I~.,,. (9)

Here

Okirj=P 1 (IPujW8jk+ (P U) 8 k) ± ((WkUiU1) - (Uk)

x (iiiii)) + (iilTjk~ + (i~jTik), (10)

It can be noticed that the sum of the two stresses appearing
on the RHS of these equations is nothing but the (filtered)
Reynolds stress, i.e., the Germano identity' 8 when the test
"filter" is replaced by ensemble averaging. It is to be
stressed that the model equation solved is not Eq. (6), but
the original LES equation (4). Equation (6) is used here
only to establish statistical properties of the solutions to
Eq. (4). Inspection of Eqs. (5) and (6) immediately
shows the following. For the modeled velocity and pressure
field to exhibit the correct ensemble mean and the correct
second-order moments, i.e., for the following equalities:

causes transport of stress by correlations between resolved
velocity fluctuations among themselves, with resolved pres-
sure, as well as transport due to the unresolved motion

Q (j= 0ij [where StJ~i~Xy-+ j-)], (I 1)

is, as usual, a redistribution term due to resolved pressure-
strain correlations;

(12)c =2v a(i aLw
(aXkaXk)

is the viscous dissipation tensor of the resolved field. Very
importantly,

(ut"uj)=(i<ii~), for all xea, (7)

to hold, the real and modeled mean stresses must be (up to
an integration function) the same everywhere in fQ,

K(rjj>)=K1(u*))+Cij, xen. (8)

Here Cj1 is an arbitrary divergence-free tensor (for in-
stance, (rifr and (9 1 1 (u*)) could differ by a constant
value and still allow for the correct prediction of mean and
second-order resolved moments). The condition of Eq. (8)
is thus a necessary one for a LES simulation to yield both
the correct mean and second-order moments (and mean
pressure). However, it is not a sufficient condition. Even a
model that yields the correct mean stress field could lead to
an erroneous mean velocity field, if the "resolved" second-
order moments are not correctly predicted.

Not much has been said so far about boundary condi-
tions. Since what is being derived are necessary conditions,
this is not too important. One can assume that the LES
involved boundary conditions such that (u*) = (if) (or
equality of gradients, etc.) is guaranteed on the bound-
ary an. Since the focus is on necessary conditions, the
issue about uniqueness of solutions to Eq. (6) does not
play a role.

H i] = - ( (S§krj,) + (§ikl-k1) ) (13)

is the loss term (whose trace represents the drain of re-
solved kinetic energy due to the SGS stress). An equation
similar to Eq. (9) can be obtained for the modeled second-
order moment (u0uu'). Again, the question to be answered
here is under what conditions can one expect the LES to
yield the "correct" moments (utuj*). If such conditions
could be found and be satisfied, then, according to the
discussion in the last section, the equality of the mean
stresses would be a sufficient condition to obtain the cor-
rect mean velocity field. Unfortunately, perusal of Eq. (9)
(and its counterpart for the LES field) shows that one can
only make a weaker statement, yielding an additional nec-
essary condition on the stress statistics. One can now state
this: In order for the LES to yield the following fields
correctly: second- and third-order moments of resolved ve-
locity, pressure velocity, pressure rate of strain correlation,
and resolved dissipation tensor, one must ensure that the
correlations between stresses and velocities, and between
stresses and rate-of-strain tensor be the same in the "real"
flow and in the LES one. Symbolically, to ensure that

(u_*) = (ui), (14)

(uI*uj' = (iW'i~1,; (u2'Uj~)= Oi~iiiik); (15)
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(P*U1*)= F us>; (p*S!*;)=FS1J; ( 16)

(au7 Au* \ / a(17
aXkadXk \ aXk aXk! (1) 

the modeled stresses must exhibit the following correla-
tions with the velocity field:

ak(SikWkj(u*) > + aSkkiU) k [''~ku* 

± (Ur 7 Ik( U* ) ]

= ( ±ikrkJ) + (§ikTkf) aX ( (ulk) + 07Jfik) (18)

Placing the additional requirement that a model should
properly model SGS transport and SGS "dissipation" sep-
arately, we arrive at the conditions

(SS 7 ki(U*))+(S*k-Yki(U*)) = (Siklrkj) + (Sjklrk!) (19)

and

(UZ*-jk(U*) ) + (Ujtik(U*) ) = (irjik) + (ijrik) +Cif,
(20)

where Cij is again a divergence-free tensor (e.g., a con-
stant). Specialization of these arguments to the fate of the
kinetic energy (i=j) of the resolved motion in high Rey-
nolds number, homogeneous and decaying turbulence,
yields the condition that the correct rate of decay of energy
can only be achieved if

(S.*n"7nm(It*)) = (21)

i.e., if the model extracts energy at the correct rate. This is
usually argued to be the main task of a subgrid model.

In summary, as one attempts to provide a sufficient
condition for obtaining correct mean properties, new nec-
essary conditions are generated that need to be obeyed by
the stresses in order to obtain the correct first-, second-,
and third-order statistics (and correlations with pressure)
from the LES. Again, however, these alone are not suffi-
cient to ensure correctness of second- and third-order mo-
ments.

af aOf a ( (f 8 j
at axj ax i j pax1 ax, - X , /

(23)

The expression within brackets on the right represents the
conditionally averaged force per unit mass acting on the
filtered flow field at position x. It consists of filtered pres-
sure gradient, SGS, and viscous stresses, and it is condi-
tioned upon the filtered velocity vector at the same point in
question, at the same time. A similar expression is obtained
for the PDF obtained through the LES, f*(V,xt).

One can proceed further by expressing the pressure
gradient as function of the velocity field in the entire do-
main M Using the solution to the Poisson equation for
filtered pressure and, for brevity's sake, assuming an un-
bounded domain, one obtains

(ax; U ) 4r aV (W(Y)k k(Y)

+Tik(Y) Ii(x) =V- X jd 3 y.

(24)

If the domain is bounded, surface integrals have to be in-
cluded, but the nature of the discussion would be quite
similar. Finally, expressing the conditional average of
stress gradients as gradients of the two-point conditional
average, we obtain

afa r ___

A4r aYi Ykat 'axi av[ f(4, Jn a,a,~

HX [(iY) k(Y) I W(W =V)

* (Tik(Y)lux= I UW=V I l) 3

a
+lim - (1j(y) I U(x) =Vy

Y .xayi

-V lim V 1(y) 11(X) =V~) 

C. PDF of resolved velocity

The preceding arguments can be carried to the more
general level of the probability density function (PDF) of
the resolved or modeled velocity field. One starts with the
single-point PDF defined (see, e.g., Lundgren 19 and
Pope2&) as the ensemble average of the point probability,
according to

f Mv~x~t) i's ( I w6[u~xt) - pi] I ) (22)

This is the joint PDF of the three velocity components,
which may vary as a function of location and time. Starting
from the filtered N-S equations and following Refs. 19 and
20, one can show that the evolution of f (V,x,t) is given by
the transport equation

(25)

The PDF of the LES field obeys a similar equation, in
which the stress is replaced by .,5r(u*). Examination of
Eq. (25) now shows a necessary condition for achieving
equality of the real and modeled PDF, as well as condi-
tional two-point moments of resolved stresses and velocity.
In other words, for the LES to generate

f*(V,x,t) =f(V,x,t),

as well as

andI

(26)

(27)

(28)

at least the following condition must be met:
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4X kayak jx-y= d3y

-lim d (Ffi(Y )Inux(x)= V d

41 T JsY1 dYik kTX' | '

X li y d3y_1im (Y) a U* = V)

(29)

Here C1 is an integration constant, divergence-free with
respect to V. As can be seen, analysis of conditions for the
single-point PDF have yielded conditions involving two-
point conditional statistics of the SOS stress. In particular,
the above condition would be satisfied if one can show that

=(Yik[u*(Y)I u*(x)=V), Vy2xe Q. (30)

Berkooz 2 t examines similar questions based on the PDF
equation of dynamical systems. He proposes a method for
constructing new models based on appropriate moments of
full simulations, and has applied the procedure to the Lor-
entz equations.

1. Velocity PDFs in isotropic turbulence

For the special case of isotropic turbulence, the condi-
tion in Eq. (30) can be cast in terms of a few scalar func-
tions. The conditional average is a trace-free symmetric
tensor depending on two vectors, r =y -x and V. It must
then take the form

('ik(y) If(x)=V)

=Aq1r+BViV1 +C(r1 V1 +r1 V,)

-3(Ar 2 ±BV2 ±2Cr*V)451 1 . (31)

Here A, B, and C are scalar functions of r, V, and rev.
They can be expressed in terms of three conditional aver-
ages involving longitudinal (L) and normal (N) direc-
tions. A possible choice appears below,

2 QLffL(rL) | VN) + (rNN(rL) | VNY (32)

A- 5i[*y]U(X=) YXM(0

2QTNN(rL) I VTN) + (-rLL(rL) I VAN)

and

4(TLL(rL) I VL)-3(TLL(rL) I VN)- 3 (TNN(rL) IV

rL VL

Here, expressions of the type (-rmn(rj) I VP) stand fo
conditional average of the mn stress-stensor element
distance r in thej direction from a point where the rest
velocity has magnitude V in the k direction. These

rLL- L 

r VN

'TNN if rLjVN

FIG. 1. Sketch of relevant directions of conditionally averaged SOS stress
tensor in isotropic turbulence. Three scalar functions, each depending on
two arguments (distance and velocity magnitude) are needed to com-
pletely describe the conditional mean SGS stress.

functions (of two independent variables each) needed to
completely specify the two-point conditional stress average
in isotropic turbulence are illustrated in Fig. 1.

D. Two-point statistics

Here we shall focus on two-point second-order mo-
ments of the resolved fields in homogeneous turbulence.

1. Correlation functions

We define the resolved (real and modeled) two-point
velocity correlation tensor as

Bjj(r,t) e (Utah>'; B'J(r,t)=e(ut*Uj*. (35)

The prime indicates that the velocity is evaluated at point
x+r instead of x. As usual, the filtered Navier-Stokes
equations are now multiplied by the filtered velocity at the
second point, leading to

at-2vVr )Bij(r) =-p (piij) -p- j- J)

a

a
aTri ( Gik~j+ Gjkdt) (36)

Here

BJjk(r,t) = (USZkU); GJkj(rt) = (ijrJk). (37)

(33) To simplify the exposition, we now consider isotropic
turbulence. The correlations with pressure vanish (see,
e.g., Monin and Yaglom, 197522) and the remaining ten-
sors can be expressed in terms of a few scalar functions. We

7N) consider longitudinal correlation functions, i.e.,

BLL(rt) E (WL(xt)WL(x+rLt)), (38)

(34) where rL is the separation vector in the L direction, and

r the whose magnitude is r. Also,
t at a BLLL(rt) (iUL(Xt) 2 WL(x+rLAt));

;olved (39)
three GLLL(r~t) e(LL(xt)WL(x+rLt))
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are the longitudinal third-order correlation functions. The
evolution of the longitudinal correlation function BLL(rt)

is given by

[ d2 4 d d 4

.- 2v - Ar LL(r~t) - (Y _r LLL(r~t)

= ( '+') GLLLJr~t) . (40)

This is the von Kfirmin-Howarth equation for the re-
solved portion of the velocity field, in which the third-order
correlations are decomposed into those arising from the
resolved field, BLLL, and those coming from the interac-
tions with the subgrid scales, GLLL (also see the discussion
by Leonard, 197423). A similar equation governs the evo-
lution of the LES correlations, involving BTLL(rt),

B*LLL(r,t), and G*LLL(rt).

As in the previous sections, we can make the following
type of statement: In order for the SGS model to generate
both the correct correlation functions BLL(rt) and the
correct resolved third-order correlations BLLL, one must
ensure that the scalar function GLLL is predicted correctly.
In other words, to allow for the following equalities:

BLL(rt)= BLL(rt); BLLL(rst)=B*LLL(rt), (41)

a necessary condition is that

GLLL(r,t) = 6*LLL(rt) * (42)

Notice that an arbitrary integration function [obeying (d/
ar+4/r)C(r)=01 does not enter here, because it would
diverge at r=O. Again, however, Eq. (42) by itself is not a
sufficient condition to ensure the correct correlation func-
tions BLL and BLLL-

2. A sufficient condition for structure functions in
locally isotropic turbulence

We now define the longitudinal structure functions,

DLL=-([uL(x+rL)-UL(X)I
2 >

= 2 [BLL(O,t) -BLL(r~t) I

<C'LLTLL> r /

\/

/ -<[uLx+r, -iix)] 3>/6

j~~~~~~~~~<' L=~r) L(x) >

r

FIG. 2. Sketch of various terms appearing in the equation for the resolved
longitudinal structure function in locally isotropic turbulence, as a func-
tion of displacement.

= (2vB"LL(O) ± (SLL-LLY )r. (46)

For high Reynolds numbers (and A~o7), this becomes

([iiL(x+rL) -iiL(x) I') +6(WL(x+rL)rLL(X) )

=6(SLL-TLL)r. (47)

This relation is quite interesting and falls somewhat outside
the hierarchy previously encountered: If the two-point cor-
relation function GLLL=(UL(X+rL)TLL(X)) is correctly
modeled, then it must lead to the correct third-order struc-
ture function (recalling that (SLL-rLL) is just GLLL at
r=O). In other words, this now provides a sufficient con-
dition under the assumptions made during the derivation.

At very small r, DLLL-r3. Therefore the correlation
(uL(x+rL)TLL(x)) must be linear in r, with slope
(SLLrLL). At large r>. A, but still within the inertial range,
one expects the structure function to be linear in r and the
velocity-stress cross correlation to become small. The ex-
pected trends of these terms is illustrated in Fig. 2.

Expanding Eq. (47) in powers of r for small r, yields
the balance of energy dissipation at the order r'. The next
term is of order r

3 and relates the third-order moment of
filtered velocity derivatives to the SGS stresses, according
to

(43)

and

DLLL=- ([L(x+rL) -UL(X) ] ) = 6
BLLL(rst)- (44)

Evaluating Eq. (40) at r=O and using aGLLLIar
=(SLL(X+rL)rLL(X)) (where SLL is the longitudinal
component of the filtered velocity rate-of-strain tensor)
yields

(48)

This equality describes the equilibrium between production
of enstrophy of the resolved field and dissipation of
resolved-scale enstrophy by the SGS stresses. As always, a
similar expression can be written down for the field result-
ing from the LES:

a9~~-BLLO~t =5 (2vBIL(0,t) + (SLLTrLL~). (45)

This result is replaced in Eq. (40), written in terms of
structure functions. As usual, one argues that for r much
smaller than the flow-integral scale, the rate of change of
DLL(r,t) in time is negligible compared to the other terms.
After integration, one obtains

;DLLL+ (uL(x+rL)TLL(x)) -vDLL

( (a4)3>
(834)

(49)

This shows that a sufficient condition for obtaining the
correct third-order moment of velocity gradients from the
LES is to properly model the correlation

( 8U-L TL) = ( _T934IUl) (50)
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In order to generalize this condition to nonisotropic
bulence, it is straightforward to consider the resolved
ticity equation containing the SGS stress tensor. After
tracting with 5i (the resolved vorticity), one obtain
equation for the resolved enstrophy:

_(o___ (/2) a2

at = ax} =ijsu+VjV wi- 2Rjk-

where Rij - E,]ikO 2 is the rotation tensor. Takin
ensemble average, assuming statistical stationarity a
high-Reynolds number, Eq. (48) is generalized to

= ( 2R Jk aXk ax,) 2( 1 aXk ax)'

where the last equality holds for homogeneous flows.
comments on possible applications of this relation tc
mulate an "enstrophy SGS model" are given in Sec
when analyzing experimental results.

Returning to isotropic turbulence, the next term i
expansion of Eq. (47) (describing equilibrium bet
production and "dissipation" of palenstrophy) aris
order r5 and reads as

2I aIj) 1 3TW~ LL)
aXL \XL 30 aXL

This can be continued to higher-order coefficients is
expansion, every time obtaining a more stringent stati
condition that the modeled SGS tensor needs to obey
sufficient condition for obtaining the correct higher-c
derivative moment of the LES velocity field.

E. Statistical a priori testing

The statements made in Secs. IL A-LI D can be u
stood as the identification of measureable quantities
terest in the study and testing of SGS models. For stc
cal a priori testing of models, moments (and joint stat
with the resolved velocity) of the SGS stresses come
from a fully resolved field u (DNS or experimental
compared to the predictions of a particular model.
goal is to test whether a given model can match the
essary conditions introduced in Secs. II A-IL D.

The discussion of the previous sections refers to
parison between statistical measures of I... and -I
To evaluate the latter, however, it was understood the
LES field u* was known. On the other hand, in orde
the a priori test to be practical, it should be based o
measured field u only and not require an additional
computation. Otherwise, one may as well perform a I
riori testing and directly compare statistics of ii to the
uO. So, what one really wishes to compare is fij

5-j(U). For instance, in order to find necessary cond
to correctly predict the mean velocity, pressure, and
ond moments in a LES, one would measure (Til)
(SY~(i)) instead of (Y.jj(u*)). This means that be
the conditions spelled out in Sec. II A, an addition;
sumption must now be made, namely, that

c tur-
d vor-
con- Alternatively, the necessary condition derived in terms of

ns an the equality of real and modeled SGS stress is a necessary
one for equality of mean, second-order velocity moments
(as before), and the equality of the statistical expression

sTo resulting from the model. This statement is easier to un-

ax,' derstand through an illustrative example: Assume that the
(51) Smagorinsky model is being studied by a priori testing us-

ig the ing DNS of some particular nonhomogeneous flow field,
and a say, a channel flow [see, e.g., Ref. I1, Fig. 21. Now, the

stresses rij are computed by filtering the DNS field u at
some length scale A (larger than the original grid). Also,
the "modeled" stresses are calculated according to
( 2C2A2 (2SmnSmn) "2Sip. Ensemble average values of both

Some stress tensors are calculated as time averages or over ho-
So for- mogeneous spatial directions. This can lead to two different

°fo°Ir results (a) The average real and modeled SGS stresses are~c. III equal to each other at every point in the flow or (b) they

in the differ. In case (b), one can conclude that it is
tween not possible for a LES to reproduce simultaneously the

mean flow, mean pressure, the second-order moments and
ses at the "Smagorinsky moment" ((SmnSmn) / 2SO. In the case

(a) that the mean stresses agree everywhere, one can
conclude that it is possible for the mean velocity, mean

(53) pressure, second-order, and Smagorinsky moments to be
correctly generated by a LES. However, (a) does not

in the imply that these moments will be correct because, as re-
istical marked before, errors in the mean flow could instead
(, as a be generated by erroneous second-order moments, or now,
)rder- by different values of the "Smagorinsky moment," i.e.

((rS isnn1/2- \ /S* c* ) 1 1 2 S*'(
\t mnomnJ Sij/7\ mn mnJ fj

If one is not satisfied at this particular level, one can
proceed to second-order moments and compare the rate-
of-strain stress correlation at every point. If they agree,
then it is possible that the second-order moments would be

nder- correctly predicted (although, again, this is not guaran-
of in- teed), increasing the likelihood that the correct mean flow
atisti- would be obtained from the LES.
tistics Such a statistical study of several eddy-viscosity mod-

puted els is performed in the next section.
) are

The Ill. EXPERIMENTAL TESTS IN GRID TURBULENCE
e nec-

In previous sections the importance of several statisti-
com- cal properties of the SGS stress tensor have been pointed
(u*). out. In this section we analyze experimental data obtained
at the in (nearly) isotropic flow (grid turbulence) from a single
Ler for hot wire. This simple flow is chosen here as a starting
)n the point. Applications to nonisotropic shear flows, more spe-
I LES cialized tests, and more complete experimental data will be
poste- reported elsewhere.' 7'2 4 In isotropic turbulence the mean
ose of stresses are zero, so nothing interesing occurs at the level of
i and mean quantities. Thus, we proceed to the level of energy
litions dynamics and two-point statistics. The necessity of cor-
d sec- rectly predicting the stress-velocity cross-correlation,

and 
esides (UL(x+rL)TLL(x))=(iL(x+rL)-LL[u(x)], (55)
al as- has been highlighted (Sec. II D). This condition is neces-

sary to obtain the correct resolved energy spectrum from a
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LES of isotropic turbulent flow, and is sufficient for the
prediction of third-order structure functions.

Three variants of the eddy-viscosity SGS closure are
studied. They are tested by evaluating SGS energy and
enstrophy fluxes, as well as by measuring both sides of
expression (55). Measurements from a single hot-wire
probe, along with Taylor's hypothesis, are employed. Thus,
only ul(xl) is available for the analysis. As will be de-
scribed in more detail when appropriate, this forces us to
proceed by (a) filtering in only a single direction xl, in-
stead of all three; (b) evaluating local eddy viscosities
based on single components; and (c) not subtracting the
trace of the SGS stress tensor. The impact of step (a) will
be quantified in the Appendix and step (c) will be shown
to be of no relevance for isotropic turbulence. Step (b),
although more difficult to justify, will a posteriori be argued
to have little impact on the results. Therefore, although
these procedures are expected to alter some quantitative
results, the working hypothesis is that the observed trends
obtained through such an analysis are representative of the
real trends.

The details on the experimental setup and data pro-
cessing are given in Secs. III A and III B. Some general
results are presented in Sec. III C and model constants are
studied in Secs. III D 1, III D 2, and III D 3. The results
on the velocity-stress cross-correlation function are pre-
sented in Sec. III E.

A. Experimental conditions and flow characterization

Measurements were performed in a closed loop, low-
speed, wind tunnel with a 0.91 X 1.22 X 10 m test section.
The location of the probe was at x/M=68.7 downstream
of a grid (square bars, 1.9 cm thick), with mesh size
M=10.2 cm. Also, a secondary 1:1.27 contraction2 5 was
used to promote component isotropy. The mean velocity
was U=25.2 m/s, the longitudinal integral scale was
LI = 8.3 cm, the root-mean-square streamwise velocity was

I = 0.42 m/s, and the Taylor-scale Reynolds number was
Ri- 170. A 0.45 mm long Dantec-A53 subminiature probe
and a Dantec-56C17 anemometer were operated at an
overheat ratio of 1.8. After low-pass filtering at f,=30
kHz, the signal was digitized on a 12 bit AID board at a
sampling frequency of fs= 60 k]Iz. Some additional digital
filtering is employed to eliminate high-frequency noise
peaks. More details on the experimental setup and signal
conditioning are given in Ref. 26.

A total of 3 X 106 samples are analyzed, and all quan-
tities computed are statistically fully converged. The dissi-
pation rate, estimated from the isotropy relation,

(E)=15v ((au,) ,

is (e) = 1.15 m2 /s3 . Taylor's hypothesis is used,

a Ia
jx7_ = U at,'

10' -

10'r

105 ,

~ 10' ,
' 10-'A

_~ 10'

V

X 10'
-7 lo-

10-'

104'
l o-, _1O6 10-' tO-'1 0_

k, c
107i' 100 l0,

FIG. 3. Solid line: Measured longitudinal energy spectrum of the grid
turbulence data (RA - 170) used for the present analysis, in Kolmogorov
units. The rapid rolloff seen at k1i7 > 0.5 is due to the filtering employed to
eliminate noise as well as to probe resolution. Symbols are a representative
compilation from other experimental data: Squares: grid turbulence
RA=37 (Comte-Bellot and Corrsin, 1971); triangles: grid turbulence
RA=72 (Comte-Bellot and Corrsin, 1971); plus: cylinder wake RA=

3 08
(Uberoi and Freymuth, 1969); rhombs: grid turbulence RA= 540 (Kistler
and Vrebalovich, 1966); stars: round jet RA= 7 8 0 (Gibson, 1963); circles:
boundary layer RA= 1,450 (recent data of Veeravalli and Saddoughi, Ref.
27, 1991).

about 1/77=2. The skewness of the velocity derivative is
-0.38. The energy spectrum normalized in Kolmogorov
units is shown in Fig. 3, alongside other experimental data.
Although the inertial range is very small, the collapse on
the universal curve is good. The normalized third-order
velocity structure function ([ul(x+r) -u 1(x)]3 1/( (E)r)
is shown in Fig. 4. While no extended inertial range exists
at this moderate Reynolds number, the peak is not too far
from the asymptotic -4 value for isotropic turbulence. The
skewness of the velocity itself is (u3)/(u2)3 /2 =0.033,
which is small (although for perfectly isotropic turbulence
one would expect this value to be zero).

B. Data processing and models

1. Filters

Several filters are employed to compute the "resolved"
velocity uW(x) at scale A,

I,

A0

V

(56) N

If,

V

(57) 

and time derivatives are computed with a simple finite dif-
ference of the consecutive samples. The Kolmogorov scale
is q = 0.23 mm, smaller than the probe length by a factor of FIG. 4. Dimensionless third-order structure function.
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(a)(58)

This is done using FFT, using zero padding (statistics were
later evaluated only over points unaffected by end effects).
Similar expressions are used to compute the stress element

Cutoff, Gaussian, and top-hat filters are considered.
The cutoff filter is used to generate resolved fields that
mimic those available during a LES using a spectral
method, while a top-hat filter may be more in line with a
finite-difference scheme (although this correspondence is
not at all exact2 7 ). The Gaussian filter, being of interme-
diate resolution in physical and wave number space, may
produce resolved fields containing information similar to
that of a LES using a (hypothetical) wavelet method.
Since the compatibility between a numerical method and
corresponding filter type is presently not well understood,
the above-mentioned relations have to be regarded with
caution.

The filters employed are one dimensional: no filtering
is performed in the x2 and X3 directions. The reason for this
approach is simply lack of experimental data, except along
a line in the xl direction (using Taylor's hypothesis). For
now, the working hypothesis is that the one-dimensional
(1-D) filtered quantities do not appreciably differ from
their (3-D) counterparts, as far as the observed trends in
the measured statistics is concerned. In the Appendix it is
shown, based on an inertial range evaluation of the Sma-
gorinsky constant, that this assumption cannot hold ex-
actly, especially as far as the correlation (SpqSpq) is con-
cerned. Moreover, nonisotropic filtering of an isotropic
field u produces anisotropy in U, especially for two-point
correlations at small separations r< A. However, we con-
tinue to employ the working hypothesis to argue that ob-
served trends should be realistic. Alternatively, the Appen-
dix introduces a more precise interpretation of the present
analysis in terms of anisotropic filtering relevant to LES on
highly anisotropic meshes.

The filters employed are

sin(1rxj// )
Cutoff: FA(xl)=-- (59)

IT 1 /6X12\

Gaussian: FA(xl)= /I1Aexp(-A), (60)

1 A
Top hat: FA(xl)=,, if lxi I <2

FA(xl)=0 otherwise. (61)

These filters and their transfer function in Fourier space
are shown in Fig. 5.

The -rj element of the total SGS stress tensor is com-
puted according to

T11 (XI) =ujuj-ulju_, (62)

where again the overtilde denotes filtering with FA. Notice
that the trace has not been subtracted, since we are not
performing simultaneous measurements of u2 and ti 3 . For

^7A 0.5

LL2 0.3

0.2

0.0

-0.1

-0.2

-0.3

1.2

1.1

1.0

0.9

0.8

0.7

Z$ 0.6

U 0.5

0.4

0.3

0.2

0.1

O0.1

X,/

(b)

.0 2.5 5.0 7.5 10.0 12.5 1 .
k, A

FIG. 5. Shape of filters used in the analysis of data. (a) FA(xl) in
physical space (prior to normalization to unit area), -: cutoff; :
Gaussian; -. -: top hat. (b) Transfer function in Fourier space F2 (k),
_ : cutoff; : Gaussian; - -: top hat.

evaluating the stress-velocity correlation in isotropic tur-
bulence, this is of no concern, as seen below. The correla-
tion involving the trace of the stress is a vector that only
depends on r:

(T,,(x)Wj(x+r)) =C( I r )rj=0. (63)

The last equality follows from taking the divergence with r
and using incompressibility. Therefore

((irll(x)-3ip(x))Wj(x+r))= (T1 (x)Wj(x+r)). (64)

Similar arguments hold for the correlation (S§ijpp), which
must vanish because it is a traceless isotropic tensor.
Therefore

(Sjj(Tjl -~3rpp)) = (S11T11). (65)
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2. Eddy viscosity models

Several eddy viscosity models of the form,

-Ij[Ul = - 2V7'Sif (66)

are considered. The first is the usual Smagorinsky eddy
viscosity. Instead of using the complete second invariant of
the rate-of-strain tensor (because of present limitations in
measurements), a one-dimensional surrogate is employed,
assuming instantaneous isotropy:

T'-(l)[j WI] - -2(C ) F15(S I)2
1 1

0.20

0.18

0.16

0,14

0.12

j 0.10

0.08

0.06

0.04

0.02

0.00

(67)

The second model is a constant eddy viscosity assumption,
using the global average instead of the local value of the
rate of strain:

11 =2 )[j' =-2(C2 A)2 15((S 1 1)
2)S 1 1 . (68)

This model is considered for the purpose of exploring the
influence of eddy-viscosity fluctuations on the resulting sta-
tistics. It is understood that in a simulation the numerical
value of the eddy viscosity would be obtained from the
resolved field by averaging over homogeneous directions,
time, etc. This model actually resembles the (wave
number-independent) spectral eddy-viscosity closures,
where the eddy viscosity is evaluated, based on the com-
puted energy spectrum at the cutoff. Thus, it differs from a
"constant eddy-viscosity" model in which a particular nu-
merical value is assumed a priori for the eddy viscosity.

As a third model we obtain the velocity scale based on
the SGS kinetic energy:

q2= 3(uj-iij)2 (69)

7rl[l = - 2 <^ v 11 (70)

again based on the ul values only. For this model, an ad-
ditional transport equation for q2 is envisioned, as in Refs.
29 and 30. For now, we assume 4 to be known and con-
centrate on expression (70).

The modeled stress elements are computed over the
entire data set. A representative segment of the real stress
rly and the modeled ones (without multiplying them by
the model constants) are shown in Figs. 6-8, for the

0.22 - I , , 8

0.20 6

0.18 4i 4
0.18 I 

_ kM4( iWo iv-a- ~^JI0 }t 22 0~. 0.10

0.08 -4
0.06 -- 6 3,1
0.04 -8
0.02 -10
0.00 -12

0 10 20 .30 40 50 6

FIG. 6. Measured traces of the 1 1 element of the SGS stress tensor.
Real stress r'11(x1);- - -: modeled stress Y'111

(x 1 )/C2, using the Smagor-
insky model (without the model constant). Gaussian filter with A= 32i7.

-1 1 0 20 30 4.0

3

2

-3

-.4

-5

- 6

FIG. 7. Measured traces of the 11 element of the SGS stress tensor. :
Real stress ri-1 (x1); - -: modeled stress I) (xX)/Cg using the constant
eddy-viscosity model (without the model constant). Gaussian filter with
A=32o7.

Gaussian filter with A = 32Xq. Note that no direct compar-
ison between the two signals is possible, because the trace
has not been subtracted from Tll(x 1 ). This causes that
signal to be strictly positive, whereas the model expression
displays both signs. [Note that for the cutoff filter one oc-
casionally encounters r1 (x1) <0; this is also the reason
that the absolute value is taken inside the square root in
Eq. (70).] As has been argued before, not subtracting the
trace should not influence the statistics of interest, in grid
turbulence. However, it could influence the observations
that follow. We notice a fairly good correspondence be-
tween peaks in rll(xl) and 5 11 (xl): However, since the
sign of the excursions in .YI (xl) changes, this behavior
does not mean that we get good predictions for Trll(xl).
Quite interestingly, the degree of stress "intermittency"
appears to be captured much better by the Smagorinsky
and SGS energy models than by the constant eddy-
viscosity model. The first two models depend locally on
squared velocity differences, which are more intermittent
than their first power. Nevertheless, according to Sec. II,
higher-order moments of the stresses themselves were not
found to be directly relevant to the energy dynamics of the

0.20

0.1

0.14

0.12
0.10

0.08

0.06

0.04

0.02

0-001

0.3

0.2

0.1

-0.0 C

-0.1 'a

-0 2a

-0.3

-0.4

-0.5

0v~vi I ;10 20 30 40 56 O'
X,/A

FIG. 8. Measured traces of the 11 element of the SGS stress tensor. - :
Real stress Tr1 I(x1); - -: modeled stress 513(x 1)/CP using the SOS ki-
netic energy model (without the model constant). Gaussian filter with
A =37Xq.
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FIG. 9. Measured correlation coefficient between real and modeled SGS
stress tensors, flj and ' -: Cutoff filtering, *: Gaussian filtering;
- -: top-hat filtering. Circles: Smagorinsky model; squares: constant eddy
viscosity; triangles: kinetic energy.

resolved field. Therefore, we continue the analysis of the
constant eddy viscosity model as well.

Results on other models, such as Bardina's similarity
model, etc., will be reported elsewhere.' 7'2 4

C. General results

1. Correlation with models

To quantify previous observations, the correlation co-
efficient between i-ll and _YTj is computed, for the three
filter types considered. Figure 9 shows that this correlation
is very low, for the entire range of relevant values of A,
filter types, and models considered. This is quite consistent
with the low degree of correlation that has been noted
before in a priori testing from DNS databases [e.g., in
Clark et aL (1979),9 McMillan and Ferziger (1979),10 Pi-
omelli (1988),"l Meneveau et aL (1992), 2etc.]. However,
the correlation p between the absolute values I T1 I I and

JT J) | is much higher. For example, for the cutoff filter at
A=32X7, one obtains p_=0.47, 0.40, and 0.52 for the Sma-
gorinsky, constant VT and kinetic energy models, respec-
tively, while the values are p=0.88, 0.8, and 0.92 for the
Gaussian filter. This result does not appear to have imme-
diate utility besides showing that "activity" in the strain
rate is accompanied by high SOS stress values.

2. Subgrid and viscous fluxes of kinetic energy

Several forms of energy flux to smaller scales are now
compared. (a) The rate of dissipation (e) computed as in
Eq. (56); (b) the large-scale estimate uj3 /L; and (c) the
energy drain on the resolved motion at scale A:

Ha'='-Tr (l S1l); (71)

(d) The viscous dissipation of kinetic energy at scale A is
also of interest:

eA = l5v4g3). (72)

The inertial range scaling of this quantity is

eA--v(e)23-4/3. (73)

FIG. 10. Measured energy fluxes as function of filter width. Circles: SGS
flux HA= -1 (1rSll). Diamonds: viscous dissipation rate EA. -: cut-
off filter, *: Gaussian; - -: top hat. Upper horizontal line: molecular
dissipation (e); lower horizontal line: large-scale estimate you'll.

These fluxes are computed as a function of A, for the dif-
ferent filter types, and they are shown in Fig. 10. The
dissipation (e) and the large-scale estimate uI3 /L, are dis-
played for comparison. The trends observed are as ex-
pected: H1A displays a plateau of the same order of magni-
tude as (e) or of u' 3 /L,. The decay of eA also follows the
expected trend. Interestingly, nA and ens are of the same
magnitude at about A/,q 20, usually argued to be about
the lower limit of the inertial range. Above A 507 (say),
the viscous flux becomes very small, less than 15% of the
SGS flux.

D. Model constants

1. Model constants from measured energy balance

The model constants can be obtained, based on the
condition that both the modeled and the real SGS energy
flux must be the same:

(a) Smagorinsky: C2l= (S11rll)

(b) constant eddy viscosity:

C22 = ~ Sl(,1 -1 I)

-2A2 41(~)Sil)

and

(c) SGS kinetic energy: C&3= (S'lIT)

-2A( qS ,1 )

(74)

(76)

Plots of CA as a function of filter width A are provided in
Figs. 11-13 for the three filter types. To a first approxima-
tion these values are fairly constant over the range of A
values of interest. For the Smagorinsky model and con-
stant eddy viscosity there is some difference between the
cutoff filter results, which increase slowly with A, and the
other two, which are considerably less dependent on A.
The trend is reversed for the SGS kinetic energy model
constant. Nevertheless, the structure of the eddy-viscosity
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FIG. 11. Measured model constant for the Smagorsinsky eddy-viscosity
model, as a function of filter width. -: cutoff filter, -Gaussian; - -:
top hat.

models appears to adequately reproduce the trends in en-
ergy flux with a constant C1, independent of A, over the
range of scales of interest. While IIA in Fig. 10 varies by
more than a factor of 5 between A= 10,q and 50i1, the
model constants change by less than 40% in the worst case
(cutoff filter) in that same range.

Now we comment on the numerical value of the mea-
sured constants. Based on experience with LES and on a
simple derivation assuming that A pertains to the inertial
range,3 1 the Smagorinsky constant C, is usually chosen
somewhere between 0.1 and 0.2 (for grid turbulence closer
to 0.16, actually). Present results are considerably lower
than those values. This discrepancy is possibly due to the
one-dimensional filtering that is employed here. It causes
the variance of S11 to be overpredicted, since lateral fluc-
tuations are not filtered out. To the degree that the corre-
lation (rlIS,,) is not strongly affected, one obtains a lower
value for the model constants. In the Appendix it is shown,
using inertial range arguments, that the constant is indeed
expected to be underpredicted by a factor of about 2 when
one-dimensional instead of three-dimensional filtering is
employed. From Fig. 11 one obtains a representative value
of about C1 -0.055. When multiplied by the correction

I 0'

FIG. 13. Measured model constant for the SGS kinetic energy model, as
a function of filter width. The captions are the same as in Fig. 11.

factor for one-dimensional averaging (see the Appendix),
one obtains C 5 0. 11, which is closer to the range of values
usually employed.

From this discussion it is apparent that great care has
to be taken in the interpretation of precise numerical values
deduced from present experimental tests. For this reason
we shall be interested more in observing qualitative trends,
which are representative of the structure of a model.

2. Model constants from measured enstrophy
dissipation

Instead of obtaining the model constants based on bal-
ance of energy, we can instead employ Eq. (49) and re-
quire that both real and modeled stresses generate the same
SGS dissipation of enstrophy:

(a) Smagorinsky: C2=_
-2,&29( 3UI~dX31) g517

(77)

(b) constant eddy viscosity:

(78)

and

0.14

0.12

oioJ-

t 0.08

( 0.06

0.4 F

0.02

-I00 10' 100'

FIG. 12. Measured model constant for the constant eddy viscosity me
as a function of filter width. The captions are the same as in Fig. 11

(c) SGS kinetic energy:

-2 _ (( 1ldxlrl
(79)

-2A((a i 1/a ) I

In order to avoid some very high-frequency corruption
when taking the third-order derivatives of WI, this variable
is filtered after each differentiation with a Gaussian filter of
(small) width A/10. This procedure has practically no
effect on the statistics computed, for the cutoff and Gauss-
ian filter. It is done anyway because a trace of I3 uz/axl vs
xl without this additional smoothing at scales much
smaller than A has a very "noisy" appearance. For the
top-hat filter there are indeed some differences when taking

odel, the required higher-order derivatives with or without the
1. smoothing; therefore no results are presented for this case.
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FIG. 14. Measured model constant for the Smagorsinsky eddy-viscosity
model, enforcing the correct enstrophy dissipation. : cutoff, -- :
Gaussian.

FIG. 16. Measured model constant for the SGS kinetic energy model,
enforcing the correct enstrophy dissipation. -: cutoff, *--: Gaussian.

The calculations are repeated for different values of A,
and the results are presented in Figs. 14-16, for the cutoff
and Gaussian filters. We observe that for A/ > 30 (i.e., in
the inertial range) the constants so computed are quite
consistent with those arising from the balance of energy
dissipation. Thus one could argue that, according to the
discussion in Sec. II D 2, a LES with these models will
produce the correct value for the third-order moments of
velocity derivatives, in isotropic turbulence. For lower val-
ues of A, the constants required are larger than those re-
quired for energy balance. If one uses the constants ob-
tained from the energy-flux balance, the modeled rates of
enstrophy dissipation would be smaller than the measured
SGS values. During a LES (with A < 30X7) this could result
in a pileup of enstrophy at wave numbers close to the
cutoff. However, one must remember that this discussion is
based on the assumption that l-D filtering produces trends
comparable to 3-D filtering.

3. Model constants from resolved enstrophy balance

Continuing with the balance of enstrophy, we notice
that the condition in Eq. (48) could also be used to eval-
uate the model constants by requiring that

(80)

The interesting feature of this relation is that it involves
only statistics of resolved features of the flow. The funda-
mental difference with the balance of energy flux is that the
production of enstrophy [represented here by the LHS of
Eq. (80)] also occurs near the smallest resolved scales.
Therefore, the model constants can be computed as

(a) Smagorinsky: Crf=
-A^2<((a31(aX81) 1)

(81)

(b) constant eddy viscosity:

-2 -l((ah/axl)
3)

enstrophy dissip.

O~12~

o.iof
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.0 . .0 .0 .

0.00 I . _ .. 102 1o,
A/77

FIG. 15. Measured model constant for the constant eddy-viscosity model,
enforcing the correct enstrophy dissipation. - : cutoff, - : Gaussian.

(82)

and

(c) SGS kinetic energy:

,-2 (w8i/8la)3) (83)

The results are shown in Figs. 17-19. Again, there is good
agreement with the values obtained before, except for the
kinetic energy model for which the model constant contin-
ues to decrease even above A/11=30.

4. A new model based on enstrophy balance

The fact that one can obtain the model constants from
the resolved fields suggests the possibility of a new model
based on enstrophy equilibrium. Using Eq. (52) without
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FIG. 17. Measured model constant for the Smagorsinsky eddy viscosity
model, enforcing balance of enstrophy production and dissipation.-:
cutoff filter, : Gaussian.

the averaging, and computing a "local" value for (say) the
Smagorinsky constant, one obtains the following "enstro-
phy" model:

VT= Op qSpq 2§p§pq,
4( r2Sm§me§Sj) (aORjk/aXk aXI)

where

- I
(84)

When A approaches the Kolmogorov scale, one should
also subtract the enstrophy dissipation caused by molecu-
lar viscosity, v(VF5) 2 , from the numerator. This, in fact, is
the reason for the high values at low A in Figs. 17-19.
Relation (84) can be interpreted by saying that the enstro-
phy balance is used to obtain the appropriate length scale
of the model. An interesting feature of this expression for
VT is that it vanishes in irrotational flow (since the numer-
ator contains a higher power of vorticity than the denom-

enstrophy balance

0.20

0.10

0.05

V.U10O
10 o02 10'

FIG. 19. Measured model constant for the SGS kinetic energy model,
enforcing balance of enstrophy production and dissipation. -: cutoff,

. Gaussian.

inator). Also, it does not contain any free parameter, not
even the width of the test filter that must be prescribed in
the "dynamic model" of Germano et al 3 However, it suf-
fers from a difficulty similar to the "dynamic model" in its
original formulation:3 the denominator has zero crossings.
This difficulty can be remedied to some degree by averag-
ing over homogeneous directions, if they exist, or by time
averaging:

T-4( V2Smn-n§meij(82Rjk/Xk aX1)

Nevertheless, additional problems can be expected in its
implementation since it is not clear how an actual LES
would "adjust" to such a model. Because the constant is
computed through an expression that is obtained directly
from the N-S equations the following scenario is possible:
Assume that one chooses an initial value for C5 and per-
forms the LES in order to evaluate the average production
and modeled SGS dissipation. It is possible that the LES
will "adjust" so that the production and SGS dissipation of
enstrophy are balanced no matter what constant was used
as an initial guess. When evaluating it according to Eq.
(87), one would thus obtain the same value assumed as the
initial guess. Finally, the need to evaluate higher-order de-
rivatives can cause additional problems. Without a poste-
riori testing, it is therefore not possible to further ascertain
the merits of such an enstrophy model.

E. The velocity-stress correlation function

1. SGS stress correlation

In this section the velocity-stress correlation function
is measured. After obtaining the filtered velocity and the
stress, the two-point correlation functions,

FIG. 18. Measured model constant for the constant eddy-viscosity model,
enforcing balance of enstrophy production and dissipation. - cutoff
filter, : Gaussian.

(86)

are computed using FFTs. Results for the cutoff filter using
different values of A are shown in Fig. 20. The correlation
functions are normalized based on the large-scale estimate
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FIG. 20. Velocity-stress correlation function measured in grid turbulence
using the cutoff filter. : A= 160X7, ---: A= 122X7, *: A =4877; and-:
A=1677.

(e) LI, while r is normalized with 7. The corresponding A
values are indicated with the arrows. Similar results for
Gaussian and top-hat filtering are shown in Figs. 21 and
22. The general shape of these curves is indeed as expected
from the discussion in Sec. II D 2. The slope at the origin,
equal to (S 11 ,r1j), is seen to be almost independent of A,
which is consistent with the constancy of the energy flux. It
can also be observed that GA (r) does not exactly vanish at
r=0 as it should in isotropic turbulence. We recall that
since even the velocity skewness is not exactly zero, small
deviations from isotropy are to be expected.

For the cutoff filter, oscillations can be observed.
They are due to the "lobes" of the filter. When r= rn
=(4n +1) A/2 the filter has local peaks, meaning that
W7 (x + ri-) will contain some contribution from the velocity
at x. Since the velocity there makes a direct contribution to
rTi(x), one obtains an increase in the correlation between
WI(x+r) and Trll(x) when r=r". On the other hand, no
significant differences are observed between the results cor-
responding to the Gaussian and top-hat filters.

gassing

N_;I

(5

FIG. 21. Velocity-stress correlation function measured in grid turbulence
using the Gaussian filter, for different filter widths. The legend is as in Fig.
20.

FIG. 22. Velocity-stress correlation function measured in grid turbulence
using the top-hat filter, for different filter widths. The legend is as in Fig.
20.

The plots suggest the possibility of scaling with A. This
is shown in Fig. 23 for the Gaussian filter. Although the
curves peak at similar values of r1A, the curves do not
collapse. This observation implies that a "universal" SGS
dissipation spectrum (in which A takes on the role of the
Kolmogorov scale) does not exist for this flow. This is not
surprising given the moderate Reynolds number. We now
elaborate a little further on the notion of a SGS dissipation
spectrum. Starting from Eq. (40) it is easy to show that (in
isotropic turbulence) E(k,t), the three-dimensional radial
spectrum of the resolved field, obeys

(t-2vk)E(k~t) - T(kt) =H(kt). (87)

Here

H(k,t) =-X GLLL(rt) [3 sin(kr) - 3kr cos(kr)
I foo

-k2 r2 sin(kr) ]dr, (88)

is the "SGS dissipation spectrum." We remark that it
can be used to define a wave-number-dependent eddy
viscosity.3 2 The transfer spectrum T(k,t) consists of triple
products of resolved velocities, and does not occupy our
interest here. To the degree that present measurements of
GA(r)=(W (x+r) rjj(x) are representative of GLLL(r)
(keep in mind the 1-D averaging, lack of exact isotropy,
etc.) self-similarity of GLLL(r) would have implied that
H(k) could also be rescaled:

H(k)
=kA. (89)

It is possible that such a collapse may occur at higher
Reynolds numbers. We have attempted to compute H(k)
according to Eq. (88) using the measured correlation func-
tion GA(r) instead of GLLL(rt). However, small oscilla-
tions in GA (r) and deviations from isotropy are enough to
render the integral very unstable. Large and unphysical
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FIG. 23. Scaled velocity-stress correlation function measured using the
Gaussian filter. The legend is as in Fig. 20.

oscillations in H(k) resulted from this procedure and we
therefore have to refrain from transforming our experimen-
tal results to (radial) Fourier space.

Next, we recall that a good SGS model should repro-
duce the measured correlation functions as a necessary
condition for LES to generate the correct energy spectrum.
This is explored in the next sections.

2. Modeled velocity-stress correlation function
We have already established that the data supports an

approximately constant value for the model constants (see
Figs. 11, etc.). The purpose of this section is to test
whether the models also correctly reproduce the two-point
structure observed in the previous section. In order to sep-
arate this issue from the precise value of the model con-
stant, the latter is selected such that the correct energy flux
is guaranteed, at every A. In other words, the model con-
stant is chosen at each A according to Eq. (74). Then the
modeled correlation function (Wj(x+r)9.j (x)) is com-
puted. The results corresponding to the Smagorinsky
model are presented in Figs. 24-26 for the different filter

0

cut-off

FIG. 24. Real (lines) and modeled (symbols+lines) velocity-stress cor-
relation function, using the cutoff filter, and the Smagorinsky model. Solid
lines: A= 122iq; dotted lines: A=48i7.

FIG. 25. Real and modeled velocity-stress correlation function, using the
Gaussian filter, and the Smagorinsky model. The legend is the same as in
Fig. 24.

types. Two representative values, A=4877 and A= 12277,
are presented; results for other A values follow essentially
the same trends. Results for the constant eddy viscosity
and SGS kinetic energy models are presented using the
Gaussian filter in Figs. 27 and 28.

The main observation is that the trends are well mod-
eled by the various eddy-viscosity models: Both modeled
and real correlation functions peak at about the same value
of r, and then decay monotonically at a similar rate. For
the cutoff filter and the top-hat filter at larger A values, the
agreement is quite good. The difference is that for the
Gaussian filter the modeled results fall below the real curve
by about a factor of 2. This could, according to Eq. (47),
generate a slight overprediction of the third-order structure
functions from the LES. However, as one moves to r>A,
this becomes negligible. This is consistent with the com-
monly held view that two-point statistics at large distances
r> A (or spectra at kg<ir/A) will be largely unaffected by
the details of the SGS model. Even for the Gaussian filter,
the trends and type of decay agree quite well. This point is
made clearer in Fig. 29, which is the same as Fig. 25 in
log-log units. In addition, it is remarkable that (once
scaled to have equal slope at the origin), there exists al-
most no difference between the predicted correlation func-
tions from the three eddy-viscosity models.

We conclude that, to within the accuracy of present
measurements, the statistics of the eddy-viscosity models
are not inconsistent with those of the real SGS stresses.
Therefore, the models comply reasonably well with the
necessary conditions (in terms of trends) to accurately
reproduce the two-point statistics or the energy spectrum
of the resolved velocity, in grid turbulence.

IV. SUMMARY AND CONCLUSIONS

Statistical features of subgrid-scale models for Large-
Eddy Simulations were considered. In the first part of this
paper, necessary conditions that they should obey in order
to "cause" the correct resolved fields in a LES were de-
rived. The "turbulence problem" of the resolved velocity

830 Phys. Fluids, Vol. 6, No. 2, February 1994

0.06

003 1 4 4 5 6 

A

'I

passion, scaled

r li�

Charles Meneveau

Downloaded 18 Feb 2009 to 155.97.159.8. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



top-hat

P()

FIG. 26. Real and modeled velocity-stress correlation function, using the
top-hat filter for the Smagorisnsky model. The same legend as in Fig. 24.

field was shown to severely weaken our ability to establish
sufficient conditions. At any order, an equation for, say,
A(') (a resolved moment of order n) could be employed to
state conditions on the SGS stresses. But these were nec-
essary to enable the correct prediction of both A(') and
A(n+1) (in addition to a moment involving the model ex-
pression). If, however, one did not care about A (+1) but
only about A (n), no way of separating the effect of errors in
the model between A(') and A(n'l) was found. Never-
theless, it was argued that necessary conditions can be a
valuable tool to compare the properties of models through
statistical a priori testing. A special case, where suffi-
cient conditions could be obtained, was when third-order
structure functions in locally isotropic turbulence were
considered.

These basic considerations were illustrated with statis-
tical a priori testing of three simple eddy-viscosity models,
using experimental data in grid turbulence. Several major
assumptions were made during the analysis, mainly be-
cause of limitations in the data available. Each of them was
sufficiently strong to make a quantitative interpretation of

gaussion, const. visc.

300

r/77

FIG. 27. Real and modeled velocity-stress correlation function, using the
Gaussian filter for the constant eddy-viscosity model. The legend is the
same as in Fig. 24.

the results very difficult, although qualitative trends were
argued to be robust and were used to make several new
observations. The main assumptions were: (a) That filter-
ing along a single direction would give results similar to
three-dimensional filtering. It was shown analytically that
this assumption cannot strictly be true, since it can have an
effect on the numerical value of the model constants. Also,
the resulting large-scale field ceases to be isotropic and
therefore a dynamical equation at a scalar level [such as
Eq. (40)] cannot hold exactly. Nevertheless, the overall
consistency between the flux 5(11'r1ll) obtained from 1-D
filtering and (e), for which no filtering is performed, lends
some justification to assumption (a). We also presented an
alternative interpretations of the results in terms of two-
point statistics with anisotropic filtering (see the Appen-
dix), which did not require us to make the isotropy as-
sumption. (b) When computing the local eddy viscosities,
instantaneous iso-tropy was assumed. This assumption was
unnecessary in the case of the constant eddy-viscosity
model. Although difficult to quantify, we do not believe
that this assumption has a significant impact on the result-
ing statistics. (c) We did not subtract the trace of the
measured SGS stress tensor. This was shown to be of no
consequence in isotropic fields. Nevertheless, to the degree
that the filtered fields are not isotropic, this can introduce
additional errors. The combination of these assumptions
clearly implies that any numerical values from the mea-
surements have to be interpreted with great caution.

In terms of trends, the following results were obtained:
(a) In agreement with previous experience in a priori test-
ing, the real and modeled stresses exhibited almost no cor-
relation at a local level. (b) All three eddy-viscosity mod-
els were shown to approximately reproduce the correct
SGS energy dissipation with a model constant nearly inde-
pendent of the filter width A. Fluctuations in eddy viscos-
ity did not appear to have much impact, given the agree-
ment with the constant eddy-viscosity model. Also, this
insensitivity to eddy-viscosity fluctuations lends some qual-
ified support to our hypothesis that the results are insensi-

qaussion, kin. en.

FIG. 28. Real and modeled velocity-stress correlation function, using the
Gaussian filter for the kinetic energy model. The legend is the same as in
Fig. 24.
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FIG. 29. Log-log plot of real (lines) and modeled (symbols+lines)
velocity-stress correlation functions, using the Gaussian filter, and the
Smagorinsky model. The legend is the same as in Fig. 24.

tive to evaluating the eddy viscosity based on one compo-
nent rather than based on the true invariants. (c) The
three eddy-viscosity models also reproduced the correct
dissipation of enstrophy, within a significant range of A
values. Using the fact that the production of enstrophy also
occurs near the cutoff scale, some possibilities and risks for
a new model based on enstrophy equilibrium were out-
lined. (d) The two-point correlation function between fil-
tered velocity and SGS stress was shown to be adequately
reproduced by the eddy-viscosity models. There was a dis-
crepancy by a factor of about 2 for some cases, but given
the assumptions reviewed above, we refrain from ascribing
too much significance to this difference. The main result is
that the trends are followed quite well. According to the
discussion in Sec. II D, and under the assumptions already
stated, the present results give an experimental justification
to what has already been known from extensive experience
with LES: Eddy-viscosity SGS closures contain the appro-
priate physics to enable them to generate acceptable energy
spectra of the resolved portion of a LES flow field (of
isotropic turbulence).

Clearly, with measurements of more velocity compo-
nents in more dimensions,17 ' 24 the assumptions of this
study can be narrowed considerably. Consequently, quan-
titative experimental results could then be interpreted in a
stronger fashion. Also, tests in more complicated flows,
involving other models, etc., is generating additional
knowledge relevant to SGS modeling.
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APPENDIX: IMPACT OF ONE-DIMENSIONAL
FILTERING

In this appendix the influence of one-dimensional fil-
tering on the numerical value of model constants is esti-
mated. Following Lilly,31 the rate of dissipation is calcu-
lated, assuming that the filter width pertains to the inertial
range. Using an isotropic cutoff filter (denoted by an over-
caret), and making the (relatively strong) assumption that

r S''S' S) = (s§1§j) 3/2, we can write

(e)=-((j(aj)x=)(CA)2153/2 2 ) ) . (Al)

Instead, if we use filtering in the xl direction only (denoted
by an overtilde), and only consider the longitudinal com-
ponent of the rate-of-strain tensor, we must use another
constant Cl according to

(e) =(CA) 2 15 3 /2 i~u 2 3/2

\ka ~xi)
(A2)

As in the main text, we continue to assume that i is an
isotropic field (which is not strictly true). Now, if A per-
tains to the inertial range, we can evaluate the isotropically
filtered gradient in terms of the 3-D radial spectrum

(( Iax) 15 2fr/A Ck(e)2
/
3 k 1

/
3 dk

= 0.46Ck(6)2"3A -4/3'. (A3)

The longitudinally filtered velocity gradient can be ob-
tained asAir, 2 

a 2x,))
I= fi/A 18 Ck(e)21k 1/

= 1. l3Ck(c)2 /3A 4 /3. (A4)

Therefore, the variance of the longitudinal velocity gradi-
ent filtered in only one direction is considerably higher
than its counterpart involving the radial filter. (These ar-
guments are generalized in Ref. 33.) If these results are
replaced in Eqs. (Al) and (A2), one obtains

C 3= (15 * 0.46 - Ck) 3/4 ,

while

(A5)

(A6)

Therefore Co- 1.96CG. This discussion illustrates the diffi-
culty in using present experimental results to obtain nu-
merical values for the model constants, which can be in-
terpreted in the context of isotropic filtering. This
circumstance is the reason that the attention in the main
text is instead focused on general trends (such as scaling
with A, r, etc.).

If, nevertheless, one wants to use the numerical values
obtained in the experiments, one can make the argument
that they should be relevant to LES with a highly noniso-

832 Phys. Fluids, Vol. 6, No. 2, February 1994

Cl = ( 15 * 1.129 * Ck) 3'/4.
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